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We discuss completeness in terms of a notion of absolute closure. This will be done in the
context of separated quasi-pseudometric spaces and bitopological spaces. The notion is
equivalent to the classical notion of completeness when restricted to the class of metric
spaces.

1. Introduction and preliminaries

The notion of completeness in metric spaces and that of completing a metric space are
traditionally discussed in terms of Cauchy sequences. The main reason being that this
concept deals precisely with the issue of convergence of sequences in the sense that every
convergent sequence is a Cauchy sequence. The paper deals with completion in a setting
that avoids explicit reference to Cauchy sequences.

First we recall some definitions which will be used in the paper, see also [3, 5, 9]. Let
X be a set and let d : X ×X → [0,∞) be a function such that for all x, y,z ∈ X ,

(i) d(x,x)= 0,
(ii) d(x, y)≤ d(x,z) +d(z, y).

Then d is called a quasi-pseudometric. If d is a quasi-pseudometric on X , then its con-
jugate denoted by d−1 on X is such that d−1(x, y)= d(y,x) for all x, y ∈ X . Certainly d−1

is a quasi-pseudometric. Let d∗ = d∨ d−1. Then d∗ is also quasi-pseudometric on X . If
a quasi-pseudometric d on X satisfies d(x, y) = d(y,x) for all x, y ∈ X in addition to (i)
and (ii), then d is called pseudometric. A pseudometric d that satisfies d(x, y) = 0 if and
only if x = y is called a metric.

Now if d is a quasi-pseudometric such that d(x, y) + d(y,x) > 0 for all x �= y, then d
is said to separate points in X . The set X equipped with a quasi-pseudometric d is said
to be bounded if its diameter δ(X) = sup{d(x, y) : x, y ∈ X} exists. The open ball with
centre x ∈ X and radius r > 0 is B(x,r)= {y ∈ X : d(x, y) < r}, and by τ(d) we denote the
topology on X induced by d. We will say that a sequence {xn} in (X ,d) converges to x ∈ X
if limn d(x,xn) = 0. When d is a separating pseudometric, then it is a metric, that is, the
topology τ(d) is Hausdorff.

By analogy with the topological case, in which a T2 space is said to be absolutely closed
(H-closed) when it is closed in every T2 space that contains it, we recall the following.
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Definition 1.1 (see [6]). A metric space (X ,d) is absolutely closed if its image is a closed
subset of any space in which it can be embedded.

Theorem 1.2 (see [6]). The metric space (X ,d) is complete if and only if X is absolutely
closed.

Since the paper discusses completeness in spaces more general than metric spaces we
provide a generalization of Definition 1.1 by considering a space (X ,d), where d can be
one of the functions we defined above, namely, a metric, a pseudometric, or a quasi-
pseudometric on X . By � we will denote a class of spaces. In fact, we denote by �m the
class of all metric spaces, by �p the class of all pseudometric spaces, and by �q the class
of all quasi-pseudometric spaces. The class � to be considered in each context will be
explicitly mentioned.

Firstly, we provide the following.

Definition 1.3. The space (X ,d) is absolutely closed in � if (X ,d) is closed in every space
(X̄ , d̄) that contains it, that is, (X̄ , d̄) ∈� and d̄|X×X = d. When this is the case we will
simply say that (X ,d) is �-absolutely closed.

So, Theorem 1.2 becomes as follows.

Theorem 1.4. Let (X ,d) be a metric space. Then (X ,d) is complete if and only if (X ,d) is
�m-absolutely closed.

The paper [4] discusses a topological problem of characterizing the type of absolute
“closure” properties possessed by compact spaces. In the paper, we discuss an analogous
problem and completeness for the pseudometric spaces and quasi-pseudometric spaces
by constructing explicit extensions for these spaces.

2. Completeness without Cauchy sequences

The problem of completing a space is one of the classical extension problems in analysis
and topology. Intuitively, a complete metric space is one in which every sequence that
“should” converge does converge, in other words it is a space which cannot be extended as
far as convergence of its sequences is concerned.

