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A collection {S1,S2, . . .} of nonempty sets is called a complementing system of subsets
for a set X of nonnegative integers if every element of X can be uniquely expressed as
a sum of elements of the sets S1,S2, . . . . We present a complete characterization of all
complementing systems of subsets for the set of the first n nonnegative integers as well as
an explicit enumeration formula.

1. Introduction

Let S = {S1,S2, . . .} represent a collection of nonempty sets of nonnegative integers in
which each member contains the integer 0. Then S is called a complementing system of
subsets for X ⊆ {0,1, . . .} if every x ∈ X can be uniquely represented as x = s1 + s2 + ···
with si ∈ Si. We will also write X = S1 ⊕ S2 ⊕ ··· and, when necessary, refer to X as the
direct sum of the Si.

We will denote the set of all complementing systems for X by CS(X). Then {X} ∈
CS(X) �= ∅.

If there is a positive integer k such that X = S1 ⊕ ··· ⊕ Sk, then {S1, . . . ,Sk} will be
called a k-complementing system of subsets, or a complementing k-tuple, for X .

Denote the set of all complementing k-tuples for X by CS(k,X).
We will address the problem of characterizing all S∈ CS(k,Nn), where Nn = {0,1, . . . ,

n− 1}. The corresponding more general problem for CS(N) was solved by de Bruijn
[2], where N= {0,1, . . .}. Long [4] has given a complete solution for CS(2,Nn). Since the
appearance of Long’s paper, no progress seems to have been made to solve the problem
for k > 2. Tijdeman [6] gives a survey of the evolution of this problem and related work.

In Section 2, we give an alternative proof of Long’s theorem (Theorem 2.5) followed
in Section 3 by its natural extension (Theorem 3.2) and a general structure theorem for
CS(k,Nn) (Theorem 3.5).

A complementing system S = {S1,S2, . . .} ∈ CS(N) will be called usual if for any se-
quence g1,g2, . . . (gi > 1) of integers, each Si ∈ S is given by

Si =
{

0,mi−1,2mi−1, . . . ,
(
gi− 1

)
mi−1

}
, (1.1)
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where m0 = 1, mi = g1g2 ···gi (i > 0). We will refer to the collection {S1,S2, . . . ,Si, . . .} as
the complementing system corresponding to (or generated by) the integers g1,g2, . . . .

We will denote the set of all usual complementing systems of subsets forN by UCS(N).
For positive integers a and c, the set U = {0,a,2a, . . . , (c− 1)a} will be called a simplex,
written additively (after Tijdeman [6]). We will adopt the notation U = [a,c]. Thus, by
(1.1) every member of a usual complementing system is a simplex.

We can derive usual complementing systems of subsets for Nn from the following
adaptation of a theorem of Long [4].

Theorem 1.1. Let n = g1g2 ···gk (gi > 1) represent any factorization of n as a product of
positive integers and let the sets S1, . . . ,Sk be defined as in (1.1). Then S = {S1, . . . ,Sk} ∈
UCS(Nn).

Proof. If k = 1, then n= g1 and {S1, . . . ,Sk} = {S1} which is clearly a complementing sys-
tem. For k = 2 we have n = g1g2 and, by (1.1), i = 1 gives S1 = [1,g2]. If i = 2, then for
{S1,S2} to form a complementing pair for Nn, the least nonzero element of S2 must be
g1 (since S1 already contains 0,1, . . . ,g1− 1) and thenceforth elements of S2 must be con-
secutively spaced g1 apart. This shows that S2 has the form S2 = [g1,g2]. Assume that the
proposition holds for some fixed integer v and consider the system {S1, . . . ,Sv,Sv+1}. By
the inductive hypothesis, {S1, . . . ,Sv} ∈UCS([1,mv]). So {S1, . . . ,Sv,Sv+1} is equivalent to
{[1,mv],Sv+1}; and the case for k = 2 shows that Sv+1 has the required form. Hence the
theorem is proved by mathematical induction. �
Remarks 1.2. (i) The proof of Theorem 1.1 also shows that if the sequence g1,g2, . . . gener-
ates {S1,S2, . . .}∈UCS(N), then every partial sequence g1,g2, . . . ,gk generates {S1, . . . ,Sk} ∈
UCS(Nn) with n= g1g2 ···gk such that {S1, . . . ,Sk}∪ {Sk+1, . . .} = {S1,S2, . . .}, where Si is
given by (1.1), for i = 1, . . . ,k, and for i > k by Sk+ j = [mk+ j−1,gk+ j] ( j = 1,2, . . .). More-
over, {S1, . . . ,Sk} ⊂ {S1, . . . ,Sk+1} for every k.

