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The numerical stability of the polynomial spline collocation method for general Volterra
integro-differential equation is being considered. The convergence and stability of the
new method are given and the efficiency of the new method is illustrated by examples. We
also proved the conjecture suggested by Danciu in 1997 on the stability of the polynomial
spline collocation method for the higher-order integro-differential equations.

1. Introduction

In this paper, we analyze the stability properties of the polynomial spline collocation
method for the approximate solution of general Volterra integro-differential equation.
Consider the linear pth-order Volterra integro-differential equation of the form

y(p)(t)= q(t) +
p−1∑
j=0

pj(t)y( j)(t) +
p−1∑
j=0

∫ t

0
kj(t,s)y( j)(s)ds, t ∈ I := [0,T],

y(i)(0)= y(i)
0 , i= 0,1, . . . , p− 1.

(1.1)

Here, the functions q, pj : I → R and kj : D → R ( j = 0,1, . . . , p − 1) (with D := {(t,s) :
0≤ s≤ t ≤ T}) are assumed to be (at least) continuous on their respective domains. For
more detail of these equations and many other interesting methods for the approximated
solution, stability procedures and applications are available in earlier literatures [1, 2, 3,
4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 18]. The above equation is usually known as basis test
equation and is suggested by Brunner and Lambert [4]. Since then it, has been widely
used for analyzing the stability properties [3, 4, 5, 6, 7, 8, 9, 18] of various methods.

Volterra integro-differential equation (1.1) will be solved numerically using polyno-
mial spline spaces. To describe the polynomial spline spaces, let

∏
N : 0= t0 < t1 < ··· <

tN = T be the mesh for the interval I , and set

σn := [tn, tn+1
]
, hn := tn+1− tn, n= 0,1, . . . ,N − 1,

h =max{hn : 0≤ n≤N − 1} (mesh diameter),

ZN := {tn : n= 1,2, . . . ,N − 1
}

, ZN = ZN ∪{T}.
(1.2)
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Let πm+d be the set of (real) polynomials of degree not exceeding m+d, where m≥ 1 and
d ≥−1 are given integers. The solution (y) to the initial-value problem (1.1) is approxi-
mated by an element u in the polynomial spline space

S(d)
m+d(ZN ) :={u := u(t)|t∈σn := un(t)∈ πm+d, n= 0,1, . . . ,N − 1,

u
( j)
n−1

(
tn
)= u

( j)
n
(
tn
)
, for j = 0,1, . . . ,d, tn ∈ ZN

}
.

(1.3)

It is a polynomial spline function of degree m+ d, which possesses the knots ZN , and is

d times continuously differentiable on I . If d = −1, then the elements of S(−1)
m−1(ZN ) may

have jump discontinuities at the knots ZN .

According to Micula [16] and Miculá and Micula [17], an element u ∈ S(d)
m+d(ZN ) for

all n= 0,1, . . . ,N − 1 and t ∈ σn has the following form:

u(t)= un(t)=
d∑

r=0

u(r)
n−1

(
tn
)

r!

(
t− tn

)r
+

m∑
r=1

an,r
(
t− tn

)d+r
, (1.4)

where

ur−1(0) :=
[
dr

dtr
u(t)

]
t=0
= y(r)(0), r = 0,1, . . . ,d. (1.5)

From (1.4), we see that the element u ∈ S(d)
m+d(ZN ) is well defined provided the co-

efficients {an,r}r=1,...,m for all n = 0,1, . . . ,N − 1 are known. In order to determine these
coefficients, we consider a set of collocation parameters {cj} j=1,...,m, where 0 < c1 < ··· <
cm ≤ 1, and define the set of collocation points as

X(N) :=
N−1⋃
n=0

Xn, with Xn := {tn, j := tn + cjhn, j = 1,2, . . . ,m
}
. (1.6)

The approximate solution u∈ S(d)
m+d(ZN ) is determined by imposing the condition that

u satisfies the initial-value problem (1.1) on X(N) and the initial conditions, that is,

u(p)(t)= q(t) +
p−1∑
j=0

pj(t)u( j)(t) +
p−1∑
j=0

∫ t

0
kj(t,s)u( j)(s)ds, t ∈ I := [0,T], ∀t ∈ X(N),

(1.7)
with

u(i)(0)= u(i)
0 , i= 0,1, . . . , p− 1. (1.8)