We introduce the following definition and show that it provides us with an equivalent
notion of the classical Cauchy-sequence completeness in the cases of a metric space and
pseudometric space.

Definition 2.1. Let (X ,d) be a space. Then (X ,d) is said to be �-convergence complete if
for every space (X̄ , d̄)∈� such that (X ,d)⊆ (X̄ , d̄), a sequence {xn} in X that converges
to a point x̄ in X̄ also converges to some point x in X .

Then the following result is immediate.

Proposition 2.2. Let (X ,d) be a metric space. The following conditions are equivalent:
(i) X is complete,

(ii) X is �m-convergence complete,
(iii) X is �m-absolutely closed.
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Proof. (i)⇔(iii) follows by Theorem 1.4. Next we see that (ii)⇔(i) is clear, because in a
metric space (X ,d) a convergent sequence is Cauchy. �

We give a simple example.

Example 2.3. Complete pseudometric spaces are �p-convergence complete spaces, because
in a pseudometric space a convergent sequence is a Cauchy sequence and a Cauchy se-
quence in a complete pseudometric space has a limit.

Now we give an analogue of Proposition 2.2 in the context of pseudometric spaces.
These spaces are not Hausdorff and we have the following.

Proposition 2.4. Let (X ,d) be a pseudometric space. Then the following conditions are
equivalent:

(i) X is complete,
(ii) X is �p-convergence complete.

Observe that Proposition 2.2 does not hold for quasi-pseudometric spaces. These
spaces are not symmetric and therefore there are several inequivalent notions of a Cauchy
sequence which lead to different notions of a complete space, see [7, 8] for example. In
the next section we will examine the analogue of Proposition 2.2 in nonsymmetric spaces.
In particular we discuss �-convergence completeness in quasi-pseudometric spaces.

3. Completeness of quasi-pseudometric spaces

We start this section by further discussing extensions of spaces, and generalize our results
to extensions of bounded quasi-pseudometric spaces.

We first consider the following.

Proposition 3.1. Let (X ,d) be a pseudometric space. If (X ,d) is �q-convergence complete,
then (X ,d) is complete.

Proof. We consider an arbitrary Cauchy sequence {xn} in X . If {xn} converges in (X̄ , d̄)∈
�q that contains (X ,d), then it also converges in X , since X is �q-convergence complete,
that is, every Cauchy sequence in X converges in X . Hence (X ,d) is complete. �

When (X ,d) in Proposition 3.1 is a metric space, we get the following.

Corollary 3.2. Let (X ,d) be a metric space. If (X ,d) is �q-convergence complete, then
(X ,d) is complete.

The following example shows that R with the usual metric is not �q-convergence
complete.

Example 3.3. Let X =R with the usual metric. The sequence {(−1)n} in X is not conver-
gent in X . Let X̄ = R∪{∗}. Define d̄ : X̄ × X̄ → [0,∞) by d̄(x, y) = |x− y|, if x, y ∈ R,
d̄(∗,∗)= 0,

d̄(x,∗)=




−x+ 1 if x <−1,

2 if − 1≤ x ≤ 1,

x+ 1 if x > 1,

d̄(∗,x)=




−1− x if x <−1,

0 if − 1≤ x ≤ 1,

x− 1 if x > 1.

(3.1)
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Then (X̄ , d̄) is a quasi-pseudometric space that contains (X ,d). Now d̄(∗,xn) = 0 for
all n∈N, hence d̄(∗,xn)→ 0 as n→∞, where xn = (−1)n. It follows that a sequence {xn}
converges in X̄ but not in X . Therefore R is not �q-convergence complete. Since X is
complete when equipped with the usual metric, we see that the converse of Proposition
3.1 does not hold.

