COMMON FIXED POINTS OF SINGLE-VALUED
AND MULTIVALUED MAPS

YICHENG LIU, JUN WU, AND ZHIXIANG LI

Received 19 June 2005 and in revised form 1 September 2005

We define a new property which contains the property (EA) for a hybrid pair of single-
and multivalued maps and give some new common fixed point theorems under hybrid
contractive conditions. Our results extend previous ones. As an application, we give a
partial answer to the problem raised by Singh and Mishra.

1. Introduction and preliminaries

Let (X,d) be a metric space. Then, for x € X, A C X, d(x,A) = inf{d(x,y), y € A}. We
denote CB(X) as the class of all nonempty bounded closed subsets of X. Let H be the
Hausdorff metric with respect to d, that is,

H(A,B) =max{supd(x,B),supd(y,A)}, (1.1)
XEA yEB

for every A,B € CB(X). A self-map T defined on X satisfies Rhoades’ contractive defini-
tion in following sense: (see [19]) forall x,y € X, x # y,

d(Tx,Ty) < max {d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}. (1.2)

The fixed points theorems for Rhoades-type contraction mapping were investigated by
many authors [1, 5, 8, 10, 13, 16, 22] and the more results on this fields can be found in
(2,4,9, 11, 15, 23]. Hybrid fixed point theory for nonlinear single-valued and multival-
ued maps is a new development in the domain of contraction-type multivalued theory
(see [3, 7, 10, 12, 14, 17, 18, 20] and references therein). In 1998, Jungck and Rhoades
[12] introduced the notion of weak compatibility to the setting of single-valued and mul-
tivalued maps. In [21], Singh and Mishra introduced the notion of (IT)-commutativity
for hybrid pair of single-valued and multivalued maps which need not be weakly com-
patible. Recently, Aamri and El Moutawakil [1] defined a property (EA) for self-maps
which contained the class of noncompatible maps. More recently, Kamran [13] extended
the property (EA) for a hybrid pair of single- and multivalued maps and generalized the
notion of (IT)-commutativity for such pair.
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The aim of this paper is to define a new property which contains the property (EA) for
a hybrid pair of single- and multivalued maps and give some new common fixed point
theorems under hybrid contractive conditions. As an application, we give an affirmative
(half-) answer (Theorem 2.8) to the open problem in [21].

Now we state some known definitions and facts.

Definition 1.1 [12]. Maps f : X — X and T : X — CB(X) are weakly compatible if they
commute at their coincidence points, that is, if f Tx = T fx whenever fx € Tx.
Definition 1.2 [21]. Maps f : X — X and T : X — CB(X) are said to be (IT)-commuting
atx € X if fTx C T fx whenever fx € Tx.

Definition 1.3 [1]. Maps f,g: X — X are said to satisfy the property (EA) if there exists a
sequence {x,} in X such thatlim,_« fx, =lim,_ogx, =t € X.

Definition 1.4 [13]. Maps f : X — X and T : X — CB(X) are said to satisfy the property
(EA) if there exist a sequence {x,} in X, some t in X, and A in CB(X) such that

lim fx, =t €A = lim Tx,. (1.3)

Definition 1.5 [13]. Let T: X — CB(X). The map f : X — X is said to be T-weakly com-
mutingatx € X if f fx e T fx.

For the rest of the introduction, we state the following theorem as the prototype in this
paper.
THEOREM 1.6 (see [13]). Let f be a self-map of the metric space (X,d) and let F be a map
from X into CB(X) such that
(1) (f,F) satisfies the property (EA);
(2) forallx + yin X,

d(fx,Fx)+d(fy,Fy) d(fx,Fy)+d(fy,Fx) } (1.4)

H(Fx,Fy) <max{d(fx,fy), > , 2

If fX is closed subset of X, then
(a) f and F have a coincidence point;
(b) f and F have a common fixed point provided that f is F-weakly commuting at v
and f fv = fv for v e C(f,F), where C(f,F) = {x : x is a coincidence point of f
and F}.

2. Main results

We begin with the following definition.

Definition 2.1. (1) Let f,g,F,G:X — X. The maps pair (f,F) and (g, G) are said to satisfy
the common property (EA) if there exist two sequences {x,}, {¥,} in X and some t in X
such that

%Lngo Gy, = %ij{}oFxn = %ijl(;lofxn = %ip;gyn =teX. 2.1)
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(2) Let f,g: X — X and F,G: X — CB(X). The maps pair (f,F) and (g,G) are said to
satisty the common property (EA) if there exist two sequences {x,}, {y,} in X, some f in
X, and A, B in CB(X) such that

lim Fx, = A, %13)10 Gy, =B, ,lif?ofx” = %ir?ogyn =teANB. (2.2)

n—o

Example 2.2. Let X = [1,+00) with the usual metric. Define f,g:X — X and F,G: X —
CB(X) by f(x) =2+x/3,g(x) =2+x/2, and F(x) = [1,2 +x], G(x) = [3,3 +x/2] for all
x € X. Consider the sequences {x,} = {3+ 1/n}, {y,} = {2+ 1/n}. Clearly, lim,_.., Fx, =
[1,5] = A, lim,—« Gy, = [3,4] = B, lim,—« fx, = lim,—~w gy, = 3 € A N B. Therefore,
(f,F) and (g, G) are said to satisty the common property (EA).