Here, we assume that the mesh sequence {∏N} is uniform, that is, hn = h, for all n =
0,1, . . . ,N − 1.
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2. Numerical stability

In order to discuss numerical stability, we study the behavior of the method as applied to
the pth-order test Volterra integro-differential equation

y(p)(t)= q(t) +
p−1∑
j=0

αj y
( j)(t) + ν

∫ t

0
y(s)ds, ν �= 0, t ∈ I = [0,T],

y(i)(0)= y(i)
0 , i= 0,1, . . . , p− 1,

(2.1)

where αj , ν are constants and q : I → R is sufficiently smooth.

We refer to a polynomial spline collocation method in the space S(d)
m+d(ZN ), as an

(m,d, p)-method, where p is the order of the integro-differential equation.

Definition 2.1. An (m,d, p)-method is said to be stable if all solutions {u(tn)} remain
bounded as n→∞, h→ 0, while hN remains fixed.

From (1.4), we observe that the first d+ 1 coefficients of u∈ S(d)
m+d(ZN ) are determined

by the smooth conditions, and the exact collocation equation (1.7) can be used to deter-
mine the last m coefficients. For the convenience, we introduce the following notations:

ηn := (ηn,r
)
r=0,...,d, with ηn,r := u(r)

n−1

(
tn
)

r!
hr ,

βn := (βn,r
)
r=1,...,m, with βn,r := an,rh

d+r (n= 0,1, . . . ,N − 1).

(2.2)

Using (2.2) and t := tn + τh∈ σn in (1.4), we obtain the following:

u(t)= un
(
tn + τh

)= d∑
r=0

ηn,rτ
r +

m∑
r=1

βn,rτ
d+r , ∀τ ∈ (0,1], n= 0,1, . . . ,N − 1. (2.3)

By direct differentiation of (2.3) and using the smooth conditions of the approxima-

tion u ∈ S(d)
m+d(ZN ), we get a relationship between vector ηn+1 and vectors ηn and βn as

follows:

ηn+1 = Aηn +Bβn, ∀n= 0,1, . . . ,N − 1, (2.4)

where A is the (d + 1)× (d + 1) upper triangular matrix, and B is the (d + 1)×m matrix,
whose elements are given by

aj,r :=




0 if r < j,(
r

j

)
if r ≥ j,

bj,r :=
(
d+ r

j

)
. (2.5)

For d ≥ p, apply the collocation method to test (2.1) and use the representation (2.3)
to obtain the following collocation equation:

Vβn =Wηn +hpRn, for n= 0,1, . . . ,N − 1, (2.6)
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where V is the m×m-matrix, W is the m× (d+ 1)-matrix, and Rn is the m-vector, whose
elements are given by

Vj,r :=
(
d+ r

p

)
p!c

d+r−p
j − νhp+1

cd+r+1
j

d+ r + 1
−

p−1∑
i=0

αih
p−i
(
d+ r

i

)
i!cd+r−i

j , (2.7)

Wj,r :=




νhp+1cj if r = 0,

νhp+1
cr+1
j

r + 1
+

r−1∑
i=0

αih
p−i
(
r

i

)
i!cr−ij if r = 1,2, . . . , p,

−
(
r

p

)
p!c

r−p
j + νhp+1

cr+1
j

r + 1
+

p−1∑
i=0

αih
p−i
(
r

i

)
i!cr−ij if p+ 1≤ r ≤ d,

(2.8)

Rn, j :=




q
(
t0, j
)− q

(
t0
)

if n= 0,

q
(
tn, j
)− q

(
tn−1,m

)
+u

(p)
n−1

(
tn−1,m

)−u
(p)
n−1

(
tn
)

+
p−1∑
i=0

αi
[
u(i)
n−1

(
tn
)−u(i)

n−1

(
tn−1,m

)]

+λh
∫ 1

cm
un−1

(
tn−1 + τh

)
dτ if n > 0.

(2.9)

We state the following result for pth-order VIDEs which describes a stability criterion
for the collocation spline method. The proof of this theorem is similar to the proof given
by Danciu [9] for first-order VIDEs.