Generally, we show that if a bounded quasi-pseudometric space (X ,d) is closed in
every quasi-pseudometric space (X̄ , d̄) that properly contains (X ,d), then X is an empty
set: in strong contrast with the metric space case.

Theorem 3.4. Let (X ,d) be a quasi-pseudometric space such that d is bounded and sepa-
rates points in X . Then (X ,d) is �q-absolutely closed if and only if X is the empty set.

Proof. Suppose that X is an empty set. Then every bounded quasi-pseudometric space
(X̄ , d̄) contains an empty set as a closed subset, hence we are done. Conversely, suppose
that X is not an empty set. We construct a quasi-pseudometric space that contains X in
the following way: for a point b /∈ X , let X̄ = {b}∪X . Define d̄ : X̄ × X̄ → [0,∞) by

d̄(x, y)=




d(x, y) if x, y ∈ X ,

0 if x = b and y ∈ X̄ ,

M if x ∈ X and y = b,

(3.2)

whereM = δ(X). Now d̄(x,x)= 0 for all x ∈ X̄ trivially holds, also the inequality d̄(u,v)≤
d̄(u,w) + d̄(w,v) certainly holds for every u,v,w ∈ X̄ . Hence d̄ is a quasi-pseudometric
and X ⊂ X̄ . Now since X is nonempty, let a ∈ X . For any r > 0, we have d(b,a) = 0 <
r. Thus every open ball about b has a nonempty intersection with X , in particular a ∈
B(b,r)∩X . This shows that X is not closed in (X̄ , d̄). �

We now give the following.

Theorem 3.5. Let (X ,d) be a bounded quasi-pseudometric space such that d separates
points. Then the following properties are equivalent:

(i) X is �q-convergence complete,
(ii) every sequence in X is τ(d)-convergent.

Proof. (ii)⇒(i). If every sequence {xn} in X converges, then we are done. Assume (i). Let
{xn} be a sequence in X . Define X̄ = X ∪{b}, where the point b does not belong to X .
Next we define a function d̄ : X̄ × X̄ → [0,∞) by

d̄(x, y)=




d(x, y) if x, y ∈ X ,

0 if x = b and y ∈ X̄ ,

M if x ∈ X and y = b,

(3.3)

where M = δ(X). Then we have X ⊂ X̄ and d̄ is a quasi-pseudometric on X̄ . Also limn d̄(b,
xn) = 0 for every sequence {xn} in X . Hence the sequence {xn} converges in X̄ and it
therefore converges in X . This shows that (i)⇒(ii). �
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When (X ,d) is a bounded metric space, we get the following.

Corollary 3.6. Let (X ,d) be a bounded metric space. Then for the following properties:
(i) X is �q-convergence complete,

(ii) every sequence in X is τ(d)-convergent,
(iii) X is complete,

(i)⇔(ii), (i)⇒(iii), and (ii)⇒(iii).

Proof. (i)⇔(ii) follows by Theorem 3.5. (i)⇒(iii) and (ii)⇒(iii) are clear. �

Let us observe that (iii) does not imply (i) and that (iii) does not imply (ii) by Example
3.3, hence in Corollary 3.6, the statements (i), (ii), and (iii) are not equivalent.

We now give an example.

Example 3.7. Consider a set X which consists of one point, say X = {a}, and the set X̄ that
consists of two points, say X̄ = {a,b}. We define a function d : X ×X → [0,∞) by d(x, y)=
0 for all x, y ∈ X (observe that x = y = a, in this case) and a function d̄ : X̄ × X̄ → [0,∞)
defined by

d̄(x, y)=




d(x, y) if x, y ∈ X ,

0 if x = b and y ∈ X̄ ,

1 if x ∈ X and y = b.

(3.4)

Then d and d̄ are, respectively, quasi-pseudometrics on X and X̄ , we also have X ⊂ X̄ .
Furthermore the smallest neighborhood of the point a is {a} while the smallest neigh-
borhood of the point b is X̄ . In particular, the assumptions of Theorem 3.5 holds.

