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Let E be an arbitrary real Banach space and let K be a nonempty closed convex subset
of E such that K + K ⊂K . Assume that T : K → K is a uniformly continuous and Φ-
hemicontractive mapping. It is shown that the Ishikawa iterative sequence with errors
converges strongly to the unique fixed point of T .

1. Introduction

Let E be a real Banach space and let E∗ be the dual space on E. The normalized duality
mapping J : E→ 2E

∗
is defined by

Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖ · ‖ f ‖ = ‖ f ‖2} (1.1)

for all x ∈ E, where 〈·,·〉 denotes the generalized duality pairing. It is well known that if E
is a uniformly smooth Banach space, then J is single valued and such that J(−x)=−J(x),
J(tx) = tJ(x) for all x ∈ E and t ≥ 0; and J is uniformly continuous on any bounded
subset of E. In the sequel, we shall denote single-valued normalized duality mapping by j
by means of the normalized duality mapping J . In the following, we give some concepts.

Definition 1.1. A mapping T with domain D(T) and range R(T) is said to be strongly
pseudocontractive if for any x, y ∈D(T), there exists j(x− y)∈ J(x− y) such that〈

Tx−Ty, j(x− y)
〉≤ k‖x− y‖2 (1.2)

for some constant k ∈ (0,1). The mapping T is called Φ-strongly pseudocontractive if
there exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0)= 0 such that the
inequality 〈

Tx−Ty, j(x− y)
〉≤ ‖x− y‖2−Φ

(‖x− y‖)‖x− y‖ (1.3)

holds for all x, y ∈ D(T). Let F(T) = {x ∈ D(T) : Tx = x}. A mapping T is called Φ-
hemicontractive if there exists a strictly increasing function Φ : [0,∞) → [0,∞) with
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Φ(0)= 0 such that the inequality

〈
Tx−Tq, j(x− q)

〉≤ ‖x− q‖2−Φ
(‖x− q‖)‖x− q‖ (1.4)

holds for all x ∈D(T) and q ∈ F(T).

It is shown in [5] that the class of strongly pseudocontractive mapping is a proper sub-
class of Φ-strongly pseudocontractive mapping. Furthermore, the example in [2] shows
that the class of Φ-strongly pseudocontractive mapping with the nonempty fixed point
set is a proper subclass of Φ-hemicontractive mapping. The classes of mappings intro-
duced above have been studied by several authors. In [1], Chidume proved that if E = Lp

(or lp), p ≥ 2, K is a nonempty closed convex and bounded subset of E, and T : K → K is
a Lipschitz strongly pseudocontractive mapping, then Mann iteration process converges
strongly to the unique fixed point of T . In [4], Deng extended the above result to the
Ishikawa iteration process. After Tan and Xu [7] extended the results of both Chidume [1]
and Deng [4] to q-uniformly smooth Banach spaces (1 < q < 2), Chidume and Osilike [3]
extended to real q-uniformly smooth Banach spaces (1 < q <∞). Recently, these results
above have been extended from Lipschitz strongly pseudocontractive mapping to Lips-
chitz Φ-strongly pseudocontractive mapping in real q-uniformly smooth Banach spaces
(1 < q <∞). More recently, Osilike [6] proved that if K is a nonempty closed convex sub-
set of arbitrary real Banach space E and T : K → K is a Lipschitzian Φ-hemicontractive
mapping, then Ishikawa iteration sequence {xn}∞n=1 converges strongly to the unique fixed
point of T . It is our purpose in this paper to examine the strong convergence theorems of
the Ishikawa iterative sequences with errors for Φ-hemicontractive mapping in arbitrary
real Banach spaces.

Lemma 1.2. Let E be a real Banach space, then for all x, y ∈ E, there exists j(x + y) ∈
J(x+ y) such that ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.