Theorem 2.2. An (m,d, p)-method is stable if and only if all eigenvalues of matrix M :=
A+BV−1W are in the unit disk, and all eigenvalues with |λ| = 1 belong to a 1× 1 Jordan
block, where the matrices A and B are defined in (2.5).

Remark 2.3. The dimension of the matrixM is dim(d+ 1). Moreover, letM0 be the matrix
M with h = 0, and let λ(0) and λ be the eigenvalues of M0 and M, respectively, then it
follows that the matrix M0 has

λ(0)
1 = λ(0)

2 = ··· = λ(0)
p+1 = 1, ∀m≥ 1, d ≥ p. (2.10)

3. Applications

In this section, we will investigate some special cases.

(I) For the case d = p, the approximation space is S
(p)
m+p(ZN ). From the above theorem

and Remark 2.3, we have the following theorem.

Theorem 3.1. For every choice of the collocation parameters {cj} j=1,...,m, an (m, p, p)-meth-
od is stable for all m≥ 1.
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(II) For the case m= 1, this choice of m corresponds to a classical spline function, that

is, the approximate solution u∈ S(d)
1+d(ZN ). By Remark 2.3, M0 is the matrix M with h= 0,

and λ(0) and λ are the respective eigenvalues of M0 and M, and we have

λ= λ(0) +O(h). (3.1)

Lemma 3.2. If c1 ∈ (0,1] is the collocation parameter, then, for m= 1 and d ≥ p, the trace
of the matrix M0 can be computed by the following formula:

Tr
(
M0
)= d+ 2 +

1

c
d−p+1
1

−
(

1 +
1
c1

)d−p+1

. (3.2)

Proof. Let V0 and W0 be the matrices V and W with h= 0, respectively. Then, for m= 1,
we have from (2.7) and (2.8) that V0 is a 1× 1-matrix and W0 is a 1× (d + 1)-matrix,
whose elements are given by

V0 :=
(
d+ 1
p

)
p!c

d−p+1
1 ,

(
W0

)
1,r :=




0 if r = 0,1, . . . , p,

−
(
r

p

)
p!c

r−p
1 if p+ 1≤ r ≤ d.

(3.3)

Now, from the definition of the matrices A and B as in (2.5) (note that the diagonal
entry of the matrix A is one), we have

Tr
(
M0
)= Tr

(
A+BV−1

0 W0
)

= Tr(A) +
1(

d+1
p

)
p!c

d−p+1
1

Tr
(
BW0

)

= d+ 1− 1(
d+1
p

)
p!c

d−p+1
1

d∑
i=p+1

(
d+ 1
i

)(
i

p

)
p!c

i−p
1 .

(3.4)

However, by the binomial expansion, we have the following identity:

d∑
i=p+1

(
d+ 1
i

)(
i

p

)
p!c

i−p
1 =

(
d+ 1
p

)
p!
((

1 + c1
)d−p+1− 1− c

d−p+1
1

)
. (3.5)

Hence,

Tr
(
M0
)= d+ 2 +

1

c
d−p+1
1

−
(

1 +
1
c1

)d−p+1

. (3.6)

�

For the stability of the spline collocation method S(d)
1+d(ZN ) (m = 1), we have the fol-

lowing theorem.
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Theorem 3.3. A (1,d, p)-method (d ≥ p) is stable if and only if one of the following condi-
tions is true:

(i) d = p and c1 ∈ (0,1],
(ii) d = p+ 1 and c1 = 1.

Proof. For the case d = p, the conclusion follows from Theorem 3.1.
If d = p+ 1, then, using (2.10) and (3.2), the p+ 2-eigenvalue of M0 can be computed

as follows:

λ(0)
p+2 = Tr

(
M0
)− p− 1= p+ 3 +

1
c2

1
−
(

1 +
1
c1

)2

− p− 1= 1− 2
c1
. (3.7)

Therefore, if c1 ∈ (0,1], then λ(0)
p+2 ≤−1, and its absolute value is 1 if and only if c1 = 1.