When trying to establish the �-convergence completeness for quasi-pseudometric
spaces, it was necessary to consider an “internal” description of sequences in X that con-
verge to some point outside X . We now characterize those bounded quasi-pseudometric
spaces which admit extensions in terms of real-valued uniformly continuous maps.

For the next two results, namely, Theorems 3.8 and 3.10, we considerRwith the quasi-
pseudometric u on R defined by u(x, y)= (y− x)∨ 0, for all x, y ∈ R, and its conjugate
l = u−1 on R. Note that τ(u) is the upper topology on R and τ(l) is the lower topology
in R.

Theorem 3.8. Let (X ,d) be a bounded quasi-pseudometric space such that d separates
points. Then the following statements are equivalent:

(i) (X ,d) admits a quasi-pseudometric space extension (X̄ , d̄) such that X ⊆ X̄ and
d̄|X×X = d,

(ii) there exists a pair f and g of real-valued uniformly continuous maps on X satisfying,
for x, y ∈ X ,

(a) u( f (x), f (y))≤ d(x, y),
(b) l(g(x),g(y))≤ d(x, y),
(c) d(x, y)≤ f (x) + g(y).
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Proof. We will show that (i)⇒(ii). Suppose (i) holds. Without loss of generality we will
assume that X̄ = X ∪ {∗}, where the point ∗ does not belong to X . Then the func-
tions f : (X ,d)→R, where R is equipped with τ(u), and g : (X ,d)→R, with R equipped
with τ(l), defined by f (x)= d̄(∗,x) and g(x)= d̄(x,∗), respectively, are uniformly con-
tinuous and satisfy (a), (b), and (c). Hence (i)⇒(ii). Conversely suppose (ii) holds. Fix f
and g. Then for a point∗ that does not belong toX we extend d to X̄ = X ∪{∗}, such that
the extension is also a quasi-pseudometric on X̄ in the following way: let d̄(x,∗)= g(x)
and d̄(∗,x) = f (x). Next, we put d̄(∗,∗) = 0. Then d̄ is a quasi-pseudometric on X̄
and X ⊂ X̄ . It follows that (X̄ , d̄) contains (X ,d), and (i) holds. Hence the proof is com-
plete. �

By an extension pair ( f ,g) of (X ,d) on the extension (X̄ , d̄) we will refer to functions
f and g as in Theorem 3.8.

We now introduce the following definition.

Definition 3.9. Let (X ,d) be a quasi-pseudometric space. A sequence {xn} in X is called
an f null sequence if there exists an extension pair ( f ,g) such that { f (xn)} → 0 as n→∞.

From our characterization on extension of bounded quasi-pseudometric spaces we get
the following.

Theorem 3.10. Let (X ,d) be a bounded quasi-pseudometric space such that d separates
points. Then the following statements are equivalent:

(i) X is �q-convergence complete,
(ii) every sequence in X is τ(d)-convergent,

(iii) there exists an extension pair ( f ,g) such that every sequence {xn} in X is an f null
sequence.

Proof. (i)⇒(iii). Suppose (i) holds. Let (X̄ , d̄) be an extension of (X ,d). By Theorem 3.8
there exists an extension pair ( f ,g). We will show that every sequence {xn} is an f null
sequence, where f is as defined in the proof of Theorem 3.8. Let {xn} be an arbitrary se-
quence in X that converges to a point in X̄ . Without loss of generality we may assume that
{xn} converges to ∗ /∈ X and X̄ = {∗}∪X as in Theorem 3.8, then we get f (xn)

n→∞−−−→ 0.
Hence {xn} is an f null sequence. Thus (iii) holds. The implications (i)⇔(ii) follow by
Theorem 3.5. Next we show that (iii)⇒(ii). Suppose (iii) holds. Fix an extension pair
( f ,g). Now if every sequence {xn} in X is an f null sequence, then every sequence {xn}
is τ(d)-convergent by (uniform) continuity of f on X . Then (ii) holds. Finally the impli-
cation (iii)⇒(i) is clear. �

Remark 3.11. Theorem 3.5 is a special case of Theorem 3.10. To see this we consider an
extension X̄ = X ∪{b} of X where the point b does not belong to X as in the proof of the
theorem. Let M = δ(X). Then d admits an extension denoted by d̄ as in Theorem 3.5 to
X̄ . Clearly we obtain an extension pair ( f ,g) on X defined for all x ∈ X , by f (x)= d̄(b,x)
and g(x)= d̄(x,b), respectively. Then every sequence {xn} in X is an f null sequence.

Our next example shows that when (X ,d) is unbounded, then statements (i) and (ii)
in Theorem 3.5 and in Corollary 3.6 may not be equivalent, that is, we have (ii)⇒(i) but
not conversely.



Seithuti P. Moshokoa 2939

Example 3.12. Consider X =N×{0} with a function d : X ×X → [0,∞) defined by d(a,
b)= |x− y| for all a= (x,0), b = (y,0)∈ X . Then (X ,d) is an unbounded (quasi-pseudo)
metric space. Let X̄ = X ∪ X́ , where X́ =N×{1}. So for each a∈ X there is a point á∈ X́
above a, where á = (x,1), and x ∈ N (we refer the reader to the double arrow space, in
[1, page 414]). We write á= (x,1) and b́ = (y,1) for á �= b́, in X́ , and the corresponding
points in X are a= (x,0) and b = (y,0) with x, y ∈N. Now, define a function d̄ : X̄ × X̄ →
[0,∞) by d̄(a, á)= 1 and

|x− y| =




d̄(á, b́)

d̄(á,b)

d̄(a, b́)

d̄(a,b)

if a �= b. (3.5)

Then d̄ is a quasi-pseudometric on X̄ . Clearly (ii)⇒(i), that is, a sequence {xn} in X
that converges to a point say á∈ X̄ also converges to some a∈ X . But not every sequence
in X is convergent. For instance, the sequence {xn = (n,0) : n ∈ N} in X is not τ(d)-
convergent. Therefore in Theorem 3.5, the implication (ii)⇒(i) does not hold.

Remark 3.13. In general, we see that Theorem 3.5 holds for a finite quasi-pseudometric
space (X ,d) since every such space has a maximal element with respect to ≤ defined by
x ≤ y if and only if y ∈ clτ(d){x}, where x and y belong to X . More generally, consider
a quasi-pseudometric space (X ,d) with a maximal element x∞, that is, x ≤ x∞ for all
x ∈ X . Now the condition x ≤ x∞ is equivalent to x∞ ∈ clτ(d){x}which is equivalent to the
property that V is a neighborhood of x∞ if and only if V = X . For instance in Example 3.7
the maximal element x∞ in (X̄ , d̄) is b. Furthermore the neighborhood of the maximal
element x∞ is X̄ . In this example, every sequence converges.

A close examination of Example 3.7 and Remark 3.13 prompts us to ask this ques-
tion: must every quasi-pseudometric space to which Theorem 3.5 applies have a maximal
element?

The following result provides an affirmative answer to our question in a special case.

Theorem 3.14. Let (X ,d) be a compact quasi-pseudometric space such that every sequence
in X converges, then there exists a maximal element, and every sequence converges to that
element.

