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The notion of invariance under transformations (changes of coordinates) of the Cauchy
mean-value expression is introduced and then used in furnishing a suitable two-variable
version of a result by L. Losonczi on equality of many-variable Cauchy means. An assess-
ment of the methods used by Losonczi and Matkowski is made and an alternative way is
proposed to solve the problem of representation of two-variable Cauchy means.

1. Introduction and preliminaries

Let f, g be two differentiable real functions defined on an open interval I. Let us write
the expression corresponding to the classical Cauchy mean-value theorem in the form

fO) - fx) _ funy) syel (1.1)

g —gx) g (ulxy)’

A sense is conveyed to this particular way of writing by assuming that the quotient f'/g’
is a strictly monotone function, so that the Cauchy “intermediate value” u(x, y) turns out
to be a uniquely determined function of the pair of variables x, y € I. In this situation,
a (differentiable) transformation @ : AU — R? defined on a plane region U = f(I) x g(I)
and specified by ©(x, y) = (X(x,y),Y(x,y)) is said to leave expression (1.1) invariant for
the curve (f(t),g(t)) when (1.1) is satisfied by the plane curve ®(f(#),g(t)) = (F(t),G(¢))
with the same intermediate value p. In other words, the transformation @ = (X, Y) leaves
expression (1.1) invariant for the curve (f(¢),g(t)) provided that

X(f(7),8() = X(f(0),g(x) _ X:(f@gW) [ (W) + X, (fgW)gw) |

Y(f(hg) =Y (f(x),g(x) Yl f (@) f' @)+, (f (W) g(w)g ()’
when p = p(x, y) is specified by

f)-fx)  fw (1.3)

gy —glx) g’

May be the reader prefer instead to say that it is the intermediate value y of the ex-
pression (1.1) that is invariant under the transformation ®. In any case, our choice of
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the terminology is motivated by the fact that (1.1) remains unchanged when (f,g) is
replaced by (F,G) = O(f,g).

Now, a given transformation ® : R? — R? can leave expression (1.1) invariant for every
curve (f(),g(t)). In this case, we will plainly say that ® leaves expression (1.1) invariant.
For instance, it is easy to see that all planar affine transformations

X(x,y) =a1x+bry+ec,
(1.4)
Y(x,y) =axx+byy+ca,

where a;,b;,¢c; € R (i =1,2) a1by — a;b;y # 0, leave expression (1.1) invariant. In fact, as-
suming that (1.3) holds, for x, y € I, we have

X(f()8(0) =X(f(x).g(x)) _ (a1 f(y
Y(f(7):8() —Y(f(x),g(x))  (af(y

+big(y)+c) — (a1 f(x)+big(x)+c1)
+b2g y)+e) - (azf(x)+b2g(x)+cz)

| — ~— | —

_alf
f

(1.5)

It must be emphasized that the notion of invariance of expression (1.1) for a curve
(f(),g(t)) is not a geometric one, in the sense that it depends on the parameterization
of the curve. Unlike what happens with invariance of expression (1.1) for a given curve
(f(t),g(#)), plain invariance of expression (1.1) is a geometric concept (does not depend
on parameterizations). We will return to the question of parameterization at the end of
the paper. On the other hand, if a transformation ®, leaves expression (1.1) invariant for
a given curve (f(),g(t)) and a second transformation @, leaves expression (1.1) invari-
ant for the curve @, (f(t),g(t)), then the comp051te transformation @, o @; also leaves
expression (1.1) invariant for the curve (f(t),g(t)). Furthermore, if ® leaves expression
(1.1) invariant for the curve (f(#),g(t)), it is not difficult to see that ® ! leaves expression
(1.1) invariant for ®(f(t),g(t)). Thus, a simple argument shows that the set of transfor-
mations that leave expression (1.1) invariant constitutes a group under composition. Our
subsequent developments will be directed to determine this group. Indeed, the bulk of
this paper will consist of a minute proof of the following result.

THEOREM 1.1. The affine group (1.4) is the most general group of 6* transformations that
leave expression (1.1) invariant.

A proof for this theorem is the subject matter of the following three sections (Sections
2, 3, and 4), while in Section 5, an application is found discussing the recent Losonczi’s
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results on representation of Cauchy means. In this way, a few paragraphs devoted to this
general class of means and to the related problem of their representation are in order.