If d ≥ p+ 2, then, setting θ = d− p+ 1 in (3.2), we have

Tr
(
M0
)= p− 1 + θ + 2 +

1

cθ1
−
(

1 +
1
c1

)θ
= p+ θ−

θ−1∑
i=1

(
θ

i

)
1
ci1
. (3.8)

If θ > 3 (i.e., d > p+ 2), then, by induction, we can prove
(
θ
i

)
> θ (i= 1,2, . . . ,θ− 1) and

θ(θ− 1) > 2(θ + 1).
Thus, if c1 ∈ (0,1], then

Tr
(
M0
)
< p+ θ− θ(θ− 1) < p+ θ− 2(θ + 1), (3.9)

and therefore

−∞ < Tr
(
M0
)
< p− θ− 2= 2p− 3−d. (3.10)

If p = 1, then from (3.10),

Tr
(
M0
)= λ(0)

1 + λ(0)
2 + ···+ λ(0)

d+1 <−(d+ 1), for d > 3. (3.11)

Therefore, there exists an eigenvalue λ(0) whose value is smaller than −1.
If p > 1, then, from (2.10) and (3.10), we have

λ(0)
p + λ(0)

p+1 + ···+ λ(0)
d+1 <−(d+ 2− p), for d > p+ 2 > 3. (3.12)

Thus, there exists an eigenvalue λ(0) whose value is less than −1.
If d = p+ 2 and c1 ∈ (0,1], then, from (3.2), we have

λ(0)
p+2 + λ(0)

p+3 = Tr
(
M0
)− p− 1

= p+ 4 +
1
c3

1
−
(

1 +
1
c1

)3

− p− 1

= 2− 3
c1
− 3
c2

1
≤−4.

(3.13)
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Hence,

λ(0)
p+2 <−1 or λ(0)

p+3 <−1. (3.14)

Thus, from Theorem 2.2, a (1,d, p)-method is unstable for any choice of the collocation
parameter c1 ∈ (0,1] when d ≥ p+ 2. �

(III) For the case m = 2, we can prove the following theorem. The proof is similar to
the proof given in [9] for first-order integro-differential equation (p = 1).

Theorem 3.4. Let 0 < c1 < c2 ≤ 1 be the collocation parameters, then
(i) (2, p, p)-method is stable for every choice of the collocation parameters,

(ii) (2, p+ 1, p)-method is stable if and only if c1 + c2 ≥ 3/2,
(iii) if c2 = 1, then (2,d, p)-method is unstable for all d ≥ p+ 2.

(IV) For the case d = p+ 1, the approximation u∈ S
(p+1)
m+p+1(ZN ) and the dimension of

the matrix M0 are p+ 2, whose λ(0)
1 = λ(0)

2 = ··· = λ(0)
p+1 = 1 are its first p+ 1-eigenvalues.

To compute the p + 2-eigenvalue, we need the following results. But, first we introduce
the following notations:

Sk := Sk
(
c1, . . . ,cm

)= m∑
1≤i1<···<ik≤m

ci1ci2 ···cik , for 1≤ k ≤m,

S0 := S0(c1, . . . ,cm)= 1,

Sk, j := Sk(c1, . . . ,cj−1,cj+1, . . . ,cm), for 1≤ k ≤m− 1, 1≤ j ≤m.

(3.15)

Lemma 3.5. Let 0 < c1 < c2 < ··· < cm ≤ 1 be the collocation parameters, then

∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· ci−1

m ci+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣
= Sm−i

m∏
1≤k<j≤m

(
cj − ck

)
. (3.16)

Proof. We will prove the lemma by induction on the dimension of the matrix, starting
with 2× 2-matrices. For the 2× 2-matrices, the result is clearly true. For m×m-matrices
(m> 2), we define

f (x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm−1 c2
m−1 ··· ci−1

m−1 ci+1
m−1 ··· cmm−1

1 x x2 ··· xi−1 xi+1 ··· xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.17)
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Note that ∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· ci−1

m ci+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣
= f

(
cm
)
. (3.18)

Now, since f (c1)= f (c2)= ··· = f (cm−1)= 0, we have

f (x)= a(x− b)
m−1∏
i=1

(
x− ci

)
, (3.19)

where a, b are constants to be determined. By the induction hypothesis, we obtain

a= Sm−1−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)
. (3.20)

Moreover, from (3.19),

f (0)= a(−1)mc1c2 ···cm−1b. (3.21)

On the other hand, from the definition of f and by the induction hypothesis, we have

f (0)= (−1)m+1

∣∣∣∣∣∣∣∣∣∣∣

c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
cm−1 c2

m−1 ··· ci−1
m−1 ci+1

m−1 ··· cmm−1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)m+1c1c2 ···cm−1Sm−i(c1, . . . ,cm−1)

m−1∏
k<j

(
cj − ck

)
.

