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Let K be a compact Hausdorff space and C(K) the Banach space of all real-valued contin-
uous functions on K , with the sup-norm. Types over C(K) (in the sense of Krivine and
Maurey) can be uniquely represented by pairs (�,u) of bounded real-valued functions on
K , where � is lower semicontinuous, u is upper semicontinuous, � ≤ u, and �(x) = u(x)
for all isolated points x of K . A condition that characterizes the pairs (�,u) that represent
double-dual types over C(K) is given.

1. Statement of the main theorem

The concept of type over a Banach space E was first introduced by Krivine and Maurey [7]
in the context of separable Banach spaces. The reader is referred to Garling’s monograph
[4] for more details. We consider general, not necessarily separable Banach spaces. Let E
be a Banach space. For every x ∈ E, we define a function τx : E→ R by letting τx(y) =
‖x+ y‖ for all y ∈ E.

Definition 1.1. A function τ : E→R is a type over E if τ is in the closure (with respect to
the topology of pointwise convergence) of the set {τx : x ∈ E}.

The definition given here is equivalent to the definition given in [1]. That is, τ is a type
over E if and only if there exists an ultrafilter � over an infinite index set λ and a bounded
family of elements (xα)α∈λ in E such that τ(y)= limα∈�‖xα + y‖ for all y ∈ E. The reader
is referred to [5] for more details regarding the choice of the ultrafilter.

Throughout, we let K be a compact Hausdorff topological space. The topology on K
is denoted by Ω. We let �∞(K) denote the Banach lattice of bounded real-valued func-
tions on K equipped with the sup-norm. For f ,g ∈ �∞(K), the lattice ordering is defined
pointwise.

An sc pair (semicontinuous pair) is a pair of functions (�,u) from �∞(K) such that � is
lower semicontinuous (lsc), u is upper semicontinuous (usc), � ≤ u, and �(x)= u(x) for
all isolated points x ∈ K .

The Banach space of continuous real-valued functions on K with sup-norm is denoted
by C(K). The constant function with value 1 is denoted by 1.
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The following theorem gives a concrete representation of types over C(K) in terms of
sc pairs [9, 10].

Theorem 1.2. Let τ : C(K)→R be a function. Then the following are equivalent:
(i) τ is a type over C(K);

(ii) there exists an sc pair (�,u) such that τ(g)=max{‖� + g‖,‖u+ g‖} for all g ∈ C(K).

The correspondence between types over C(K) and sc pairs (�,u) is one-to-one.
The following proposition is immediate from Definition 1.1; see [9] for more equiva-

lent conditions and a detailed proof.

Proposition 1.3. Let E be a Banach space and τ : E→R a function. Then the following are
equivalent:

(i) τ is a type over E;
(ii) for every finite subset α ⊆ E and every ε > 0, there exists an element x = x(α,ε) ∈ E

such that |τ(y)−‖x+ y‖| < ε for all y ∈ α;
(iii) there exists a bounded net (xα)α∈I in E such that

lim
α,I

∥∥xα + y
∥∥= τ(y) (1.1)

for all y ∈ E.

If τ is a type over E and (xα)α∈I is as in (iii) above, we say that (xα)α∈I generates the
type τ. A net (xα)α∈I in E doubly generates τ if for every λ∈ [0,1] and every y ∈ E,

lim
β,I

lim
α,I

∥∥y + λxα + (1− λ)xβ
∥∥= τ(y). (1.2)

Let E be a Banach space and let E′′ be its second dual. Throughout, we consider E
as a subspace of E′′. For every fixed g′′ ∈ E′′, define the function τg′′ : E→ R by letting
τg′′(x)= ‖x+ g′′‖ for all x ∈ E. It is immediate from the principle of local reflexivity that
τg′′ is a type over E.

If τ is a type over E that can be represented in this way, we call τ a double-dual type
over E.

Maurey [8] and Rosenthal [11] have given a characterization of double-dual types
over separable Banach spaces. The author [9] has generalized this characterization to not
necessarily separable Banach spaces as follows.

