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Refining some results of Dragomir, several new reverses of the generalized triangle in-
equality in inner product spaces are given. Among several results, we establish some re-
verses for the Schwarz inequality. In particular, it is proved that if a is a unit vector in
a real or complex inner product space (H;(-,-)), r,s >0, p € (0,s], D = {x € H, ||rx —
sall < p}, x1,x2 € D— {0}, and a, s = min{(r?||lxklI*> — p> +52)/2rsllxk |l : 1 < k <2}, then
(1 21l = Redxer, 220/ (x| + 12 1)? < et

1. Introduction

It is interesting to know under which conditions the triangle inequality went the other
way in a normed space X; in other words, we would like to know if there is a positive
constant ¢ with the property that ¢ >;_; llxk|l < || X, x«|l for any finite set xi,...,x, € X.
Nakai and Tada [7] proved that the normed spaces with this property are precisely those
of finite dimensional.

The first authors investigating reverse of the triangle inequality in inner product spaces
were Diaz and Metcalf [2] by establishing the following result as an extension of an in-
equality given by Petrovich [8] for complex numbers.

TaeoreM 1.1 (Diaz-Metcalf theorem). Let a be a unit vector in an inner product space
(H;(-,-)). Suppose the vectors x, € H, k € {1,...,n} satisfy

Re {xx,a)

0<r<
A

, ke{l,...,n}. (1.1)
Then

> (1.2)

n
r > Il <
k=1

n
> x
k=1
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where equality holds if and only if

dxe=r> ||xla (1.3)
k=1 k=1

Inequalities related to the triangle inequality are of special interest (cf. [6, Chapter
XVII]). They may be applied to get interesting inequalities in complex numbers or to
study vector-valued integral inequalities [4, 5].

Using several ideas and following the terminology of [4, 5], we modify or refine some
results of Dragomir and ours [1] and get some new reverses of triangle inequality. Among
several results, we show that if a is a unit vector in a real or complex inner product
space (H;(-,)), xx € H—-1{0}, 1 <k <n, a =min{|[x¢l| : 1l <k <n}, p € (0,v/a?+1),
max{||xx —all: 1 <k <n} < p,and f = min{([[x|I*> — p*> + 1)/2|lxll : 1 < k < n}, then

Sl -
k=1

n
> X
k=1

sl_ﬂRe<zn:xk,a>. (1.4)
B P

We also examine some reverses for the celebrated Schwarz inequality. In particular, it is
proved that if 4 is a unit vector in a real or complex inner product space (H;(-,-)), r,s >0,
p€(0,s], D= {x € H,|rx—sall <p}, x1,x2 € D—{0}, and a, s = min{(r?||x|I> — p> +
$2)/2rs|lxell : 1 <k < 2}, then

il [leall = Re ) _ 15
(lall+ e~ -

Throughout the paper, (H;(-,-)) denotes a real or complex inner product space. We
use repeatedly the Cauchy-Schwarz inequality without mentioning it. The reader is re-
ferred to [3, 9] for the terminology on inner product spaces.

2. Reverse of triangle inequality

We start this section by pointing out the following theorem of [1] which is a modification
of [5, Theorem 3].

THEOREM 2.1. Let ay,...,an be orthonormal vectors in the complex inner product space
(H;(-,-)). Suppose that for 1 <t < m, r,p; € R, and that the vectors x, € H, k € {1,...,n}

satisfy

0 < r2||xk|| < Re (xk,7rar), 0 < p?||x]| < Im (xx,prar), 1<t<m. (2.1)

(

Then

(2.2)

M=

h,
Il
—

12 , "
(rz+p5>) Sl = || 3
k=1 k=1
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and the equality holds in (2.2) if and only if

Doxk = |l Z re+ip)a (2.3)
k=1 k=1 t=1

The following theorem is a strengthen of [5, Corollary 1] and a generalization of [1,
Theorem 2].