Proof. Let (X ,d) be compact. Define x↑ = {y ∈ X : x ≤ y}, where x ≤ y if y ∈ clτ(d){x}.
First we will verify that x↑ is closed in X when X is equipped with the topology induced by
d. Suppose that z /∈ x↑, then x ≤ z is false, that is z /∈ clτ(d){x}. Now X − clτ(d){x} is open
and contains z. So let V = X − clτ(d){x}. Then V ∩ x↑ =∅. To see this we let t ∈ V ∩ x↑.
Then t ∈ V and t ∈ clτ(d){x} as x ≤ t. So we get t ∈ V − clτ(d){x} which is impossible.
This shows that x↑ is closed. Next let � be the following set {x↑ : x ∈ X}. We will show
that � has a finite intersection property and this will complete our proof, since, because
of compactness of (X ,τ(d)) we will then have∩x↑ �= ∅, and z such that z ∈∩x↑ is clearly
a maximal element of (X ,≤). Let x, y ∈ X . We will show that x↑ ∩ y↑ �= ∅. Consider the
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following sequence: x, y,x, y,x, y, . . . in X , that is, xn = x when n ∈N is odd and xn = y
when n∈N is even. Since every sequence in X converges, then {xn} converges, say, to z.
It remains to show that z ∈ x↑ ∩ y↑. Suppose that z /∈ x↑ ∩ y↑, then we either have

(i) z /∈ x↑ and z ∈ y↑, or
(ii) z ∈ x↑ and z /∈ y↑.

If (i) holds, then z /∈ x↑ so x ≤ z is false, thus z /∈ clτ(d){x}. Clearly V = X − clτ(d){x}
is an open neighborhood of z and hence the sequence {xn} is eventually in V . This gives
x ∈ V which is a contradiction as x ∈ clτ(d){x}, therefore z ∈ x↑. Similarly if (ii) holds,
we have z ∈ y↑. Thus in both cases we have z ∈ x↑ ∩ y↑. So � has the finite intersection
property, as required. �

The following example shows that the conclusion of Theorem 3.5 holds in (noncom-
pact) quasi-pseudometric spaces without a maximal element.

Example 3.15. Let X be the first uncountable ordinal with its usual well-ordering. Then
x ∈ X if and only if {y ∈ X : y ≤ x} is countable. X does not have a maximal element.
Define a function d : X ×X → [0,∞) by

d(x, y)=



0 if y ≤ x,

1 if y > x.
(3.6)

Then d is a quasi-pseudometric on X . Also, B(x,1/2)= x↓ is countable, consequently,
τ(d) is the topology on X with the basic open sets of the form x↓. Consider any sequence
{xn} in X . Clearly the sets x↓n are countable and bounded for each n∈N, and so is∪x↓n. So
every sequence in X converges with respect to the topology τ(d), and X is not compact.
In fact X is sequentially compact but not compact, see [2, 5] for example.

4. Closed subspaces of �-convergence complete spaces

In this section, we discuss closed subspaces of �-convergence complete spaces. Since in
a complete metric space (X ,d) if A is a closed subspace of X , then A is complete, then
an �-convergence complete (�-absolutely closed) analogue of this result is: in an �-
convergence complete metric space (X ,d) a closed subspace A of X is (�m-absolutely
closed) �m-convergence complete. Also, it is well-known that a complete subspace of an
arbitrary metric space is closed, phrased in our context, as an �m-convergence complete
subspace A of a metric space (X ,d) is closed.

In the context of quasi-pseudometric spaces we have the following result concerning
subspaces of �q-convergence complete spaces.

We need a lemma.

Lemma 4.1. Let (X ,d)∈�q and let A be a subspace of X . If (Á, d́)∈�q contains A, then
there exists (X̄ , d̄)∈�q such that (X̄ , d̄) contains (X ,d).

Proof. Suppose that A is a subspace of (X ,d)∈�q and (Á, d́)∈�q contains A. Without
loss of generality, we may assume that Á= A∪{∗} and ∗ /∈ X . Now, let X̄ = X ∪{∗}.
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Define a function d̄ : X̄ × X̄ → [0,∞) by

d̄(x, y)=




d(x, y) if x, y ∈ X ,

0 if x = y =∗,

infa∈A
{
d́(∗,a) +d(a, y)

}
if x =∗, y ∈ X ,

infa∈A
{
d(x,a) + d́(a,∗)

}
if x ∈ X , y =∗.