Theorem 1.4. Let E be a Banach space and τ : E→R a type over E. Then the following are
equivalent:

(i) τ is a double-dual type over E;
(ii) there exists a net (xα)α∈I in E that doubly generates τ.

This paper is devoted to proving the following characterization of double-dual types
over C(K) in terms of the representation using the sc pairs.
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Theorem 1.5. Let τ be a type over C(K), represented by the sc pair (�,u) as in Theorem 1.2.
Let

Y� =
{
x ∈ K : x is not isolated and �(x) < liminf

y→x
�(y)

}
,

Yu =
{
x ∈ K : x is not isolated and u(x) > limsup

y→x
u(y)

}
.

(1.3)

The following are equivalent:
(i) τ is a double-dual type over C(K);

(ii) Y� ∩Yu =∅;
(iii) there exists a net ( fα)α∈I which doubly generates τ.

The next section will include a discussion of generating nets. In Section 3, several
properties of singular points of sc pairs will be proved. The main Theorem 1.5 will then
be proved in Section 4.

2. Generating nets in C(K)

In this section, we introduce concepts that are needed to prove the main theorem.
We use the standard notion for convergence of nets in topological spaces according to

[3, Section 1.6]. We recall the basic definitions for the convenience of the reader.

Definition 2.1. (i) A partially ordered set (I ,≤) is a directed set if for any α,β ∈ I there
exists γ ∈ I such that γ ≥ α and γ ≥ β. Such an element γ is called a successor of α (and β).

(ii) Let (I ,≤) be a directed set. For every element α0 ∈ I , define |α0| = card ({α ∈ I :
α≤ α0}), the number of predecessors of α0.

(iii) Let (I ,≤) and (J ,≤) be directed sets. A function k : I → J is order-preserving if
α≤ β ∈ I implies k(α)≤ k(β). A function k : I → J is cofinal if for every γ ∈ J there exists
α∈ I such that γ ≤ k(α).

(iv) Let (I ,≤) be a directed set and K a topological space. We say that (xα)α∈I is a net
in K indexed by I if xα ∈ K for all α∈ I . If K is a normed space, then (xα)α∈I is bounded
if {‖xα‖ : α∈ I} is bounded in R.

(v) Let (I ,≤) be a directed set, K a topological space, and (xα)α∈I a net in K indexed by
I . If j : I → I is a cofinal order-preserving function, then (xj(α))α∈I is a subnet of (xα)α∈I .

(vi) Let (I ,≤) be a directed set, K a topological space, and (xα)α∈I a net in K indexed
by I . Let x ∈ K . Then limα,I xα = x if and only if for every neighborhood U of x in K there
exists α∈ I such that xβ ∈U for all β ≥ α.

(vii) Let (I ,≤) be a directed set and (rα)α∈I a bounded net of real numbers. Then define

limsup
α,I

rα = inf
α∈I

sup
{
rβ : β ∈ I and β ≥ α

}
,

liminf
α,I

rα = sup
α∈I

inf
{
rβ : β ∈ I and β ≥ α

}
.

(2.1)

Observe that limsupα,I rα and liminfα,I rα exist for every bounded net (rα)α∈I in R.
We now consider the Banach lattice �∞(K) of bounded real-valued functions on K ,

equipped with the sup-norm.
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A subset H ⊆ �∞ is called bounded if sup{‖ f ‖ : f ∈H} <∞. Let H be such a set. The
pointwise supremum of H is the real-valued function L defined by L(x)= sup{h(x) : h∈
H} for every x ∈ K . We write L=∨H for this function. Similarly, the pointwise infimum
of H is the real-valued function U defined by U(x)= inf{h(x) : h∈H} for every x ∈ K .
This function is denoted by

∧
H . Note that both

∨
H and

∧
H are again in �∞(K).

If H ⊆ �∞(K) is a bounded set of usc functions, then the pointwise infimum
∧
H is

usc. Similarly, the pointwise supremum of a bounded set of lsc functions is lsc. Finally,
it is clear that f ∈ C(K) is continuous if and only if f is usc and lsc. Therefore, if H is a
bounded set of continuous functions on K , then

∧
H is usc and

∨
H is lsc.