THEOREM 2.3. Let f, g be two self-maps of the metric space (X,d) and let F, G be two maps
from X into CB(X) such that

(1) (f,F) and (g,G) satisfy the common property (EA);

(2) forallx + yin X,

d(fx,Fx)+d(gy,Gy) d(fx’Gy)+d(gy,Fx)} (2.3)
2 ’ 2 ‘ '

H(Fx,Gy) < max{d(fx,gy),

If fX and gX are closed subsets of X, then

(a) f and F have a coincidence point;

(b) g and G have a coincidence point;

(¢) f and F have a common fixed point provided that f is F-weakly commuting at v
and f fv = fv forve C(f,F);

(d) g and G have a common fixed point provided that g is G-weakly commuting at v
and ggv = gv for v € C(g,G);

(e) f, g F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since (f,F) and (g,G) satisfy the common property (EA), there exist two se-
quences {x,}, {y,} in X and u € X, A,B € CB(X) such that

lim Fx, = A, lim Gy, =B,
n— oo n— oo

(2.4)
lim fx, = limgy, =u€AnB.

By virtue of fX and gX being closed, we have u = fv and u = gw for some v,w € X.
We claim that fv € Fv and gw € Gw. Indeed, condition (2) implies that

H (Fx,, Gw) < max{d(fxn,gw), d(fxu, Fx,) +d(gw,Gw) d(fxn,Gw) +d(gw,Fxy) }

2 ’ 2
(2.5)
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Taking the limit as n — oo, we obtain

H(A,Gw) < max {d( fr,gw), d(fv,A) +d(gw,Gw) d(fv,Gw)+d(gw,A) );

2 ’ 2
(2.6)
_ d(gw,Gw)
-
Since gw = fv € A, it follows from the definition of Hausdorff metric that
d(gw, Gw) < H(A, Gw) < 18" GW) (2.7)

2 bl
which implies that gw € Gw.
On the other hand, by condition (2) again, we have

H(Fv,Gyy) < max{d(fv,gy,,), d(fv,Fv)+d(gynGyn) d(fv,Gyn)+d(gyn,Fv) }

2 ’ 2
(2.8)

Similarly, we obtain

d(fv,Fv)

d(fv,Fv) <H(Fv,B) < 5

(2.9)
Hence fv € Fv. Thus f and F have a coincidence point v, g and G have a coincidence
point w. This ends the proofs of part (a) and part (b).

Furthermore, by virtue of condition (c), we obtain f fv = fvand f fv € Ffv. Thus
u = fu € Fu. This proves (c). A similar argument proves (d). Then (e) holds immediately.
O

Remark 2.4. In Theorem 2.3, if F, G are two maps from K into CB(X), where K is a closed
subset of X. In this case, it is necessary to assume that (X,d) is a metrically convex metric
space. In this direction, many excellent works have appeared (see [5, 21]).

CoROLLARY 2.5 (see [13, Theorem 3.10]). Let f be a self-map of the metric space (X,d)
and let F be a map from X into CB(X) such that

(1) (f,F) satisfies the property (EA);

(2) forallx + yin X,

H(Fx,Fy)<max{d(fx,fy),d(fx’Fx)+d(fy’Fy) d(fx,Fy)+d(fy,Fx)}'

2 ’ 2
(2.10)

If fX is closed subset of X, then
(a) f and F have a coincidence point;
(b) f and F have a common fixed point provided that f is F-weakly commuting at v

and f fv = fv forve C(f,F).
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Proof. Let F = Gand f = g, then the results follow from Theorem 2.3 immediately. [
If f = g, we can conclude the following corollary.

COROLLARY 2.6. Let f be a self-map of the metric space (X,d) and let F, G be two maps
from X into CB(X) such that

(1) (f,F) and (f,G) satisfy the common property (EA);

(2) forallx + yin X,

d(fx,Fx)+d(fy,Gy) d(fx,Gy)+d(fy,Fx)
2 ’ 2 ’

H(Fx,Gy) < max {d(fx,fy),
(2.11)

If fX is closed subset of X, then
(a) f, G and F have a coincidence point;
(b) f, G and F have a common fixed point provided that f is both F-weakly commuting
and G-weakly commuting at v and f fv = fv forv e C(f,F).