Given a pair f, g of continuous and strictly monotonic functions defined on an inter-
val I < R, its associated Cauchy mean [é] is the continuous symmetric mean defined on
I xIDby (cf. [4])

—1 .
[g](x,y)é f (g(y) g(x)JfE)dg ) ifx# 5, (1.6)

X otherwise,

where the integral appearing in the right-hand side is a Riemann-Stieltjes integral. For
the general notion of continuous symmetric mean, we refer to the treatises [1, 7] (see
also [3, 4]). Assuming that the function g in (1.6) is differentiable and setting, for a fixed
acl,

Fo 2 [ ©dg®) = | fOg @ yer,
G(t) £g(1), tel,

(1.7)

the expression

F(y) = F(x) _ F'(u(x,y))
G(y)-G(x) G (u(xy))

(1.8)

of the Cauchy mean-value theorem is recovered from (1.6) with u(x, y) = [£ 1(x, y): the

definition of the mean [§ | is then related to the Cauchy mean-value theorem and the
sense of the used terminology becomes evident.

Many important classes of means arise as subclasses of Cauchy means by suppressing,
so to speak, “one degree of (functional) freedom” in definition (1.6). Thus, for example,
the subclass of Cauchy means of the form [Jff] coincides with the class of quasiarithmetic
means (see [7, Chapter 4]). In fact, for x,y € I, x # y, we have

[ 0) -1 (5),

The subclasses of Cauchy means of the forms [ l{; ]and [ '?’ ], where id; denotes the identity
function defined on the interval I, are particularly simple. The first one of them, the class
of Lagrangian means (see [3, 7, 13]), is to the Lagrange mean-value theorem as the entire
class of Cauchy means is to Cauchy’s theorem. In its turn, the means of the form ['?’]
were named anti-Lagrangian means and were studied in [4].

A generic member of any class of the just-mentioned subclasses of means turns out to
be clearly identified once a single continuous and strictly monotonic function f is spec-
ified on the interval I, and accordingly it will be denoted by [ f] in the sequel. Using this
notation, the problem of representation asks for conditions of validity of an equality like

[A]=1[f2] (1.10)
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in a given subclass of means. In other words, given two means [ f1], [ 2] belonging to a
fixed class, say the class of Lagrangian means, necessary and sufficient conditions must be
found (on the functions fi, f,) in order that the equality (1.10) should hold. The problem
of representation is satisfactorily solved for all of the three above-mentioned subclasses
of means. Furthermore, the solution is the same in every case: two quasiarithmetic [La-
grangian, anti-Lagrangian] means satisfy equality (1.10) if and only if the functions f;, f,
are related to each other through

fh=afi+f (1.11)

with «, € R, a # 0. Different approaches were used to prove these facts; for details, we
refer the reader to [3, 4, 7, 13] and to the references cited in these sources.

The fact expressed by (1.11) may be rephrased by saying that [ fi] = [f2] if and only
if f, is the image of f; under a real affine transformation. Now, taking into account the
behavior of Cauchy means under conjugacy, which is established by the formula

-1, f o _ feo¢
. u ($x9) [M,} (1.12)

where ¢ : I — I is a homeomorphism, we realize that the problem of representation of
“one degree of (functional) freedom” Cauchy means can be similarly solved. As a matter

of fact, the equality
HRH
g g
holds if and only if

[fi-;g] =gl [{ﬂ o(gxg)=g o [?] °(gxg) = [ﬁi;lg} (1.14)

or, in view of (1.11), if and only if there exist two real constants & # 0 and f3 such that

frcg=alfiog) +p. (1.15)

Analogously, we see that (1.15) also provides a necessary and sufficient condition in order

that
[ﬂ = [i} (1.16)

Summarizing the above discussion, we can say that, after identity (1.12), conjugacy
amounts the same as reparameterization, and therefore we cannot at all be surprised by a
consequence like (1.15) of this fact.
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As recognized by Losonczi in [11], the full problem of representation of two-variable
Cauchy means presents a considerable difficulty. Indeed, necessary and sufficient condi-
tions on the pairs f, ¢ and F, G under which the equality

HRH

should hold have been obtained in [11] for many- (more than two) variable Cauchy
means. Such a generalization of two-variable Cauchy means is obtained from suitable
generalizations of the Cauchy mean-value theorem like that one by Leach and Sholander
(see [9]):