Let τ be a type over C(K) and let ( fα)α∈I generate τ as in Proposition 1.3(iii) above.
We construct the sc pair (�,u) of Theorem 1.2 as follows.

For every α∈ I , define a lower semicontinuous functions �α and an upper semicontin-
uous function uα on K by setting

�α =
∨{

f ∈ C(K) : f ≤ fβ ∀β ≥ α
}

,

uα =
∧{

f ∈ C(K) : f ≥ fβ ∀β ≥ α
}
.

(2.2)

Then set

u=
∧
α

uα, � =
∨
α

�α. (2.3)

Here are some basic properties of the functions � and u defined in (2.3). See [10] for
details.

Remark 2.2. Let ( fα)α∈I be a bounded net of functions and let �α, �, uα, and u be as in
(2.3) above.

(i) If α1,α2 ∈ I and α1 ≤ α2, then �α1 ≤ �α2 ≤ � and uα1 ≥ uα2 ≥ u.
(ii) If x ∈ K and ε > 0, then there exists an α0 = α(x,ε) ∈ I such that for all indices

α > α0,

�α(x)≥ �(x)− ε, uα(x)≤ u(x) + ε. (2.4)

(iii) For every β ∈ I , every x ∈ K , every δ > 0, and every neighborhood U of x, there
exists y ∈U and γ ≥ β such that fγ(y)≤ �β(x) + δ.

(iv) For every β ∈ I , every x ∈ K , every δ > 0, and every neighborhood U of x, there
exists y ∈U and γ ≥ β such that fγ(y)≥ uβ(x)− δ.

Proof. (i) and (ii) are trivial. To prove (iii) let β ∈ I , let x ∈ K , δ > 0, and U a neighbor-
hood of x. Suppose that for every y ∈U and all γ ≥ β we have fγ(y) > �β(x) + δ. Then we
may choose a function g ∈ C(K) such that g ≤ fγ for all γ ≥ β and g(x)= �β(x) + δ. This
would imply that �β(x)=∨{ f ∈ C(K) : f ≤ fγ for all γ ≥ β} ≥ g(x)= �β(x) + δ. This is a
contradiction. The proof of (iv) is dual to the proof of (iii). �

Let ( fα)α∈I be a bounded net of functions in C(K) that generates a type τ over C(K).
Choose � and u as in (2.3) and assume x ∈ K and u(x)= r. It can be shown that for every
neighborhood U of x and for every ε > 0, there exists an index α0 such that for every
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α≥ α0, there exists y ∈U such that fα(y) > r − ε. If U , ε, and r are fixed, then we define
for every α∈ I ,

Vα := {y ∈U : fα(y) > r− ε
}
. (2.5)

Hence, for every x ∈ K , every neighborhood U of x, and every ε > 0, there exists an
index α0 such that Vα �= ∅ for all α > α0.

The following definition introduces stronger conditions.

Definition 2.3. Let ( fα)α∈I be a bounded net of functions in C(K). Let � and u be as in
(2.3).

(i) ( fα)α∈I generates u at x within Ω if for every ε > 0 and every neighborhood U
of x, there exists an index α0 such that for all α > α0, there exists β0 such that
Vα∩Vβ �= ∅ for all β > β0.

(ii) The net ( fα)α∈I generates u within Ω if it generates u at x within Ω for every x ∈ K .
(iii) ( fα)α∈I generates � at x within Ω if (− fα)α∈I generates −� at x within Ω.
(iv) The net ( fα)α∈I generates � within Ω if it generates � at x within Ω for every x ∈ K .

Proposition 2.4. Let ( fα)α∈I be a bounded net of functions in C(K) that generates a type
τ. Let u be as in (2.3).

(i) If u is continuous at x, then ( fα)α∈I generates u at x within Ω.
(ii) If limα,I fα(x)= u(x), then ( fα)α∈I generates u at x within Ω.

(iii) If (xβ)β∈I is a net in K that converges to x and if limβ,I u(xβ) = u(x) and limα,I

fα(xβ)= u(xβ) for all β, then ( fα)α∈I generates u at x within Ω.
The statement is also true if u is replaced with �.