(ii) It is clear that S = {S1, . . . ,Sk} ∈ UCS(Nn) implies that aS = {aS1, . . . ,aSk} ∈
aUCS(Nn) (1 ≤ a <∞), where aH = {ah | h ∈ H}. It is natural to define aUCS(Nn) =
UCS(aNn). Usual complementing systems for finite sets will be taken to include all of the
systems aS= {aS1, . . . ,aSk} ∈UCS(aNn) (a≥ 1).

(iii) It follows from Theorem 1.1 that |UCS(Nn)| = f (n), where f (n) denotes the
number of ordered factorizations of n. A simple bijection is as follows: given any ordered
factorization n= g1g2 ···gk, then g1g2 ···gk ↔ {[m0,g1],[m1,g2], . . . , [mk−1,gk]}.

f (n) can be computed using the recurrence [5, 7]

f (n)=
∑
d|n

f (d), (1.2)

where f (1)= 1 and the sum is over divisors d of n, d < n.
If n has the prime factorization n= px1

1 px2
2 ··· pxrr , 1 < p1 < ··· < pr , xi ≥ 1, then f (n)

can also be found using MacMahon’s formula [7]:

f (n)=
Ω(n)∑
k=1

k−1∑
i=0

(−1)i
(
k
i

) r∏
j=1

(
xj + k− i− 1

xj

)
, (1.3)

where Ω(n)= x1 + ···+ xr .
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We deduce at once that |UCS(k,Nn)| = f (n,k), where UCS(k,Nn) denotes the set of
usual k-complementing systems of subsets for Nn and f (n,k) is the number of ordered
k-factorizations of n.

It follows from (1.3) (see also [1, page 59]) that f (n,k) can be computed from the
formula

f (n,k)=
k−1∑
i=0

(−1)i
(
k
i

) r∏
j=1

(
xj + k− i− 1

xj

)
. (1.4)

Definition 1.3. Let S = {S1,S2, . . .} ∈ CS(N). Then every partition p of the set {1,2, . . .}
of subscripts of members of S induces a T = {T1,T2, . . .} ∈ CS(N) with the property that
each Tj = Sj1 ⊕ Sj2 ⊕ ··· where j1, j2, . . . belong to a certain class of p. de Bruijn [2] is
followed and T is called a degeneration of S. When necessary, T is also said to be induced
by the partition or shape p, without reference to S.

The following fundamental classification theorem [2] for complementing systems of
subsets for N, which also applies to Nn via Theorem 1.1, is crucial to all what follows.

Theorem 1.4 (N. G. de Bruijn). Every complementing system of subsets forN is the degen-
eration of a usual complementing system.

Other relevant properties of usual complementing systems are summarized in the next
theorem.

Theorem 1.5. (i) A collection of sets S is a usual complementing system for a finite set if and
only if S∈ CS(X), where X is a simplex.

(ii) Let X = [a1,c1]⊕ ··· ⊕ [ak,ck]. Then X is a simplex if and only if the [ai,ci] are
consecutive simplices of some S∈UCS(N).

(iii) The simplex [a,n] (a≥ 1, n≥ 2) is the direct sum of more than one simplex if and
only if n is composite.

(iv) For S∈UCS(N) to be the degeneration of T ∈UCS(N), where S �= T , it is necessary
and sufficient that some member of S has composite cardinality.

Proof. (i) If S is a usual complementing system for a finite set, then S is generated by a fi-
nite sequence of positive integers. Thus by Theorem 1.1 and Remark 1.2(i), S∈UCS(X),
where X = [1,n] for some n. Conversely, if S∈ CS([a,n]), where a and n are positive inte-
gers, then by Remark 1.2(ii) we can form {H1, . . . ,Hv} ∈UCS([1,n]). Thus S= {aH1, . . . ,
aHv}.

(ii) This follows from Remark 1.2(i) and part (i).
(iii) By Theorem 1.1, {S1,S2} ∈ UCS(Nn)⇔ n = |S1 ⊕ S2| = |S1||S2|; Nn = [1,n] and

[a,n]= a[1,n].
(iv) This follows from part (iii). �

Remark and Definition 1.6. Theorem 1.5(iv) implies that a fixed P ∈ CS(N) is not the
nontrivial degeneration of any T ∈UCS(N) if and only if each Pi ∈ P has prime cardinal-
ity, that is, P is a usual complementing system generated by a sequence of prime numbers.
P will be called a prime complementing system of subsets for N.
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Hence we have the following.