[xbe)---)xn]f _ f(”‘U(y(xl,xz,...,xn)) (1 18)
[xl,xz,...,xn]g gD (u(x1,x25005%4)) ’

where x1,%,,...,x, € I and, for a given function h possessing at least (n — 1)-order deriva-
tives on I, the symbol [x1,x2,...,%,], denotes the divided difference of h at the points
X1,X2,...,Xy (see [8, pages 18-20]). As openly suggested by the way of writing of (1.18),
the unique (functional) determination of the (many-variable) Cauchy mean y in (1.18)
depends on the inversibility of the quotient f"~1)/g(n=1),

Let us denote by [(J;](xl,xz,. ..»Xy) the n-variables Cauchy mean y defined by (1.18).
The main result in [11] reads as follows.

THEOREM 1.2. Letn =3 and let f, g, F, G be four real functions defined on I such that
(i) f, & F, G are (n+2) times continuously differentiable on I,
(i) g" V(x) £ 0 # G V(x), x €1,
(iii) the quotients f*=V/g"=1) and F"=1/G"=1) have nonvanishing first derivative on I.
Then, the equality

[g] (X1,X25. .5 Xn) = [g] (X1>X25+.5Xn)>  X15X25..0s%n €1, (1.19)

holds if and only if there exist four constants a, f, y, § with ad — By # 0 such that for every
x €l

FO D (x) = af " V(x) + g (x),

G(n—l)(x) _ yf(n—l)(x) +5g(”‘1)(x). (1.20)

In the previous work [10] by the same author, a representation result for two-variable
weighted means of the type

(1.21)

®(x)F(x) +<1>(y)F(y)>
F(x)+F(y)

Mor(x,y) = q)_l(

is obtained. There, after supposing a convenient regularity on the involved functions, the
problem of identifying condition under which Mg r(x, y) = My g(x, y) is reduced to dif-
ferential equations. In a subsequent paper (see [12]), Losonczi finally succeeded in prac-
ticing an analogous reduction for the problem of representation of two-variable Cauchy
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means. We will postpone our assessment of the Losonczi methods and results up to the
last section of this paper. Besides what can be considered as a completion of Theorem 1.2
for the case n = 2, a different strategy will be indicated in that section to tackle the prob-
lem of representation of two-variable Cauchy means as well as other similar representa-
tion problems.

2. Proof of Theorem 1.1

As a first step in proving Theorem 1.1, we are to derive from (1.2) and (1.3) a necessary
differential condition of invariance. In this regard, observe that making y — x in (1.2)
merely leads to the trivial identity

X (f (x),g(x)) f'(x) Xy(f(x) g(x)) (%)
Yo (f(x),8(x)) f'(x) = Yy(f x))g' (x)

(

(
_ X (f(x),8(x)) ' (x y (f (x),g(x))g’ (x)
Y (f(x),8(x)) f(x) = Yy (f(x),8(x))g" (x)°

To overcome this difficulty, we recall the simple property of proportions which reads as

g
. (2.1)

a Cc a—=c¢ a
b d " b-d b (22

so that from (1.2) and (1.3), we deduce

X(f(9),8(») = X(f(x),8(x)) = Xu (f (W), g W) Af — X, (f (1), g(u)) Ag
Y(f(3),8(y) = Y(f(x),8(x)) = Yu(f(u)sg(W)Af =Y, (f(1),g(1))Ag
(f(

X(f(y)8(») - Xfx)gx))
Y(f(y),8(») - Y(f(x),gx)’

where, for the sake of brevity, we have set
Af=f)-f),  Ag=gly)—gl). (2.4)

Assuming that the transformation ® = (X,Y) is 62, we pass to the limit y — x in (2.3) by
repeatedly using I'Hospital rule and recalling the relationships

(2.3)

Do —

(26, %) = pyy(x,x) = 2.5)

phox (%, %) = ,Uyy(x,x) = _//lxy(xax)> x€l,

which hold for every (sufficiently regular) symmetric mean y. In this way, we obtain

[ (0] X (f (%),(x)) + 2 ()8 () Xy (f (x),8(x)) + [g' ()] X, (f (x),g(x))
[F7 (0] Yo (f () g(x )+ 217 (x)g" (%) Yy (f(x),(x)) + [¢' (0)]°Y,, (f(x),8(x))