THEOREM 2.2. Let a be a unit vector in the complex inner product space (H;(-,-)). Suppose
that the vectors x, € H — {0}, k € {1,...,n} satisfy

max {||rxx —sal|: 1 <k <n} <p, max {||r'xx —is'al|: 1 <k<n} <q,  (24)

where r,r’,s,s" >0 and

p < ((ra)? +s2)"2, g < ((r'a)? +52)"2, 25)
a=min{||xk||: 1 <k <n}. ‘
Let
o mi el —pis l<k=<n
2rs||xx] | I
(2.6)
‘8 =m ,2||Xk||2—q2+5 l<k<n
e 2r's’ || x| T
Then
(aF s+ B« Z il =< || 2. % (2.7)
k= k=1
and the equality holds if and only if
Z Xk = (“r,s + iﬂr/,s/) z ||xk||a' (2.8)
k=1 -
Proof. From the first inequality above, we infer that
(rxx — sa,rxx —sa) < p?, 29)
72||x||* + 52 = p? < 2Re (rxy,sa). '
Then
Pl + 5% = p?
xk|| < Re{xk,a). 2.10
erka” || k|| ( k > ( )
Similarly,
) 2_ 2,22
bl — g s l|xx|| < Im (xx,a), (2.11)

2r's' ||
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consequently,

o | |xk|| < Re (xk,a),

2.12
Bre,s x| < Tm (xx, @) (2.12)

Applying Theorem 2.1 for m = 1, | = a5, and p; = 8+, we deduce the desired inequal-
ity. O

The next result is an extension of [1, Corollary 3].

COROLLARY 2.3. Let a be a unit vector in the complex inner product space (H;{-,-)). Sup-
pose that x, € H, k € {1,...,n}, max{|lrxx —sall : 1 <k <n} <r, max{|lrxg —isall: 1 <
k<n} <s, wherer >0,s>0, and a« = min{||x¢|| : 1 <k < n}. Then

ra < "
—= > Ml = || 2 x|, (2.13)
V25 k=1
The equality holds if and only if
n 1+ . n
> X = roc( 251) > | |xkl|a (2.14)
k=1 k=1

Proof. Apply Theorem 2.2 with r =", s =5, p =r, g = 5. Note that a, s = ra/2s = B, .
O

THEOREM 2.4. Let a be a unit vector in (H;(-,-)). Suppose that the vectors xx € H, k €
{1,...,n} satisfy

max {||rxx —sal| : 1 <k <n} < p< ((ra)? +s2)"2, (2.15)
wherer >0, s >0 and
a = min ||x||. (2.16)
1<k<n
Let
2 2 2,2
-p+
& = min M:lsks;q . (2.17)
’ 2rs||xk||
Then
n n
ore > |l < || D x| (2.18)
k=1 k=1

Moreover, the equality holds if and only if

n n
D xk = . [[xklla. (2.19)
k=1 k=1
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Proof. Proof is similar to that of Theorem 2.2 in which we use Theorem 2.1 with m = 1,
pP1 = 0. O

THEOREM 2.5. Let a be a unit vector in (H;(-,-)). Suppose that r,s >0, and vectors xj €
H - {0}, k e {1,...,n} satisfy

> x=0. (2.20)
k=1
Then
Vr2a? +s2 < max {||rxx —sa|| : 1 < n}, (2.21)
where
o= min ||x||. (2.22)
1<k=n

Proof. Let p = max{l|rxx —sall : 1 <k < n}. If p </r?a? +s2, then, using Theorem 2.4,
we get

=0. (2.23)

n
“fﬁ:§:||xk” =
k=1

n
> %k
k=1
Hence a, s = 0. On the other hand, (p? — s?)/r* < a?, so

o (Pl s
Aps=miny ————————:1<k<nr>0 (2.24)
27s||xx ||

holds a contradiction. O

THEOREM 2.6. Let ay,...,a, be orthonormal vectors in the complex inner product space
(H;(,)), My =>m; >0, Ly > €, >0,1 <t <m, and xx € H— {0}, k € {1,...,n} such that