If both F and G are single-valued maps in Theorem 2.3, then we have the following
corollary.

CoROLLARY 2.7. Let f, g, F, and G be four self-maps of the metric space (X,d) such that
(1) (f,F) and (g,G) satisfy the common property (EA);
(2) forallx + yin X,

d(Fx,Gy) < max{d(fx,gy), d(fx.Fx) —; d(gy,Gy) , d(fx,Gy) ; d(gy, Fx) } (2.12)
If fX and gX are closed subsets of X, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(¢c) f and F have a common fixed point provided that f is F-weakly commuting at v
and f fv = fv forve C(f,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v
and ggv = gv for v € C(g,G);
(e) f, g F, and G have a common fixed point provided that both (c) and (d) are true.

TueOREM 2.8. Let f, g be two self-maps of the complete metric space (X,d), let A € (0,1)
be a constant, and let F, G be two maps from X into CB(X) such that for allx # y in X,

d(fx,Gy)+d(gy,Fx)
5 } (2.13)

H(Fx,Gy) < Amax {d(fx,gy),d(fx,Fx),d(gy, Gy),

If fX and gX are closed subsets of X and FX C gX, GX C fX, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(¢) f and F have a common fixed point provided that f is F-weakly commuting at v

and f fv = fv forve C(f,F);
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(d) g and G have a common fixed point provided that g is G-weakly commuting at v

and ggv = gv for v € C(g,G);

(e) f, g F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. For any given xy € X, by virtue of FX C gX, there is x; € X such that y; = gx; €
Fxy. Now since Fxj and Gx; are closed sets and y; € Fx,, we can find y, € Gx; such that

d(yl,yz) < H(FX(),G.X?]) +A.

(2.14)

Since GX C fX, there exists x, such that fx, = y, € Gx;, then we choose y; € Fx,

satisfying
d(y2,y3) < H(Gxy,Fxz) + 1%,

and y; = gxs for some x3 € X.
We continue this process to obtain a sequence {y,} in X such that

Yon = [x2n € GXop—1, Yo+l = Xon+1 € Fxop,
d(y2n>y2n+1) = H(Gx2n—l>Fx2n) +A2n’

d(yan-1,y2m) < H(Fxan-2,Gxan-1) +A*""1, n=1,2,....
Let ay = d(yn, yn+1), then

Ayp = d(y2nay2n+1) =< H(zenfl’FxZ”) +)L2n

< Amax {d(fx2n>gx2n1))d(fx2n)Fx2n)>d(gx2n1>Gx2n1)’

d(fx2n, Gxan-1) +d(gx2n-1,Fx2n) } 2
5 )

By fx2, € Gxz,,-1, we have
d(gxan-1,Gxan—1) < d(gxan-1, [X2n), d(fxan, Fx2n) < H(Gxap—1,Fx2n).

Thus, we rewrite (2.17) as

Aoy < Amax{d(fxz,q,gxz,q_l), M} + A%,

Hence, we obtain

-1+ ax
ay < /Xmax{az,l_l,%} + %",

If az,—1 < azy for some n, we have ay, < A*"/(1 — ). Otherwise, we get

dry, < /1612,171 +A2n.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Therefore, by (2.20), we achieve
AZV!
ayy < max {/\aZn,l + A% m} (2.22)

On the other hand,

an-1 < H(Gxan-1,Fx2p—2) +A*"!

< Amax {d(fonZ)ngnl))d(fx2n2)Fx2n2))d(gx2n1) Gxanl))

(2.23)
d(fxan-2,Gxop—1) +d(gxon—1,FX20—2) 421
5 .
Since gx2n-1 € Fx3,-, we have
d(gxan—1,Gxon—1) < H(Gx2n-1,Fx2n-2),
(2.24)
d(fxan-2,Fxan—2) < d(gxan-1, fXan-2)-
Thus, we obtain
a1 s)tmax{am_z,W} + AL (2.25)
Similarly, we get
/1211—1
Arp—1 < max {Aaznfz +/‘2n71) ) } (2.26)
By (2.22) and (2.26), we obtain
/111
ansrnax{)ta,,,1+)tn,l_/\}, n=12,.... (2.27)
It is easy to see that
Aﬂ
a,,Smax{/l”(ao+n),l_A}, n=12,.... (2.28)
Thus, there exists ny > 0 such that for n > n,
a, < M (ap+n). (2.29)

Hence lim,, .« a, = 0.