_f (x)X (f(x),8(x)) +& ()X, (f(x),g(x))
Fr)Ye(f(x),8(x)) +& (x)Y, (f(x),8(x))

(2.6)
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Now, the arbitrariness of functions f and g (and therefore, that one corresponding to
their derivatives) enables us to rewrite the equality (2.6) in the form

A?X,o(x,y) + 2ABX . (x, y) + B2X,, (x, y) _ AXi(x,y) +BX,(x,y)
A2Y,(x,y) + 2ABYy(x,y) + B2Y,, (x,y)  AYy(x,y)+BY,(x,y)’

(x,y) € R?,
(2.7)

where A,B € R do not vanish simultaneously. After simple algebraic manipulations, we
see that this last condition is equivalent to the following one:

UA>+VA’B+WAB?>+ZB>=0, A,BE€R\ {0}, (2.8)

where

U = Xx Yxx - YxXxx:
V=X,Y,,-Y,X,),

W = X, Yo + 2X, Yy — (V) X +2Y:Xsy), (29)
Z=2X, Yoy + X, Yy — (2Y, Xy + YiX,y).
Hence, we derive the following system of PDEs:
XY — VX =0,
XyYyy - Y, X,y =0, (2.10)

Xy Yo+ 22X Yey = Y, Xor +2Y2 Koy
2X, Yy + XYy, = 2Y, Xy + Vi Xy

System (2.10) expresses the differential necessary conditions of invariance we sought
for expression (1.1). Fortunately, all plane transformations with coordinate functions X,
Y satisfying this system can be elementarily computed. We are to perform this task in the
next section, where we prove that the changes of coordinates solving system (2.10) coin-
cide with the Lie group of transformations that leaves invariant the linear second-order
ODE y"”" =0, a Lie group whose determining (linear) system exhibits some similitude
with system (2.10) (cf. [6, page 122]).

3. Solution of system (2.10)

We are to determine the solutions (X,Y) to system (2.10) which are changes of coordi-
nates. To begin, from the first equation in (2.10), we obtain

XXX YXX
Xow _ Yo 3.1
X, Y, (3.1)

and, after integration, we deduce

Ye(x,y) = v1(y) Xx(x, y) (3.2)
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with y; an arbitrary function. Now, integrating (3.2), we deduce

Y(x,p) =pyi(0)X(x,y) —va(y), (3.3)

where y, is a new arbitrary function. The second equation of system (2.10) can be inte-
grated in a similar way:

Y(x,y) = ¢1(x0)X(x,y) — ¢2(x), (3.4)
with ¢y, ¢, arbitrary functions. Thus, from (3.3) and (3.4), we derive

Y2 (y) — ¢a(x)
vi(y) —¢i(x)

In order to introduce (3.3), (3.4), and (3.5) into the third and fourth equations of system
(2.10), we compute the first- and second-order partial derivatives of X and Y as follows:

X(x,y) = (3.5)

Yx =y ()’)Xxy
Yy = ¢l(x)X >
Y =11 ()’)Xx)m (3.6)

Yyy = ¢1(0) Xy,
Yx}’ = W1’ (y)Xx ty (y)Xxy = (,bi (-x)Xy + ¢1 (%)X

Once substituted these expressions in the third and fourth equations of (2.10), we obtain
(1//1 (}’) - (/)1 (x))XyXxx + ZW{ ()/)X;% =
(Wl ()/) - ¢1 (x))Xnyy - 2¢i (x)X)Z’ =

Now, to compute the partial derivatives of X as deduced from expression (3.5), it will be
useful to define

(3.7)

Az( }’) V/l(y) - ¢'(X), i= 1, 2 (38)
(X, ) £ ¢’( A1 X,y ¢1 AZ X, y) (3 9)
v(x,y) 2 y3(y )Al(x,y) Y ()Aa(x, ). '
Then, observing that
au y
ox (x,y) = ¢35 () A1(x, y) — ¢7 (x) Az (x, y),
Py (3.10)

5(&)}) =y (YA ) — v () Aa(x, p),
and that

E(xj)/) = ¢, ()Y (y) = h1()ya(y) = (x,y) (3.11)
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we obtain

(3.12)

Ay (du/ox) + 2¢1(x)u
A3 ’
Ay (9v/dy) = 2y1(y)v
A3 '