Proof. To show (i) let ε > 0 and U a neighborhood of x. We may assume that |u(y)−
u(x)| < ε/2 for all y ∈U . By Remark 2.2(ii) there exists α0 ∈ I such that for all α > α0,

Vα =
{
y ∈U : fα(y) > u(x)− ε

} �= ∅. (2.6)

Now fix such an α and choose y ∈ Vα. Then (using Remark 2.2(iii)) there exists β0 such
that for every β ≥ β0,

fβ
(
zβ
)
> u(y)− ε

2
(2.7)

for some zβ ∈ Vα. Therefore, zβ ∈ Vα∩Vβ, which shows that the net ( fα)α∈I generates u
at x within Ω. Statement (ii) is immediate from the definition.

To show (iii) let U be a neighborhood of x and ε > 0. There exists β ∈ I such that
xβ ∈ U and |u(x)− u(xβ)| < ε/2. Fix such a β ∈ I and choose α0 ∈ I such that | fα(xβ)−
u(xβ)| < ε/2 for all α > α0. Then xβ ∈ Vα = {y ∈ U : fα(y) > u(x)− ε} for all α > α0; that
is, Vα∩Vα′ �= ∅ for all α,α′ > α0. �

3. Singular points of semicontinuous pairs

Our next goal is to find necessary and sufficient conditions on � and u for the existence
of a single net that generates both � and u within Ω.
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Definition 3.1. Let u be a usc function and x ∈ K . We call x a singular point of u, if x is
not an isolated point of K and

u(x) > limsup
y→x

u(y). (3.1)

Similarly, we call x a singular point of an lsc function � if x is not isolated and

�(x) < liminf
y→x

�(y). (3.2)

We call x a regular point of u (resp., �) if x is not isolated and not a singular point of u
(resp., �).

It is immediate from the definition that x is a singular point of u if and only if there
exists an open neighborhood U of x such that

u(x) > sup
{
u(y) : y ∈U \ {x}}. (3.3)

If U is such a neighborhood and V ⊆U is another neighborhood of x, then

u(x) > sup
{
u(y) : y ∈V \ {x}}. (3.4)

If x is a regular point of u, then there exists a net (xβ)β∈I in K which converges to x
such that u(x)= limβ,I u(xβ) and xβ �= x for all β ∈ I .

Proposition 3.2. Let (�,u) be an sc pair in �∞(K). Let x ∈ K be a nonisolated point and
( fα)α∈I a net which generates both � and u within Ω at x.

(i) If x is a singular point of u, then x is a regular point of � and limα,I fα(x)= u(x).
(ii) If x is a singular point of �, then x is a regular point of u and limα,I fα(x)= �(x).

Proof. First we prove the following claim, which is the second statement of (i).

If x is a singular point of u, then lim
α,I

fα(x)= u(x). (3.5)

Proof of the claim. Let x be a singular point of u and suppose limα,I fα(x) �= u(x). Choose
ε > 0 and an open neighborhood U ′ of x such that

u(x)− ε > sup
{
u(y) : y ∈U ′ \ {x}} (3.6)

and such that

limsup
α,I

fα(x) < u(x)− 2ε. (3.7)

There exists a further open neighborhood U of x such that x ∈ U ⊆ U ⊆ U ′ and U is
compact. We may fix α0 such that for all α > α0,

fα(x) < u(x)− ε, Vα =
{
y ∈U : fα(y) > u(x)− ε

3

}
�= ∅. (3.8)
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Let α > α0. Then

Wα =
{
y ∈U : fα(y) < u(x)− 2ε

3

}
(3.9)

is an open neighborhood of x which is disjoint from Vα. Since ( fα)α∈I generates u at x
within Ω, there exists β0 such that for all β > β0, we may choose

yβ ∈
{
y ∈Vα : fβ(y) > u(x)− ε

3

}
. (3.10)

By passing to a subnet if necessary, we may assume that limβ,I yβ = y for some y ∈U . We
obtain uβ(y)≥ u(x)− ε/3 for all β ∈ I with β ≥ β0 and hence

u(y)≥ u(x)− ε

3
, (3.11)

which contradicts (3.6). So limα,I fα(x)= u(x) and the claim is established. �

The dual statement of claim (3.5) reads as follows:

if x is a singular point of �, then lim
α,I

fα(x)= �(x). (3.12)

It is proved using an argument dual to the proof of claim (3.5). This shows the second
part of (ii).