(3.22)

Thus, from (3.21) and (3.22), we have

−ab = Sm−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)
, (3.23)

and so

f
(
cm
)= a

(
cm− b

)m−1∏
i=1

(
cm− ci

)

=
[
cmSm−1−i

(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)

+ Sm−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)]m−1∏
i=1

(
cm− ci

)
.

(3.24)
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However, since

cmSm−1−i
(
c1, . . . ,cm−1

)
+ Sm−i

(
c1, . . . ,cm−1

)= Sm−i
(
c1, . . . ,cm

)= Sm−i,

m−1∏
k<j

(
cj − ck

)m−1∏
i=1

(
cm− ci

)= m∏
k<j

(
cj − ck

)
,

(3.25)

we have

f
(
cm
)= Sm−i

m∏
k<j

(
cj − ck

)
, (3.26)

which proves the lemma. �

Remark 3.6. Note that in Lemma 3.5 if i =m, then we have the Vandermonde determi-
nant.

Corollary 3.7. Let V0 be the matrix V with h= 0 and d = p+ 1, that is, V0 is the m×m-
matrix, whose elements are

(
V0
)
j,r :=

(
p+ r + 1

p

)
p!cr+1

j . (3.27)

Then, V−1
0 is the matrix, whose elements are given by

(
V−1

0

)
r, j =

1
det

(
V0
) (−1)r+ jS2

m−1, jSm−r, j

m∏
l<k, (l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!,

(3.28)

where

det
(
V0
)=

[ m∏
k=1

(
p+ k+ 1

p

)
p!

m∏
l<k

(
ck − cl

)]
S2
m. (3.29)

Proof. From Lemma 3.5, we have det(V0)= [
∏m

k=1

(
p+k+1

p

)
p!
∏m

l<k(ck − cl)]S2
m. Now,

V−1
0 = Adj

(
V0
)

det
(
V0
) , (3.30)
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where Adj(V0) is the adjoint matrix of V0, however,

Adj
(
V0
)
r, j = (−1)r+ jS2

m−1, j

m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−2

1 cr1 ··· cm−1
1

1 c2 c2
2 ··· cr−2

2 cr2 ··· cm−1
2

...
...

...
...

...
...

...
...

1 cj−1 c2
j−1 ··· cr−2

j−1 crj−1 ··· cm−1
j−1

1 cj+1 c2
j+1 ··· cr−2

j+1 crj+1 ··· cm−1
j+1

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−2

m crm ··· cm−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.31)

Again, by Lemma 3.5 and using the following relations:

Sm−1−(r−1)
(
c1, . . . ,cj−1,cj+1, . . . ,cm

)= Sm−r
(
c1, . . . ,cj−1,cj+1, . . . ,cm

)= Sm−r, j , (3.32)

we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−2

1 cr1 ··· cm−1
1

1 c2 c2
2 ··· cr−2

2 cr2 ··· cm−1
2

...
...

...
...

...
...

...
...

1 cj−1 c2
j−1 ··· cr−2

j−1 crj−1 ··· cm−1
j−1

1 cj+1 c2
j+1 ··· cr−2

j+1 crj+1 ··· cm−1
j+1

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−2

m crm ··· cm−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Sm−r, j

m∏
l<k, (l,k �= j)

(
ck − cl

)
. (3.33)

Thus,

(
V−1

0

)
r, j =

1
det

(
V0
) (−1)r+ jS2

m−1, jSm−r, j

m∏
l<k, (l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!,

(3.34)

which completes the proof of the corollary. �

Now, we can develop a formula for computing the p+ 2-eigenvalue of the matrix M0.