Xxx =
(3.13)
Xyy =

By substituting (3.12) and (3.13) in (3.7), we conclude that

a 7 4
—Alva—z +2u(y;(y)u—¢1(x)v) =0,
. (3.14)
—Alu@ +2v(y1(yu— P (x)v) =0,
whence, taking into account that (3.9), (3.10), and (3.11) imply that

Ajou Aoy
dy  ox’

vi()u— ¢ (x)v = (p5(x0)y{(y) — ¢ ()3 (¥) Ay = (3.15)

we derive

(3.16)

From (3.5), we see that A; cannot vanish identically, and then (3.16) together with iden-
tity (3.11) provide

u ov
V& —214& 0,
ov ou
ua - 21/5 =0, (3.17)
du_av
dy ox

Our next step will be to solve this system of first-order PDEs. For this purpose, let us
rewrite the first equation in the form

e _ ¥ (3.18)
u 1%

which once integrated gives

u(x,y) = q(y)vi(x,y), (3.19)
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where g is an arbitrary function. For the second equation in (3.17), we proceed in a sim-
ilar way to obtain

v(x,y) = p(x)u?(x,y), (3.20)
with p another arbitrary function. From (3.19) and (3.20), we deduce

u(1—q(y)p*(x)u) =0,

3.21
v(1-¢q*(y)p(x)v) =0. (320

In view of the fact that the pair of functions (X, Y) is supposed to be a change of coordi-
nates, its Jacobian d(X, Y)/d(x, y) cannot vanish:

oX,Y) B _uy
) " XY, - X, Y, = X £0, (3.22)
which shows that neither u nor v vanishes. Thus, from (3.21), we derive
1
u(xa)/) = AN A
P (xiq(y ) (3.23)
VX, = TN v
D= e
and replacing the expressions (3.23) in the third equation from (3.17), we obtain
_%:iﬂ:@:_%; (3.24)
pgi(y) dy dx  prx)g(y)
that is, for a real constant A,
P'(x)=A=4q"(y), (3.25)
or, integrating,
p(x) =Ax+a, q(y) =Ay+p, (3.26)

where «, 5 € R. A substitution of equalities (3.26) in (3.23) enables us to write the solu-
tions u, v to system (3.17) in the form

1
U(x,)/) = T oo
Ax+a)?(Ay +
(Ax oc)l( y+p) (327)
v(x,y) = —()Lx+oc)()ty+ﬁ)2'
Now, recalling the definition (3.9) of u and v, (3.27) can be rewritten as
’ 4 _ 1
$2(x0)A1(x, y) — ¢1(x) A2 (x, y) = a2y B)’
| (3.28)

VM y) =yiAtoy) = G a T pe
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a linear system of equations in A; and A, whose determinant is given by

$(x)  —¢i(x)

w(y) —vi(y) = ¢ )Y (y) — G (Y1 ()

__Qu_ v _ A
9y ox (Ax+a)2(ly+p)F

(3.29)

Two cases do appear in accordance with A # 0 or A = 0; in what follows, we will consider
them separately.

Case I (A # 0). In this case, system (3.28) is uniquely resolvable in the form

M1(59) = 1) - 1 () = 1 (x+ @)1 ()~ Oy + v (7)), .
8(6) = :y) - ho0) = 1 (O g - Oy +PYA)
or, setting ay = /A, Bo = /A,
i)+ (r+Bo)yi(y) = ¢1(x) + (x+ a0) 1 (%), (331)

V(1) + (+ o) ¥ (y) = ¢a(x) + (x + a0) 5 (x).

Reasoning as before with (3.25), we see that there exist two real constants p; and p,
such that

(Y+L)vVIM +v1(y) = p1 = (x+ ) p1(x) + 1 (x),

3.32
(+Bo)vs(») +va(y) = pa = (x+ag) ¢ (x) + ¢2(x). (3:32)

The solution of these equations is a straightforward matter:

_P1ythn _p1xty
oy+B ] Pi(x) = x+ay
p2ytys _ paxtys
y+ﬂ0 > ¢2(~x)_ x+(x0 >

vi(y)
(3.33)
w(y) =

where the greek characters all denote real constants.
Finally, we replace (3.33) in (3.5) and (3.3) to obtain

(y3 — Bop2)x + (aop2 — y4) y + (a0ys — Poya)

(y1 = Bopr)x+ (@op1 = y2) y + (aoy1 = Poy2)’