In order to prove that {y,} is Cauchy sequence, for any ¢ > 0, we choose a sufficiently
large number N such that
v e1-2)

ed-A) w_ed=VF (2.30)

N
A (d0+N)S ) > 1




3052 Common fixed points of hybrid maps

Thus, for any positive integer k, we obtain

k-1 k-1

d(yn,yn+k) < D an+i < O AN (ag+ N +1)
i=0 i=0

k-1
<)LN(a0+N)%+/\N<ZI/\> (2.31)
i=0

1y 2
—)L—H\ (1_A)2S8.

<AN(00+N)1

This implies that { y,,} is a Cauchy sequence. Thus there is u satisfying
lim y, = u = lim fx;, = lim gx;,11. (2.32)

Since fX and gX are closed, there exist a, b such that fa = u = gb. A similar argument
proves that

lim Fx,, = hm GXn115

n—oo

(2.33)
u € lim Fxy, = hm GXopt1.

Nn— 00
Then (f,F) and (g, G) satisfy the common property (EA). The rest of the proof follows
Theorem 2.3 immediately, then the proof of Theorem 2.8 is complete. O

CoROLLARY 2.9. Let f, g be two self-maps of the complete metric space (X,d), let A € (0,1)
be a constant, and let F, G be two maps from X into CB(X) such that for all x # y in X,

H(Fx,Gy) < ad(fx.gy)+Bmax {d( fx Fx),d(gy,Gy)} (
2.34)
+ymax {d(fx,Gy) +d(gy,Fx),d(fx,Fx)+d(gy,Gy)},

and o+ +2y < 1. If fX and gX are closed subsets of X and FX C gX, GX C fX, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
¢) f and F have a common fixed point provided that f is F-weakly commuting at v
and f fv = fv forve C(f,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v
and ggv = gv for v € C(g,G);
e) f, g F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Let A=a+ f+2y. Following (2.34) and max {d( fx,Fx),d(gy,Gy)} = (d(fx,Fx) +
d(gy,Gy))/2, it is easy to see that

H(Fx,Gy) < Amax {d(fx,gw,d(fx,Fx),d(gy, o), 2P gy F) } (2.35)

Thus by Theorem 2.8, we arrive to the conclusion in Corollary 2.9. O
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The next theorem involves a function ¢. Various conditions on ¢ have been investi-
gated by different authors [4, 6, 15, 16]. Let ¢ : R* — R* continue and satisfy the follow-
ing conditions:

(A1) ¢ is nondecreasing on R¥,

(A;) 0< ¢(t) <t, foreach t € (0,+00).

TaEOREM 2.10. Let f, g be two self-maps of the metric space (X,d) and let F,G: X — X be
two maps from X into CB(X) such that

(1) (f,F) and (g,G) satisfy the common property (EA);

(2) forallx + yin X,

H(Fx,Gy) < ¢(max {d(fx,gy),d(fx,Fx),d(gy,Gy),d(fx,Gy),d(gy,Fx)}). (2.36)

If fX and gX are closed subsets of X, then

(a) f and F have a coincidence point;

(b) g and G have a coincidence point;

(¢) f and F have a common fixed point provided that f is F-weakly commuting at v
and f fv = fv forve C(f,F);

(d) g and G have a common fixed point provided that g is G-weakly commuting at v
and ggv = gv for v € C(g,G);

(e) f, g F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since (f,F) and (g,G) satisfy the common property (EA), there exist two se-
quences {X,}, {y,} in X and u € X, A,B € CB(X) such that

lim Fx, = A, lim Gy, = B,
n— o0 n— oo

(2.37)
lim fx, = limgy, =u€AnB.

By virtue of fX and gX being closed, we have u = fv and u = gw for some v,w € X.
We claim that fv € Fv and gw € Gw. Indeed, condition (2) implies that

H (Fxn, Gw) < ¢(max {d(fxn,gw),d(fxn,Fxn),d(gw,Gw),d( fx,,Gw),d(gw,Fxn)}).

(2.38)
Taking the limit as n — oo, we obtain
H(A,Gw) < ¢(max{d(fv,gw),d(fv,A),d(gw,Gw),d(fv,Gw),d(gw,A)})
< p(d(gw,Gw)) < d(gw,Gw). 239
Since gw = fv € A, it follows from the definition of Hausdorff metric that
d(gw,Gw) < H(A,Gw) < d(gw,Gw), (2.40)

which implies that gw € Gw.
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On the other hand, by condition (2) again, we have

H(Fv,Gyy) < @(max{d(fv,gyu),d(fv,Fv),d(gyn,Gyu),d(fv,Gyn),d(gyn,FV)}).

(2.41)

Similarly, we obtain

d(fv,Fv) < H(Fv,B) <d(fv,Fv). (2.42)

Hence fv € Fv. Thus f and F have a coincidence point v, g and G have a coincidence
point w. This ends the proofs of part (a) and part (b). The rest of proof is similar to the

argument of Theorem 2.3. U
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