Proof. By definition of duality mapping, we may obtain directly the results of Lemma 1.2.
�

2. Main results

Theorem 2.1. Let E be a real Banach space, and let K be a nonempty closed convex subset of
E such thatK +K ⊂ K . Assume thatT : K → K is a uniformly continuousΦ-hemicontractive
mapping. Let {αn}∞n=0 and {βn}∞n=0 be two real sequences in [0,1] satisfying the following
conditions: (i) αn,βn→ 0 as n→∞; (ii)

∑∞
n=0αn =∞. Suppose that {un}∞n=0 and {vn}∞n=0 are

two sequences in K satisfying that
∑∞

n=0‖un‖ <∞ and
∑∞

n=0‖vn‖ <∞. Define the Ishikawa
iterative sequence {xn}∞n=0 with errors in K by

(IS)


x0 ∈ K ,

yn =
(
1−βn

)
xn +βnTxn + vn, n≥ 0,

xn+1 =
(
1−αn

)
xn +αnTyn +un, n≥ 0.

(2.1)
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If {Tyn}∞n=0 and {Txn}∞n=0 are bounded, then the sequence {xn}∞n=0 converges strongly to the
unique fixed point of T .

Proof. We first observe that the iterative sequence {xn} defined by (2.1) is well defined,
since K is convex and T is a self-mapping from K to itself with K +K ⊂ K . By the defini-
tion of T , we known that if F(T) �= ∅, then F(T) must be a singleton, let q ∈ K denote the
unique fixed point. And we also obtain that for any x ∈ K , there exists j(x− q)∈ J(x− y)
such that

〈
Tx−Tq, j(x− q)

〉≤ ∥∥x− q
∥∥2−Φ

(∥∥x− q
∥∥)∥∥x− q

∥∥. (2.2)

Now set

M = sup
n≥0

∥∥Tyn− q
∥∥+

∥∥x0− q
∥∥,

D =
∞∑
n=0

∥∥un∥∥+M + 1.
(2.3)

By using induction, we obtain ‖xn− q‖ ≤M +
∑∞

n=0‖un‖,n≥ 0, which implies that ‖xn−
q‖ ≤D,n≥ 0. Using (2.1) and Lemma 1.2, we have

∥∥xn+1− q
∥∥2 = ∥∥(1−αn

)(
xn− q

)
+αn

(
Tyn−Tq

)
+un

∥∥2

≤ ∥∥(1−αn
)(
xn− q

)
+αn

(
Tyn−Tq

)∥∥2
+ 2D

∥∥un∥∥. (2.4)

Let An = ‖Tyn − T(xn+1 − un)‖. Then An → 0 as n→∞. Indeed, since T is uniformly
continuous, we observe that {xn}∞n=0, {Txn}∞n=0, and {Tyn}∞n=0 are all bounded and ‖yn−
(xn+1−un)‖ → 0 as n→∞, so that An → 0 as n→∞. Using Lemma 1.2, (2.1), and (2.2),
we have

‖xn+1−un− q‖2

= ∥∥(1−αn
)(
xn− q

)
+αn

(
Tyn−Tq

)∥∥2

≤ (1−αn
)2∥∥xn− q

∥∥2
+ 2αn

〈
Tyn−Tq, j

(
xn+1−un− q

)〉
≤ (1−αn

)2∥∥xn− q
∥∥2

+ 2αn
〈
Tyn−T

(
xn+1−un

)
, j
(
xn+1−un− q

)〉
+ 2αn

〈
T
(
xn+1−un

)−Tq, j
(
xn+1−un− q

)〉
≤ (1−αn

)2∥∥xn− q
∥∥2

+ 2αnAn

∥∥xn+1−un− q
∥∥

+ 2αn
∥∥xn+1−un− q

∥∥2− 2αnΦ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥

≤ (1−αn
)2∥∥xn− q

∥∥2
+ 2αnAn

(
1−αn

)∥∥xn− q
∥∥+ 2α2

nAnD
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+ 2αn
∥∥xn+1−un− q

∥∥2− 2αnΦ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥

≤ (1−αn
)2∥∥xn− q

∥∥2
+αnAn

(
1−αn

)(
1 +

∥∥xn− q
∥∥2)

+ 2α2
nAnD

+ 2αn
∥∥xn+1−un− q

∥∥2− 2αnΦ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥

≤ ((1−αn
)2

+αnAn
)∥∥xn− q

∥∥2
+αnAn

(
1 + 2αnD

)
+ 2αn

∥∥xn+1−un− q
∥∥2− 2αnΦ

(∥∥xn+1−un− q
∥∥)∥∥xn+1−un− q

∥∥,

(2.5)

which implies that

∥∥xn+1−un− q
∥∥2 ≤

(
1−αn

)2
+αnAn

1− 2αn

∥∥xn− q
∥∥2

+
αnAn

(
1 + 2αnD

)
1− 2αn

− 2αn
1− 2αn

Φ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥

≤ ∥∥xn− q
∥∥2

+
2αn

1− 2αn

(
D2αn +D2An +An + 2αnAnD

2

−Φ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥).