(prys — pay1)x+ (p2y2 — prya) y + (y2ys — y1ys)
(y1 = Bop1)x + (aop1 — y2) y + (aoy1 — foy2)

X(Xay) =
(3.34)

Y(x,y) =
Case 2 (A =0). From (3.29), we obtain

o1 ()3 (y) — dr(x)yi(y) = 0, (3.35)



2906  Invariance of the Cauchy mean-value expression

and therefore there exists p € R such that

$ix) PTG

(%) w(y) (3.36)

that is,
$a2(x) = p1(x) + oy,
(3.37)
va(y) = pyi(y) + P,

for some real constants «;, 1. Hence,

Ar(x,y) = ya(y) — dalx) = p(y1 () — 1(x)) + (B1 — 1) = pAi (6, y) + (B1 — 1),
(3.38)

which shows that a; # f31 (in other case, X = A;/A; = p and (X, Y) would not be a change
of coordinates). Replacing (3.36) and (3.38) in (3.28), we obtain

1
¢1(x) (1 = 1) = —2»
(xzﬁ (3.39)
Y =pr) = /32,
or, after integrating and renaming the constants
d1(x) = ax + B2,
(3.40)
v1(y) = azy +fBs.
Finally, from (3.5), (3.38), and (3.40), we deduce
_ Bi—ar _ —parx+pasy+p(Ps—pa) + (B — i)
X(x,y)=p+ — 6 = et oyt (Bs — o) R (3.41)
while (3.4) yields
ﬁl—“l )_ _ (ﬂl—a1)¢1(x)
Yop) =y ( P -aw) YT G e
(3.42)

_ -y (y +ﬁ1¢1(x /31062x_“10€3)’+(/31ﬁ2—061ﬁ3)
¥i(y) = dax —axtasy+(Bs—p)
Synthesizing the just-obtained results and studying the dependence of the real param-

eters which appear in (3.34) and (3.41)-(3.42), we see that every transformation (X,Y)
leaving expression (1.1) invariant must have the form

ax+biy+a

X(x’y):a3x+b3y+C3’ (3.43)
3.43

Y( )_a2x+b2y+cz

s Casx+byytcs
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where
ay b1 C1
ap bz (%) 7& 0 (3.44)
as b3 C3

and only eight from the nine real parameters are independent of each other. In (3.43),
the 8-parameter plane projective group is recognized, but simple examples show that a
projective transformation does not generally leave expression (1.1) invariant. In the next
section, the precise restrictions to be imposed on a projective transformation in order
that it leaves expression (1.1) invariant will be discussed and the proof of Theorem 1.1
will be finished.

4. Completion of the proof

Now, we complete the proof of Theorem 1.1. That every affine transformation leaves ex-
pression (1.1) invariant was just proved in Section 1, so that it remains only to establish
the converse. The previous developments show that a 6? transformation ® = (X,Y) leav-
ing expression (1.1) invariant must be a projective one; then, replacing X and Y given by
(3.43) in (1.2) and (1.3) and after making some algebraic manipulations, we see that a
projective transformation leaves expression (1.1) invariant provided that for very pair f,
g differentiable function with f'/g’ being strictly monotone, the equality

aAg —PiAf+yi(@X)AS — f(x)Ag) _ aiAg—BiAf+yi(gWASf - f(w)Ag)
0Ag = PAf+y2(gX)Af = f(x)Ag)  aAg—BAf +y2(gWASf - f(W)Ag)

holds. In (4.1), 4 = p(x, y) is defined by (1.3), A f and Ag are given by (2.4) and, moreover,
we have set

(4.1)

bi ¢
by «¢3

a; b
a; bs

a; ¢ .
o = > [))i = - a; C; > Yi= > 1= 1)2 (42)

From the arbitrariness of f and g, we conclude that equality (4.1) holds if, and only if,

a1y2 = 621,

ﬁl)/z = ﬁz)/l- (43)

By using some vector algebra, we can rewrite conditions (4.3) in terms of the coefficients
of the projective transformation. In fact, defining v; £ (a;,biyc;),i=1,2,3, we have

(“i’ﬂi) )’1) =Vi\V3, i= 1)2) (44)
(where, as usual, A denotes the wedge product), and therefore

(vi Avs) A (v2 Avs) = (a1, B1,71) A (62,82, 92)