To prove the first part of (i) observe that x singular for u implies �(x) < u(x), and
therefore limα,I fα(x) = u(x) �= �(x). Using the contrapositive of statement (3.12) above
shows that x is not a singular point of �; that is, x is a regular point of �.

Likewise, (3.5) can be used to show that if x a singular point of �, then x is a regular
point of u. �

Let (�,u) be an sc pair and Y� and Yu the sets of singular points of � and u, respectively.
If ( fα)α∈I is a net that generates both � and u within Ω, then Y� and Yu are disjoint by
Proposition 3.2. The following proposition proves the existence of such a net, provided
that Y� and Yu are disjoint.

Proposition 3.3. Let K be a compact Hausdorff space and (�,u) an sc pair in �∞(K).
Consider the sets Y� ,Yu of singular points of �,u, respectively. Suppose that Y� ∩ Yu =∅.
Then there exists a net ( fα)α∈I of continuous functions which generates � and u within Ω.

The proof of this proposition requires the following theorem.

Theorem 3.4 (Edwards [2]). Let U be a usc function and L an lsc function on a compact
Hausdorff space K such that U ≤ L. Then there exists a continuous function F such that
U ≤ F ≤ L.

A proof of this theorem can be found in Kaplan [6, (48.5)].

Proof of Proposition 3.3. Let � be a base for the topology Ω such that � does not contain
the empty set and the only finite sets in � are singletons. Let I =P<∞(�) \ {∅}, the set
of finite subsets of �, be partially ordered by inclusion.
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By induction on |α| construct an increasing net of integers (kα)α∈I and for every 1 ≤
k ≤ kα construct functions g(1)

α , g(2)
α and fα ∈ C(K) and finite collections of nonempty

open sets Bα = {Vα,1, . . . ,Vα,kα ⊇ α and elements zi,α,k ∈Vα,k for i= 1,2 and all 1≤ k ≤ kα,
such that the following conditions hold for every α∈ I and every k = 1, . . . ,kα:

u
(
z1,α,k

)≥ sup
{
u(y) : y ∈Vα,k

}− 1
|α| , (3.13)

�
(
z2,α,k

)≤ inf
{
�(y) : y ∈Vα,k

}
+

1
|α| , (3.14)

g(1)
α

(
zj,α,k

)= u
(
zj,α,k

)
for j = 1,2, (3.15)

g(2)
α

(
zj,α,k

)= �
(
zj,α,k

)
for j = 1,2, (3.16)

u≤ g(1)
α ≤

∧
β<α

g(1)
β ≤ ‖u‖1, (3.17)

� ≥ g(2)
α ≥

∨
β<α

g(2)
β ≥ −‖�‖1, (3.18)

fα
(
z1,α,k

)= u
(
z1,α,k

)
, fα(z2,α,k)= �

(
z2,α,k

)
. (3.19)

Furthermore, for every β < α and every 1≤ k ≤ kβ, the following nonempty open sets
are required to be among the elements of Bα:

V (α)
1,β,k =

{
y ∈Vβ,k : fβ(y) > u

(
z1,β,k

)− 1
|α|
}

, (3.20)

V (α)
2,β,k =

{
y ∈Vβ,k : fβ(y) < �

(
z2,β,k

)
+

1
|α|
}
. (3.21)

We use induction on |α|. If α = ∅, let f∅ = g(1)
∅ = ‖u‖1 and g(2)

∅ = −‖�‖1 and set
B∅ =∅. With this choice, conditions (3.13)–(3.21) are either trivial or vacuously true.