(2.6)

Substituting (2.6) into (2.4) yields that

∥∥xn+1− q
∥∥2 ≤ ‖xn− q‖2 +

2αn
1− 2αn

(
D2αn +D2An +An + 2αnAnD

2

−Φ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥)+ 2D

∥∥un∥∥
≤ ∥∥xn− q

∥∥2
+

2αn
1− 2αn

(
Bn−Φ

(∥∥xn+1−un− q
∥∥)∥∥xn+1−un− q

∥∥)+ 2D
∥∥un∥∥,

(2.7)

where Bn = D2αn +D2An +An + 2αnAnD/2. Now we consider the following two possible
cases.

Case (i). limn→∞ inf ‖xn+1 − un − q‖ = r > 0. Since Bn → 0,αn → 0 as n→∞, then there
exists a positive integer N such that Bn < 1/2Φ(r)r,αn < 1/2 for all n≥N . It follows from
(2.7) that

∥∥xn+1− q
∥∥2 ≤ ∥∥xn− q

∥∥2
+

αn
1− 2αn

Φ(r)r− 2αn
1− 2αn

Φ(r)r + 2D
∥∥un∥∥

≤ ∥∥xn− q
∥∥2− αn

1− 2αn
Φ(r)r + 2D

∥∥un∥∥ (2.8)

which implies that Φ(r)r
∑∞

n=N αn/1− 2αn ≤ ‖xN − q‖2 + 2D
∑∞

n=N ‖un‖ <∞. This con-
tradicts the assumption that

∑∞
n=0αn =∞ and so the case (i) is impossible.
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Case (ii). limn→∞ inf ‖xn+1−un− q‖ = 0. In this case, there exists a subsequence {xnj+1−
unj − q} such that xnj+1 − unj − q→ 0 as j →∞. Hence, for any 0 < ε < 1, there exists a
positive integer nj such that ‖xnj+1 − unj − q‖ < ε and Bn < Φ(ε)ε, 2D

∑∞
k=nj+1‖uk‖ < ε

for all n ≥ nj for all n ≥ nj . Now we show that ‖xnj+m‖ < ε for all m ≥ 1. First, by (2.4),
we have ‖xnj+1− q‖2 ≤ ε2 + 2D‖unj‖. Again consider the following two possible cases.
Case(ii-1). ‖xnj+2−unj+1− q‖ < ε. Using (2.4), we obtain

‖xnj+2− q‖2 = ∥∥(1−αnj+1
)(
xnj+1− q

)
+αnj+1

(
Tynj+1−Tq

)
+unj+1

∥∥2

≤ ∥∥xnj+2−unj+1− q
∥∥2

+ 2D
∥∥unj+1

∥∥
≤ ε2 + 2D

∥∥unj+1
∥∥.

(2.9)

Case(ii-2). ‖xnj+2−unj+1− q‖ ≥ ε. Then using (2.7) yields that

∥∥xnj+2− q
∥∥2 ≤ ε2 + 2D

(∥∥unj

∥∥+
∥∥unj+1

∥∥). (2.10)

For all m ≥ 1, using induction, we have ‖xnj+m − q‖2 ≤ ε2 + 2D
∑nj+m−1

k=nj
‖uk‖ < 2ε.

Thus we prove that xn→ q as n→∞. This completes the proof. �

Remark 2.2. The assumption K +K ⊂ K only is used to guarantee that the iterative se-
quence {xn}∞n=0 is well defined. We can drop this assumption in Theorem 2.1 by using a
revised iterative scheme.