Theorem 3.8. For the case d = p + 1 and m ≥ 1, the p + 2-eigenvalue of M0 can be com-
puted by using the following relation:

λ(0)
p+2 =

Sm− 2Sm−1 + 3Sm−2 + ···+ (−1)m−1mS1 + (−1)m(m+ 1)
Sm

. (3.35)
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Proof. Let V0 and W0 be the matrices V and W , respectively, with h=0, then for d=p+ 2,
we have from (2.8) that W0 is a m× (p+ 2)-matrix, whose elements are given by

(
W0

)
j,r :=


0 if r = 0,1, . . . , p,

−(p+ 1)!cj if r = p+ 1.
(3.36)

Now, the p+ 2th-eigenvalue of M0 =A+BV−1
0 W0 is

λ(0)
p+2 = 1 +

m∑
r=1

(B)p+2,r
(
V−1

0 W0
)
r,p+2. (3.37)

The entries of the last row of matrix B are

(B)p+2,r =
(
p+ r + 1
p+ 1

)
. (3.38)

Moreover, from (3.36) and Corollary 3.7, we have

(
V−1

0 W0
)
r,p+2 =

−(p+ 1)!
det

(
V0
) m∑

j=1

[
(−1)(r+ j)S2

m−1, jSm−r, j c j

×
m∏

l<k, (l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!

]
.

(3.39)

Therefore,

λ(0)
p+2 = 1 +

(p+ 1)!
det

(
V0
) m∑
r=1

m∑
j=1

[(
p+ r + 1
p+ 1

)
(−1)(r+ j+1)S2

m−1, jSm−r, j c j

×
m∏

l<k, (l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!

]
.

(3.40)

Now, by using the relations

cjS
2
m−1, j = SmSm−1, j ,

(p+ 1)!

(
p+ r + 1
p+ 1

) m∏
k=1,(k �=r)

(
p+ k+ 1

p

)
p!= (r + 1)

m∏
k=1

(
p+ k+ 1

p

)
p!,

(3.41)

and by substituting (3.29) for det(V0), (3.40) can be simplified as follows:

λ(0)
p+2 = 1 +

∑m
r=1(−1)r(r + 1)

∑m
j=1(−1)( j+1)Sm−1, jSm−r, j

∏m
l<k, (l,k �= j)

(
ck − cl

)
Sm
∏m

l<k

(
ck − cl

) . (3.42)
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However, from Lemma 3.5, we have

m∑
j=1

(−1)( j+1)Sm−1, jSm−r, j

∏
l<k, (l,k �= j)

(
ck − cl

)=
∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−1

1 cr+1
1 ··· cm1

1 c2 c2
2 ··· cr−1

2 cr+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−1

m cr+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣

= Sm−r
m∏
l<k

(
ck − cl

)
.

(3.43)
Hence,

λ(0)
p+2 = 1 +

∑m
r=1(−1)r(r + 1)Sm−r

Sm

=
∑m

r=0(−1)r(r + 1)Sm−r
Sm

= Sm− 2Sm−1 + 3Sm−2 + ···+ (−1)m−1mS1 + (−1)m(m+ 1)
Sm

,

(3.44)

which concludes the proof of Theorem 3.8. �

Remark 3.9. Theorem 3.8 proves the conjecture asserted by Danciu [9] for first-order
integro-differential equations (p = 1,d = 2).

As an application to Theorem 3.8, we can prove the following results. The proofs are
identical to the proof given in [9] for the first-order integro-differential equation.

Corollary 3.10. An (m, p+ 1, p)-method is stable if and only if

∣∣∣∣∣
[
(d/dt)

(
t ·Rm(t)

)]
t=1

Rm(0)

∣∣∣∣∣≤ 1, (3.45)

where Rm(t) is the polynomial of degree m, whose zeroes are the collocation parameters
{cj} j=1,...,m.

Regarding the stability of local superconvergent solution u∈ S
(p+1)
m+p+1(Zn), we have the

following corollary.

Corollary 3.11. (i) If the collocation parameters {cj} j=1,...,m are uniformly distributed in
(0,1] (i.e., cj = j/m, for all j = 1,2, . . . ,m), then (m, p+ 1, p)-method is stable for m≥ 1.