If α ∈ I and α �= ∅, suppose as inductive hypothesis that the construction has been
completed for every β ∈ I with β < α. Let

Bα =
{
V (α)
i,β,k : i= 1,2; β < α; 1≤ k ≤ kβ

}
∪α∪

⋃
β<α

Bβ, (3.22)

where V1,β,k and V2,β,k are as in (3.20) for all 1≤ k ≤ kα. Observe that Bα is a finite col-
lection of nonempty open sets. Say

Bα =
{
Vα,1, . . . ,Vα,kα

}
, (3.23)

where (Vα,k)kαk=1 are pairwise distinct. For i = 1,2 and 1 ≤ k ≤ kα, we choose zi,α,k ∈ Vα,k

satisfying (3.13) and (3.14), and such that for all 1≤ k, j ≤ kα, and i1, i2 ∈ {1,2}, we have
zi1,α,k = zi2,α, j if and only if either j = k and i1 = i2 or j = k and Vα,k is a singleton.

Note that such a choice is possible, since the singular points of � and u are disjoint and
the only finite sets in � are singletons.

We now construct g(1)
α and g(2)

α satisfying (3.15) through (3.18).
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By inductive hypothesis in (3.17), u ≤ ∧β<α g
(1)
β ≤ ‖u‖1. We define an lsc function L

on K by setting

L(x)=


u(x) if x = zj,α,k for some j = 1,2; 1≤ k ≤ kα,∧

β<α
g(1)
β (x) otherwise.

(3.24)

Because u≤ L, we may apply Theorem 3.4 and obtain g(1)
α ∈ C(K) with u≤ g(1)

α ≤ L. This

choice of g(1)
α satisfies (3.15) and (3.17). We use a dual construction to define g(2)

α satisfy-
ing conditions (3.16) and (3.18).

In order to construct fα define a usc function U and an lsc function L on K by setting
for every x ∈ K ,

U(x)=


g(1)
α (x) if x = z1,α,k for some 1≤ k ≤ k(α),

g(2)
α (x) otherwise,

L(x)=


g(2)
α (x) if x = z2,α,k for some 1≤ k ≤ k(α),

g(1)
α (x) otherwise.

(3.25)

Observe that U ≤ L; by Theorem 3.4 there exists a continuous function fα with U ≤
fα ≤ L. By construction of U and L and (3.15), we have

U
(
x1,α,k

)= L
(
x1,α,k

)= g(1)
α

(
z1,α,k

)= u
(
z1,α,k

)
(3.26)

for all 1≤ k ≤ kα. Hence, fα(z1,α,k)= u(z1,α,k). Furthermore,

U
(
x2,α,k

)= L
(
x2,α,k

)= g(2)
α

(
z2,α,k

)= �
(
z2,α,k

)
(3.27)

for all 1≤ k ≤ kα. Thus, fα(z2,α,k)= �(z2,α,k). Condition (3.19) follows from these last two
observations.

This completes the construction and we now proceed to show that the net ( fα)α∈I
generates u and � within Ω.

Fix x ∈ K , ε > 0, and U ∈Ω. Choose n∈N such that 1/n < ε/2. Fix β ∈ I with |β| > n,
such that for some V ∈ β we have x ∈ V ⊆ U . Choose 1 ≤ k ≤ kβ such that V = Vβ,k ∈
Bβ. Applying (3.13) yields

u
(
z1,β,k

)≥ sup
{
u(y) : y ∈Vβ,k

}− 1
|β| ≥ u(x)− 1

|β| . (3.28)

So by (3.19), fβ(z1,β,k) = u(z1,β,k). Now let α > β. By (3.20) there exists 1 ≤ j ≤ kα such
that

Vα, j =V (α)
1,β,k =

{
y ∈Vβ,k : fβ(y) > u

(
z1,β,k

)− 1
|α|
}
. (3.29)

In particular,

z1,β,k ∈Vα, j . (3.30)
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Observe that by (3.13)

u
(
z1,α, j

)≥ sup
{
u(y) : y ∈Vα, j

}− 1
|α| (3.31)

and z1,α, j ∈Vα, j . Thus,

fβ
(
z1,α, j

)
> u
(
z1,β,k

)− 1
|α| by (3.29)

≥ u(x)− 1
|β| −

1
|α| by (3.28)

> u(x)− ε.