Re (M;a; — xx, xx — mya;) = 0, Re (L;ia; — xx,xx — £sias) = 0, (2.25)
or equivalently

- Lf;&, (2.26)

az

B 5 1a¢

mt+M[
.Xk—T

SMt—mt, Hx _L[‘l‘et,

foralll<k<nand1 <t <m.Let

||| >+ e M, }
4 1<k<ng, 1=<t<m,
(my+ M) | |xx||

a1, =min{lesksn}, 1<t<m,
' (my + My) || x|

O, M, = min{
(2.27)
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then

n

>

k=1

) (2.28)

m 172
(St i) Xl
k=1

t=1

The equality holds if and only if

m

n n
Z Xk = ( Z ||xk||) Z (o, +ice, 1) ar. (2.29)
k=1 k=1 =1

Proof. Given 1 <t <mandall 1 <k <, it follows from [|lxx — ((m; + M;)/2)a;|l < (M, —
mt)/2 that

||xk||2+tht < (m;+ M) Re (xx, ). (2.30)
Then
IIJCk||2$t]v[t||xk|| < Re (xx, ay), (2.31)
(my+My) ||xi] |
and so
e, | %k|| < Re (xx, ar). (2.32)

Similarly, from the second inequality, we deduce that
ag, L ||xk]] < Im (xx, ar). (2.33)

Applying Theorem 2.5 for #; = a,,,,p, and p; = ag,1,, we obtain the required inequality.
O

We will need [4, Theorem 7]. We mention it for the sake of completeness.

THEOREM 2.7. Let a be a unit vector in (H;(-,-)), and xx € H— {0}, k € {1,...,n}. If
e =0, ke {l,...,n} such that

[|xk|] — Re (xx,a) <, (2.34)

then
S el -
k=1

The equality holds if and only if

n
> X
k=1

n
< Z Tk. (2-35)
k=1

n

n
Dol = >,
k=1 k

=1

(2.36)
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THEOREM 2.8. Let a be a unit vector in (H;{-,-)), and x;, € H— {0}, k € {1,...,n}. Let

a=min{||x||:1<k<n}, p € (0,Va2+1), max {||xx —a||: 1 <k <n} <p,

2
B = min el = p7+1 _p2+1'1<k<n
2Abwel [ )

(2.37)
Then
n n l—ﬂ n
Dl = || D x| < Re( > xx,a). (2.38)
k=1 k=1 ﬁ k=1
The equality holds if and only if
Z k|| = Re<zxk,a>,
oo 1 e (2.39)
Zxk=(2| _ﬁRe<Zxk,a>>a.
k=1 k=1 ﬁ k=1
Proof. Since max{|lxx —all: 1 <k <n} < p, we have
(o —axx—a)y <p>,  |lall+1-p* < 2Re (xp,a),
2 2
X —p +1
ol P < Reua), Bl sReGua) a0
1
[|xk]| < ERC (x,a),
forallk € {1,...,n}. Then
1-p
[|xk|] — Re {xx,a) < 3 Re (xx,a), ke {l,...,n}. (2.41)
Applying Theorem 2.7 for r, = ((1 — 8)/B) Re{xk,a), k € {1,...,n}, we deduce the desired
inequality. O

As a corollary, we obtain a result similar to [4, Theorem 9].

COROLLARY 2.9. Let a be a unit vector in (H;{-,-)), and xx € H — {0}, k € {1,...,n}. Let

max {||xx —a||: 1 <k <n} <1,
. (2.42)
o =min {||x||: 1 <k <n}.