Corollary 2.3. Let E be a real Banach space, and let K be a nonempty bounded and con-
vex subset of E. Assume that T : K → K is a uniformly continuous Φ-hemicontractive map-

ping. Let {αn}∞n=0, {βn}∞n=0, {γn}∞n=0, {α̂}∞n=0, {β̂}∞n=0, and {γ̂}∞n=0 be six real sequences in

[0,1] satisfying the following conditions: (i) βn→ 0, β̂n→ 0, γ̂n→ 0 as n→∞; (ii)
∑∞

n=0βn =
∞,
∑∞

n=0 γn < ∞; (iii) αn + βn + γn = α̂n + β̂n + γ̂n = 1. Let {un}∞n=0 and {νn}∞n=0 be two
bounded sequences in K . Define iteratively the Ishikawa sequence {xn}∞n=0 with errors in
K as follows:

x0 ∈ K ,

yn = α̂nxn + β̂nTxn + γ̂nvn, n≥ 0,

xn+1 = αnxn +βnT yn + γnun, n≥ 0.

(2.11)

Then the sequence {xn}∞n=0 defined by (2.11) converges strongly to the unique fixed point
of T .

Proof. We observe that (2.11) can be rewritten as follows:

x0 ∈ K ,

yn =
(
1− β̂n

)
xn + β̂nTxn + γ̂n(vn− xn), n≥ 0,

xn+1 =
(
1−βn

)
xn +βnT yn + γn

(
un− xn

)
, n≥ 0.

(2.12)

It is easily seen that under the assumptions of Corollary 2.3, the sequence {xn}∞n=0 is
bounded. Now the conclusion follows from Theorem 2.1. This completes the proof. �
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Theorem 2.4. Let E be a real Banach space, and let K be a nonempty closed convex subset of
E such thatK +K ⊂ K . Assume thatT : K → K is a uniformly continuousΦ-hemicontractive
mapping. Let {αn}∞n=0 and {βn}∞n=0 be two real sequences in [0,1] satisfying the following
conditions: (i) αn,βn → 0 as n→∞; (ii)

∑∞
n=0αn =∞. Suppose that {un}∞n=0 and {vn}∞n=0

are two sequences in K satisfying ‖un‖,‖vn‖→ 0 as n→∞, where ‖un‖ = o(αn). Define the
Ishikawa iterative sequence {xn}∞n=0 with errors in K by

(IS)


x0 ∈ K ,

yn =
(
1−βn

)
xn +βnTxn + vn, n≥ 0,

xn+1 =
(
1−αn

)
xn +αnTyn +un, n≥ 0.

(2.13)

If {Tyn}∞n=0 and {Txn}∞n=0 are bounded, then the sequence {xn}∞n=0 converges strongly to the
unique fixed point of T .

Proof. Since K +K ⊂ K and K is convex, we see that the sequence {xn}∞n=0 is well defined.
By the definition of T , T has a unique fixed point in K . Let q denote the unique fixed
point. Now we shall show that {xn}∞n=0 is bounded. In fact, we may set ‖un‖ = εnαn, where
εn→ 0 as n→∞. Set D = supn≥0{‖Tyn− q‖+ εn}+‖x0− q‖, by induction, we can show
that ‖xn− q‖ ≤D for all n≥ 0, so that {yn} is bounded. And we have〈

Tx−Tq, j(x− q)
〉≤ ‖x− q‖2−Φ

(‖x− q‖)‖x− q‖ (2.14)

for each x ∈ K . By using Lemma 1.2 and (2.7), we have∥∥xn+1− q
∥∥2 ≤ ∥∥(1−αn

)(
xn− q

)
+αn

(
Tyn−Tq

)∥∥2
+ 2D

∥∥un∥∥. (2.15)

After repeating the usage of the proof of Theorem 2.1, we obtain∥∥(1−αn
)(
xn− q

)
+αn

(
Tyn−Tq

)∥∥2

≤ ((1−αn
)2

+αnAn
)∥∥xn− q

∥∥2
+αnAn

(
1 + 2αnD

)
+ 2αn

∥∥xn+1−un− q
∥∥2− 2αnΦ

(∥∥xn+1−un− q
∥∥)∥∥xn+1−un− q

∥∥.
(2.16)