(3.32)

On the other hand,

fα(z1,α, j)= u
(
z1,α, j

)
by (3.19)

≥ sup
{
u(y) : y ∈Vα, j

}− 1
|α| by (3.31)

≥ u
(
z1,β,k

)− 1
|α| by (3.30)

≥ u(x)− 1
|β| −

1
|α| by (3.28)

> u(x)− ε.

(3.33)

Therefore,

z1,α, j ∈
{
y ∈U : fα(y) > u(x)− ε

}∩ {y ∈U : fβ(y) > u(x)− ε
} �= ∅ (3.34)

for all α ≥ β. This shows that the net ( fα)α∈I generates u within Ω. The proof that it
generates � within Ω follows from a similar argument. �

Let τ be a type over C(K) that is represented by the sc pair (�,u) as in Theorem 1.2.
Propositions 3.2 and 3.3 prove that the sets Y� and Yu of singular points of � and u are
disjoint if and only if there exists a net ( fα)α∈I that generates both � and u within Ω.

4. Proof of the main theorem

We now consider a net ( fα)α∈I that generates a type τ over C(K). As before, let this type
be represented by the sc pair (�,u).

To establish the main theorem, we will now prove that the net doubly generates the
type τ if and only if the net generates both � and u within Ω. This is accomplished in the
following two lemmas.

Lemma 4.1. Let K be a compact Hausdorff space and τ a type over C(K). Let ( fα)α∈I be a
net that doubly generates τ. Let (�,u) be the sc pair such that τ(g)=max{‖� + g‖,‖u+ g‖}
for all g ∈ C(K). Then ( fα)α∈I generates � and u within Ω.
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Proof. Assume the conclusion does not hold. Then either ( fα)α∈I does not generate u
within Ω at some x ∈ K , or it does not generate � within Ω at some x ∈ K . We distinguish
between these two cases.

Case 1. ( fα)α∈I does not generate u at x within Ω. Let λ = 1/2. There exists an open
neighborhood U of x and ε > 0 such that for all α0 ∈ I and β0 ∈ I there exist α > α0 and
β > β0, for which

{
y ∈U : fα(y) > u(x)− ε

}∩ {y ∈U : fβ(y) > u(x)− ε
}=∅. (4.1)

Let U0 = {y ∈ U : u(y) < u(x) + ε/2} and choose an open neighborhood U1 of x such
that U1 ⊆U1 ⊆U0 ⊆U . We claim that there exists α0 ∈ I such that ‖ fα‖ ≤ ‖τ‖+ ε/2 and
fα�U1

≤ u(x) + ε/2 for all α≥ α0. (Here, ‖τ‖ = τ(0).)
First observe that there exists α1 such that for all α ≥ α1 we have ‖ fα‖ ≤ ‖τ‖ + ε/2.

Suppose there does not exist α0 ≥ α1 such that fα�U1
≤ u(x) + ε/2 for all α ≥ α0. Then

there exist a cofinal order-preserving map i : I → I such that fi(α)(yi(α)) > u(x) + ε/2, where
yi(α) ∈U1 for all α∈ I . We may assume that (yi(α))α∈I converges to y0 ∈U1. Thus, u(y0)≥
u(x) + ε/2, which contradicts the choice of U0 and establishes the claim.