“Re < i xk,a>. (2.43)
k=1

Then

n

D%

k=1

3 sl -
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The equality holds if and only if

n 2_“ n
NE —Re<zxk,a>,
k=1 @ k=1

Zxk:( z_aRe<Zxk,a>)a.
k=1 k=1 o k=1

Proof. Apply Theorem 2.8 with § = a/2. O

(2.44)

THEOREM 2.10. Let a be a unit vector in (H;(-,-)), M >m >0, and x, € H— {0}, k €
{1,...,n} such that

Re (Ma — xj,xx — ma) =0 (2.45)

or equivalently

ka_m+MaHSM—m' (2.46)
Let
(i) + mM }
Oy =MIinS ——————:1<k<ng. 2.47
. {<m+M>||xk|| (247
Then

n

D%

k=1

n
Z i =

The equality holds if and only if

Sz Lot (3 )

Am,M

< 1= Gmp <zxk,> (2.48)

Xm,M

; (2.49)
%= (Sl = 22 ke ( 3 50) o
k=1 k=
Proof. For each 1 < k < n, it follows from the inequality
xk—m+MaHsM_m (2.50)
that
m+M m+M M—m\*
<xk— S Xk a> < ( 2 ) . (2.51)
Hence

||| |* +mM < (m+ M) Re (x, a). (2.52)
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So that
Xk || < Re (xx,a), (2.53)
consequently
1- XM
||xk|| = Re {xx,a) < ——"=Re (xx,a). (2.54)
am,M
Now apply Theorem 2.7 for r = ((1 — &mm)/ ) Re{xk,a), k € {1,...,n}. O

3. Reverses of Schwarz inequality

In this section, we provide some reverses of the Schwarz inequality. The first theorem is
an extension of [4, Proposition 5.1].

THEOREM 3.1. Let a be a unit vector in (H;(-,-)). Suppose that r,s >0, p € (0,s], and
D= {x€H,|rx—sall < p}. (3.1)

If0#x, €D, 0% x; €D, then

_ 2 22 2N\2
[EAE Re<x1,x2>%(1_(rnxlll—p+s)) (32)

(]| + [l 2rs||x|
or
llllleoll < Re G _1(, (Pllsall - 2+
(bl [+ 2l ‘2(1( 21| >)' (5:2)

Proof. Put a5 = min{(r?||xx > — p? +s*)/2rsllxk|l : 1 < k < 2}. By Theorem 2.4, we ob-
tain

ars ([Jor || + |2l [) < [loe1 + 2] | (3.4)
Then
o, (It |1” + 2l 1ol + [leall*) < [l ]l + 2Re et ) + [[a (3.5)

SetaZ, = 1—t>. Then

[[1 ] []22|] — Re (x1,%2) - 1, g
(Il +lxl)® PR (3.6)
namely,
||x1||||x2||—Re(x1,x2) <1 1—a2). 3.7
Umllelmn? =20 o) (3.7)
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CoOROLLARY 3.2. Let a be a unit vector in (H;(-,-)). Suppose that r,s >0 and
D= {xe€H,|rx—sal <s}. (3.8)

Ifx,yeDand0< x|l < yll, then

— Re(x, 2
Ielliyll = Rex,y) _ 1(1 - (r||x||> ) (3.9)
(llxll +1p1) 2 2s
Proof. In the notation of the proof of Theorem 3.1, we get from p =5, x; = x, x, = y that
ar s = rllx|l/2s. Now apply Theorem 3.1. O

COROLLARY 3.3. Let a be a unit vector in (H;(-,-)), M > m >0, and x, € H— {0}, k = 1,2
such that

Re (Ma — x,xx — ma) =0 (3.10)

or equivalently

Hx"_m;M"HﬁM;m- (3.11)
Then
||| |]2]| = Re {x1,x2) ||x1||2 M\ 2
(||x1||+|I<12||)2 - %<1 (st ) (3.12)
|21 [][[2]| = Re (x1,%2) llxa |+ mM |2
(||xl||+|I|§Cz||)2 = %<1_ (WJF)Hx]:IH) > (3.13)

Proof. Putr=1,s=(m+M)/2, p=(M—m)/2,x = x1,and y = x, in Theorem 3.1. [
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