(4.1)

Easily we have d̄(x,x) = 0 for all x ∈ X̄ . To show that d̄(u,v) ≤ d̄(u,w) + d̄(w,v) holds
for all u,v,w ∈ X̄ it will be enough if we can show that d(u,v)≤ d̄(u,∗) + d̄(∗,v) for all
u,v ∈ X and ∗ ∈ X̄ . Now d(u,v) ≤ d(u,a) + d(a,v) holds for all u,v ∈ X and all a ∈ A.
Since d́(a,∗)≥ 0 and d́(∗,a)≥ 0 in Á, then we have

d(u,v) < d(u,a) + d́(a,∗) + d́(∗,a) +d(a,v) (4.2)

for all u,v ∈ X and all a∈A. In particular, the following holds:

d(u,v)≤ inf
a∈A
{
d(u,a) + d́(a,∗) + d́(∗,a) +d(a,v)

}
. (4.3)

Hence for all u,v ∈ X , we have

d(u,v)≤ d̄(u,∗) + d̄(∗,v). (4.4)

Then it follows that d̄ is a quasi-pseudometric space on X̄ that extends both d́ and d, also
X̄ contains both Á and X . �

Theorem 4.2. Let (X ,d) be an �q-convergence complete quasi-pseudometric space such
that d separates points in X . Suppose A ⊆ X is a closed subspace, then (A,dA) is �q-
convergence complete.

Proof. Let (X ,d) be �q-convergence complete quasi pseudometric space such that d sep-
arates points in X and A ⊆ X be a closed subspace. Suppose a sequence {an} in A con-
verges to some point ∗ in (Á, d́)∈�q that contains A. Without loss of generality we as-
sume that Á= {∗}∪A. By Lemma 4.1 we obtain (X̄ , d̄) that contains X . Then {an} con-
verges to∗ in X̄ with respect to d̄. Now since {an} belongs to X and X is �q-convergence
complete, it follows that {an} converges to some point x ∈ X . This implies that x ∈ A as
A is closed in X . Hence (A,dA) is �q-convergence complete. �

We can easily construct an example to shows that the converse of Theorem 4.2 does
not hold, that is, a subspace A of an �q-convergence complete quasi-pseudometric space
(X ,d) can be �q-convergence complete without being closed, in contrast to the metric
space case.
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5. Completeness in bitopological spaces

Definition 5.1. Let (X ,d) be a quasi-pseudometric space and d∗ = d∨ d−1. Then a se-
quence {xn} in (X ,d∗) converges to a point x if it converges with respect to τ(d∗).

Remark 5.2. We observe that in the space (X ,d∗) the sequence {xn} converges to a point
x if and only if it converges to x with respect to τ(d) and τ(d−1). We also observe that if
both d and d−1 are separating, then d∗ is a metric on X .

Definition 5.3 (see [9]). We say that the space (X ,d∗) is complete if every d∗-Cauchy
sequence converges in X with respect to τ(d∗).

Finally we give the following result whose proof follows from Proposition 2.2, Defini-
tions 5.1 and 5.3, and Remark 5.2. It complements Proposition 2.2.

Theorem 5.4. Let (X ,d) be a quasi-pseudometric space such that d and d−1 separate points.
Then the following conditions are equivalent:

(i) (X ,d∗) is complete,
(ii) (X ,d∗) is �m-convergence complete,

(iii) (X ,d∗) is �m-absolutely closed.

In conclusion, we see that a notion of completeness is equivalent to �p-convergence
completeness. Furthermore, completeness in metric spaces is equivalent to �m-absolute
closure. In contrast with the metric space case we observe that a nonempty quasi-
pseudometric space may be �q-convergence complete without being �q-absolutely
closed. Finally, we see that in the case of bitopological spaces equivalent notions of com-
pleteness as in the context of metric spaces are obtained.
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