Thus, we have

‖xn+1− q‖2

≤ ‖xn− q‖2 +
2αn

1− 2αn

(
D2αn +D2An +An + 2αnAnD

2

−Φ
(∥∥xn+1−un− q

∥∥)∥∥xn+1−un− q
∥∥)+ 2D‖un‖

≤ ‖xn− q‖2 +
2αn

1− 2αn

(
Bn +Cn−Φ(‖xn+1−un− q‖)‖xn+1−un− q‖

)
+ 2D‖un‖,

(2.17)

where Bn = D2αn +D2An +An + 2αnAnD/2 → 0,Cn = 1− 2αn/αnD‖un‖ → 0 as n → ∞.
Then limn→∞ inf ‖xn+1 − un − q‖ = 0. If it is not the case, then there exist δ > 0 and
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positive integer N such that Bn + Cn < 1/2Φ(r)r,αn < 1/2 for all n ≥ N . It follows that
‖xn+1− q‖2 ≤ ‖xn− q‖2−αn/1− 2αnΦ(r)r, which leads to Φ(r)r

∑∞
n=N αn ≤ ‖xN − q‖2 <

∞, a contradiction. Hence, there exists a subsequence {xnj + 1} such that xnj + 1→ q as
j →∞. At this point, we can choose a positive integer nj such that ‖xnj+1 − q‖ < ε and
Bn +Cn <Φ(ε/2)ε/4, ‖un‖ < ε/2 for all n ≥ nj . We show that ‖xnj+2 − q‖ < ε. If not, we
assume that ‖xnj+2− q‖ ≥ ε, then ‖xnj+2−unj+1− q‖ ≥ ‖xnj+2− q‖−‖unj+1 ≥ ε/2 so that
Φ(xnj+2−unj+1− q)≥Φ(ε/2). Thus, using (2.17), we have

∥∥xnj+2− q
∥∥2 ≤ ∥∥xnj+1− q

∥∥2− αnj+1

1− 2αnj+1
Φ
(
ε

2

)
ε

2
< ε2, (2.18)

this is a contradiction and so ‖xnj+2 − q‖ < ε. By induction, ‖xnj+m − q‖ < ε for all m ≥
1. �

Corollary 2.5. Let E be a real Banach space, and let K be a nonempty bounded and
convex subset of E. Assume that T : K → K is a uniformly continuous Φ-hemicontractive

mapping. Let {αn}∞n=0, {βn}∞n=0, {γn}∞n=0, {α̂}∞n=0, {β̂}∞n=0, and {γ̂}∞n=0 be six real sequences in

[0,1] satisfying the following conditions: (i) βn→ 0, β̂n→ 0, γ̂n→ 0 as n→∞; (ii)
∑∞

n=0βn =
∞,γn = o(βn); (iii) αn + βn + γn = α̂n + β̂n + γ̂n = 1,n≥ 0. Let {un}∞n=0 and {vn}∞n=0 be two
bounded sequences in K . Define iteratively the Ishikawa sequence {xn}∞n=0 with errors in K
as follows:

x0 ∈ K ,

yn = α̂nxn + β̂nTxn + γ̂nvn, n≥ 0,

xn+1 = αnxn +βnT yn + γnun, n≥ 0.

(2.19)

Then the sequence {xn}∞n=0 defined by (2.11) converges strongly to the unique fixed point
of T .

Proof. We observe that (2.11) can be rewritten as follows:

x0 ∈ K ,

yn =
(
1− β̂n

)
xn + β̂nTxn + γ̂n(vn− xn), n≥ 0,

xn+1 =
(
1−βn

)
xn +βnT yn + γn(un− xn), n≥ 0.

(2.20)

It is easily to obtain the conclusion from Theorem 2.4. This completes the proof. �

Remark 2.6. Theorems 2.1 and 2.4 extend the results of [5] from real q-uniformly smooth
Banach spaces to arbitrary real Banach spaces. It is also easy to see that our results are
significant extensions of the results of [1, 2, 3, 4, 7] to arbitrary real Banach spaces and
to the more general classes of mapping (Φ-hemicontractive mapping) considered here.
Moreover, our iteration schemes extend from the usual iterative sequences to the iterative
sequences with errors.
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