(4.5)
= (ﬁl)/z —[32)/1,062)/1 - 061)/2,061[32 - Olzﬁl)-



2908  Invariance of the Cauchy mean-value expression
But, from the identity
(w1 Awz) A (ws Awy) = det [wy, wa, wy|ws — det [wy, wa, w3 | wy (4.6)
which is valid for any four vectors w;, we obtain
(vi Avs) A (va Avs) =det[vi,va,v3]vs. (4.7)

Since det[vy,v,,v3] # 0 by (3.44), from (4.5) and (4.7), we conclude that (4.3) is equiva-
lent to

as = 0= b3. (48)

The proof of Theorem 1.1 finishes by merely observing that a projective transformation
satisfying conditions (4.8) is an affine transformation.

5. Applications and final discussions

In this section, we will focalize on the problem of representation of Cauchy means. In
the first place, we restate Theorem 1.1 in a way better adapted to our notational frame.
To this end, we recall from Section 1 that for a pair f,g:I — R of strictly monotonic
and continuous functions, the Cauchy mean [é] gives the Cauchy “intermediate value”

corresponding to the plane curve (f;f(f)dg(f),g(t)), tel.

TueorEM 5.1. Let ® = (X,Y) be a ‘62 change of coordinates in the plane. Then, the equality
of Cauchy means

x(] ;f<s>dg(£>,g<t>) _ [f] (5.1)

t
v([ roda@em)| ¥
holds for every pair f,g: I — R of strictly monotonic and continuous functions if and only if
@ is an affine change of coordinates given by (1.4).

A proof for this result easily follows from Theorem 1.1. In practice, Theorem 5.1 pro-
vides, for a given Cauchy mean [£]> a four-parameter family of Cauchy means [£] such

that [£] = [é]. In fact, we have

Jx FdG = a, J Fdg+big(x) +ar, (5.2)
Gx) = a J Fdg+bag(x) e (5.3)

or, by taking differentials,

FdG = a, fdg + b,dg,

dG = a, fdg + bydg(x), (5.4)
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whence we obtain

alf + bl

F= o+ (5.5)
Equalities (5.5) and (5.3) give us
Fe alf + by )
azf + bz (5 6)

G- azj Fdg+bag(x) + e,

where only four parameters are independent.

Theorem 1.1 (or Theorem 5.1) can be considered as a suitable completion of Theorem
1.2 for the case of two-variable Cauchy means. An additional negative restatement of our
result may be useful to clarify this point. Indeed, we can say that changes of coordinates
plainly fail in furnishing all (two-variable) Cauchy means equal to a given Cauchy mean;
hence, a sense can be conveyed to the case n = 2 of Theorem 1.2 by observing that the
statement is true also for n = 2 provided that the pair of functions (F,G) is the image of the
pair (f,g) under a C* change of coordinates in R?.

Now we turn slightly aside to discuss the solution to the representation problem for
the two-variable Cauchy means as presented by Losonczi in [12]. By means of a clever
procedure, in this paper, the author reduces the problem to solve the Riccati equation

4k’ =21 + C(G)*¥?, (5.7)

where C is an arbitrary constant and G is a solution of the fourth-order nonlinear equa-
tion

IV U alii
G ,sG'G

? G (G')?

GH 3
+40< G,) —0. (5.8)

In this way, 32 new families of solutions (apart from the “main family” expressed by (5.6))
arise for the problem of representation of two-variable Cauchy means.

When applied to an abstract functional equation, the method of reduction to differ-
ential equations often leads to a reasonable solution in the class of sufficiently regular
functions (cf. the general discussion on the method in [1, pages 188—190]). However, if
the functional equation to be solved possesses a strong geometric flavor (and (1.17) is a
good example of this), a mere exhibition of the family of its solutions derived by reduc-
ing it and then solving a differential equation may supply an insufficient insight. We can
demand, for instance, why the (regular) solutions to (1.17) can be grouped in 33 func-
tionally different families and why, so to speak, not in 45. Furthermore, after the consid-
erable technical efforts unfolded in [12] to furnish a “complete” solution for the problem
of representation of two-variable Cauchy means, no particular knowledge is attained so
as to distinguish its solutions from that ones obtained (by the same method) in [10] for
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the problem of representation of the weighted means (1.21). Now, Theorem 1.1 can be
seen as a first step in gaining the just-mentioned insight through the use of theoreti-
cal tools which are more adequate to attack our problem than reduction to ODEs. After
Theorem 1.1, we know that when acting on a given Cauchy mean, no group of “point
transformations” of the plane (see [6] for the exact sense of this terminology) is capable
to give all Cauchy means equal to a given Cauchy mean. Thus, in a second step, we are
naturally compelled to define and then compute more general transformations leaving
expression (1.1) invariant. Namely, we are thinking in contact transformations of the type