(ii) If the collocation parameters {cj} j=1,...,m are the Radau II points in the interval (0,1],
then (m, p+ 1, p)-method is unstable for m≥ 2.

(iii) If the collocation parameters {cj} j=1,...,m are the Gauss points in the interval (0,1],
then (m, p+ 1, p)-method is unstable for m≥ 2.

(iv) If the first m− 1 collocation parameters {cj} j=1,...,m are the Gauss points in the inter-
val (0,1) and the last collocation parameter is cm = 1, then (m, p+ 1, p)-method is stable for
m≥ 2.
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Table 4.1. Approximate error for Example 4.1 with c1 = (5−√15)/10, c2 = 1/2, c3 = (5 +
√

15)/10.

d e1 eN/2 eN

d = 3 2.70× 10−10 3.31× 10−4 6.54× 10−3

d = 4 2.70× 10−10 2.61× 1023 5.97× 1058

d = 5 2.70× 10−10 4.58× 1049 4.25× 10113

Table 4.2. Approximate error for Example 4.2 with c1 = (5−√15)/10, c2 = 1/2, c3 = (5 +
√

15)/10.

d e1 eN/2 eN

d = 4 0 2.91× 10−5 1.07× 10−3

d = 5 0 1.45× 1021 3.32× 1056

d = 6 0 1.20× 1048 1.02× 10112

4. Numerical examples

The method is tested using the following two examples in the interval [0,1] with step size
h = 0.05, errors are computed in Tables 4.1 and 4.2 for various (3,d, p)-methods with
p = 3,4. The following notations will also be used in the presentation:

e1 := ∣∣y(t1)−u
(
t1
)∣∣, eN/2 := ∣∣y(0.5)−u(0.5)

∣∣, eN := ∣∣y(1)−u(1)
∣∣, (4.1)

where u∈ Sd3+d (m= 3) is the approximated solution.

Example 4.1. Consider the following integro-differential equation of third order:

y(3)(t)=
∫ t

0
y(s)ds, y(0)= 1, y′(0)= 2, y′′(0)= 1, (4.2)

with exact solution y(t)= et + sin t.

Example 4.2. Consider the following fourth-order integro-differential equation:

y(4)(t)= 1 +
∫ t

0
y(s)ds, y(0)= y′(0)= y′′(0)= y(3)(0)= 1, (4.3)

with exact solution y(t)= et.

(a) Let us consider the Gauss points as the collocation parameters, that is, c1 = (5−√
15)/10, c2 = 1/2, and c3 = (5 +

√
15)/10, then we have Tables 4.1 and 4.2 corresponding

to Examples 4.1 and 4.2, respectively.
(b) If the first two collocation parameters are the Gauss points, that is, c1 = (3−√3)/6,

c2 = (3 +
√

3)/6, and c3 = 1, then we have Tables 4.3 and 4.4 for Examples 4.1 and 4.2.
From Tables 4.3 and 4.4, one can observe that (3,d, p)-method (p = 3,4) is stable for

d = p and it is unstable for d = p+ 2. In the case d = p+ 1, this method is stable if the first
two collocation parameters are the Gauss points, that is, c1 = (3−√3)/6, c2 = (3 +

√
3)/6,
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Table 4.3. Approximate error for Example 4.1 with c1 = (3−√3)/6, c2 = (3 +
√

3)/6, c3 = 1.

d e1 eN/2 eN

d = 3 2.70× 10−10 6.00 × 10−10 4.20× 10−9

d = 4 2.70× 10−10 4.00 × 10−10 5.20× 10−9

d = 5 2.70× 10−10 3.95× 1010 4.53× 1040

Table 4.4. Approximate error for Example 4.2 with c1 = (3−√3)/6, c2 = (3 +
√

3)/6, c3 = 1.

d e1 eN/2 eN

d = 4 0 5.00× 10−9 1.00× 10−8

d = 5 0 5.00× 10−9 1.40× 10−8

d = 6 0 4.99× 107 5.73× 1037

and c3 = 1 as in case (b), and unstable if the collocation parameters are the Gauss points,
that is, c1 = (5−√15)/10, c2 = 1/2, and c3 = (5 +

√
15)/10 as in case (a).
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