Fix a function g ∈ C(K) such that g�K\U1
= 0 and g(x)= 3‖τ‖ and 0≤ g ≤ 3‖τ‖. Ob-

serve that ‖u+ g‖ ≥ g(x) +u(x)= 3‖τ‖+u(x).
Further, for each α ≥ α0, there exists α2 ≥ α and a cofinal order-preserving function

j = jα2 : I → I such that

{
y ∈U1 :

1
2
fα2 (y) >

1
2
u(x)− 1

2
ε
}
∩
{
y ∈U1 :

1
2
f j(β)(y) >

1
2
u(x)− 1

2
ε
}
=∅. (4.2)

Fix such α2 and j = jα2 . If y ∈U1,

g(y) +
1
2
fα2 (y) +

1
2
f j(β)(y)≤ 3‖τ‖+u(x)− ε

4
(4.3)

for all β ∈ I . If y ∈ K \U1, we have

g(y) +
1
2
fα2 (y) +

1
2
f j(β)(y)≤ ‖τ‖+

ε

2
. (4.4)

Observe that limβ,I ‖g + 1/2 fα2 + 1/2 fβ‖ exists. Thus,

lim
β,I

∥∥∥∥g +
1
2
fα2 +

1
2
fβ

∥∥∥∥= lim
β,I

∥∥∥∥g +
1
2
fα2 +

1
2
f j(β)

∥∥∥∥≤ 3‖τ‖+u(x)− ε

4
. (4.5)

Hence,

liminf
α,I

lim
β,I

∥∥∥∥g +
1
2
fα +

1
2
fβ

∥∥∥∥≤ 3‖τ‖+u(x)− ε

4
< lim

α,I

∥∥g + fα
∥∥. (4.6)

This contradicts the assumption that ( fα)α∈I doubly generates τ.

Case 2. ( fα)α∈I does not generate � at x within Ω. This case is handled with an argument
dual to the one in Case 1. �
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Lemma 4.2. Let K be a compact Hausdorff space and τ a type over C(K). Let (�,u) be
the sc pair such that τ(g) =max{‖� + g‖,‖u+ g‖} for all g ∈ C(K). Assume that ( fα)α∈I
generates � and u within Ω. Then ( fα)α∈I doubly generates τ.

Proof. Fix g ∈ C(K). Because τ(g)=max{‖� + g‖,‖u+ g‖}, we distinguish between two
cases.

Case 1. Suppose that τ(g)= ‖u+ g‖. Choose x ∈ K such that ‖u+ g‖ = u(x) + g(x). Let
ε > 0 and choose a neighborhood U of x such that |g(y)− g(x)| < ε/2 for all y ∈ U .
Choose α0 ∈ I such that for all α > α0, there exists β0 ∈ I such that for all β > β0, we have
fα(z) > u(x)− ε/2 and fβ(z) > u(x)− ε/2 for some z ∈U . Then

∥∥g + λ fα + (1− λ) fβ
∥∥≥ ∣∣g(z) + λ fα(z) + (1− λ) fβ(z)

∣∣ > u(x) + g(x)− ε= ‖u+ g‖− ε.
(4.7)

Therefore,

liminf
α,I

lim
β,I

∥∥g + λ fβ + (1− λ) fα
∥∥≥ ‖u+ g‖− ε. (4.8)

On the other hand,

limsup
α,I

lim
β,I

∥∥g + λ fα + (1− λ) fβ
∥∥

≤ limsup
α,I

λ
∥∥g + fα

∥∥+ lim
β,I

(1− λ)
∥∥ fβ + g

∥∥
≤‖u+ g‖.

(4.9)

Because ε was arbitrary, this shows that

lim
α,I

lim
β,I

∥∥g + λ fα + (1− λ) fβ
∥∥ (4.10)

exists and equals τ(g).

Case 2. If τ(g)= ‖� + g‖, consider the net (− fα)α∈I , which generates −u and −� within
Ω and the function −g ∈ C(K). We infer from Case 1 that

lim
β,I

lim
α,I

∥∥g + λ fα + (1− λ) fβ
∥∥= lim

β,I
lim
α,I

∥∥− g + λ(− fα) + (1− λ)(− fβ)
∥∥= ‖� + g‖. (4.11)

Therefore, limβ,I limα,I ‖g + λ fα + (1− λ) fβ‖ = τ(g) for all g ∈ C(K). �

Proof of Theorem 1.5. The equivalence between (i) and (iii) is Theorem 1.4 above. The
implication (ii)⇒ (iii) follows from Proposition 3.2 and Lemma 4.1 and (iii)⇒(ii) follows
from Proposition 3.3 and Lemma 4.2. �
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