F=X(f.&f"8)

G=Y(f.g.f'2). 52
It can be reasonably assumed that such a transformation satisfies the contact condition
(cf. [6]). In principle, invariance under these transformations may explain the appear-
ance of exceptional families of solutions to the problem of representation of two-variable
means (Cauchy means or the so-called weighted means, among many others). In attempt-
ing a comparison amongst our method and reduction to ODEs, we find scarcely advisable
the final need to solve a system of PDEs instead of an ODE. However, in a like manner as
was found in the simple case studied in this paper, the equations in the resulting system
are expected to possess a high degree of symmetry, and therefore the prospective of find-
ing their solutions in closed form is vacuous at all. A minute development of these ideas
will be the subject matter of a forthcoming paper.

The method of reduction to ODEs employed by Losonczi and the method which is
based on the study of invariance of expression (1.1) under general transformations which
is presented in this paper, both are in need of heavy regularity hypotheses on the involved
functions. In this respect, a brief exposition of Matkowski’s direct approach may be useful
and clarifying. As claimed in [14] (and showed a few lines below), the problem of repre-
sentation of two-variable Cauchy means can be reduced to solve the functional equation

f)-f))  gly)—gk)
‘b( y—x )‘h(y)—hoc)' (5:10)

For the case of Lagrangian means, this functional equation becomes

¢<f(y) —f(x)> _8W) -~ (5.11)
y—x yox

an equation which, under very general hypotheses, can be locally reconducted to a Jensen
equation for the function ¢ (cf. [13]). This procedure provides an alternative way to
prove, for Lagrangian means, the representation result expressed by (1.11). Now, in ex-
tending this method to (5.10) (see [14]), some restrictive convexity hypotheses are needed
whose fulfilment narrows the generality of the obtained results, which do not suffice to
treat the problem of representation in full generality. In fact, a capital result in [14] reads,
omitting unnecessary details, as follows.
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THEOREM 5.2. Let I < R be an open interval. Suppose that the functions f,g,h:1 — R are
strictly monotonic and differentiable, f' and g'/W’ are strictly monotonic, and h', g', g'/ '
are monotonic. Then f, g, h, and ¢ satisfy (5.10) if, and only if, there are a,b,c,d,m, p,q,r €
R; ad — be # 0; m # 0, such that

au+b
) = cu+d’ (5.12)
gx)=m(af(x)+bx)+p, h(x)=m(cf(x)+dx)+q, x€l

Using (1.7), it is not difficult to see that even simple instances of equality of Cauchy
means turn out to be out of reach of results like the previous one. For the geometric
mean, we have (by abusing the notation once more time)

2
Bﬁﬂ (6 y) = &y = [l/,f ] (6y), %y >0, (5.13)

and the results in [14] do not apply to the functions involved (through (1.7)) in this
identity. In the example, we have for x >0,

flx) = —1, g(x) = 1lnzx, h(x) = Inx, (5.14)
X 2
while
B(u) = —%lnu. (5.15)

Summarizing the above discussion, we can say that, up to date, a complete list of so-
lutions is known at the best for the problem of representation of two-variable Cauchy
means (as well as other lists for similar problems) but, on one hand, strong and extrane-
ous regularity assumptions on the involved functions are needed to obtain such solutions
and, on the other hand, the exact knowledge of the list provides a scarce enlightenment
on the profound nature of the solutions.

A few final words follow on the problem of parameterization. By identity (1.12), a
change of parameter ¢t = ¢(7) in the curve (f(¢),g(t)) has the effect of conjugating the
Cauchy mean y = [£]. Hence, a change of parameter ¢ will leave the mean g invariant if,
and only if, function ¢ is a solution of the functional equation

u(p(x),¢(y) = ¢(ulx,y)) (5.16)

in the class of the homeomorphisms of the interval I. Equation (5.16) can be seen as a
generalization of the Jensen equation and it has deserved a considerable study. In this
respect, we refer the interested reader to the references [1, 2].
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