Corollary 1.7. Every usual complementing system of subsets is a degeneration of a prime
complementing system.

We can now state the following complementing subset-systems analogue of the fun-
damental theorem of arithmetic.

Theorem 1.8. Every complementing system of subsets is a degeneration of a prime comple-
menting system.

Proof. The theorem follows by transitivity from Theorem 1.4 and Corollary 1.7. �

Remarks 1.9. (i) Denote the set of prime complementing systems for N by PCS(N). It is
clear that there are strict inclusions: PCS(N)⊂UCS(N)⊂ CS(N).

(ii) Theorem 1.8 guarantees that to generate all complementing systems via degenera-
tions it suffices to use the minimal generating set PCS(N) rather than the whole UCS(N).
The same remark applies to the finite case for the corresponding sets PCS(Nn), CS(Nn),
and UCS(Nn). UCS(Nn)= PCS(Nn) if and only if n is prime.

(iii) If n has the prime factorization n= px1
1 px2

2 ··· pxrr , 1 < p1 < ··· < pr , xi ≥ 1, then
it follows from Remark 1.2(iii) that |PNS(Nn)| = (x1 + ···+ xr)!/x1!···xr !.

2. Complementing pairs and the theorem of C. T. Long

Let SP(m) denote the set of all partitions of {1,2, . . . ,m} so that |SP(m)| = B(m), the mth
Bell number. Also let SP(m,k) denote the set of all k-partitions of {1,2, . . . ,m} so that
|SP(m,k)| = s2(m,k), a Stirling number of the second kind.

An element p of SP(m,k) will be called nonconsecutive if no member of p contains a
pair of consecutive integers. Let NC(m,k) denote the set of all nonconsecutive k-
partitions of {1,2, . . . ,m}, and let nc(m,k)= |NC(m,k)|.
Theorem 2.1. nc(m,k) satisfies the following recurrence:

nc(m,k)= nc(m− 1,k− 1) + (k− 1)nc(m− 1,k), 1≤ k ≤m,

nc(1,1)= 1, nc(2,1)= 0.
(2.1)

Proof. To find a p ∈NC(m,k) (m> k > 2), we can either insert the singleton {m} into any
p ∈NC(m− 1,k− 1) or put the integer m into any k− 1 members of a p ∈NC(m− 1,k)
which do not contain m− 1. There are clearly (k − 1)nc(m− 1,k) possibilities in the
second case. Hence the main result follows. The boundary conditions are clear from the
definition and imply that nc(m,1)= 0 (m �= 1), nc(m,m)= 1. �

Remark 2.2. A close observation of Table 2.1 shows that the nc(m,k) are just Stirling
numbers of the second kind which have been shifted one step to the right and one step
down, that is,

s2(m,k)= nc(m+ 1,k+ 1), k ≥ 0. (2.2)
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Table 2.1. Values of nc(m,k) for m= 1, . . . ,10, k = 1, . . . ,10.

m\k 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0

3 0 1 1 0 0 0 0 0 0 0

4 0 1 3 1 0 0 0 0 0 0

5 0 1 7 6 1 0 0 0 0 0

6 0 1 15 25 10 1 0 0 0 0

7 0 1 31 90 65 15 1 0 0 0

8 0 1 63 301 350 140 21 1 0 0

9 0 1 127 966 1701 1050 266 28 1 0

10 0 1 255 3025 7770 6951 2646 462 36 1

Thus

nc(m,k)= s2(m− 1,k− 1), 1≤ k ≤m. (2.3)

Indeed nc(1,1)= 1= s2(0,0), nc(2,1)= 0= s2(1,0), and nc(2,2)= 1= s2(1,1).
Assume that (2.3) holds for all positive integers up to m. Then Theorem 2.1 gives

nc(m+ 1,k)= nc(m,k− 1) + (k− 1) ·nc(m,k)

= s2(m− 1,k− 2) + (k− 1)s2(m− 1,k− 1)= s2(m,k− 1),
(2.4)

where the second equality follows from the inductive hypothesis and the last equality fol-
lows from the usual recurrence for s2(m,k). Thus (2.3) is also established by mathematical
induction.

Hence the standard formula [3, page 251]

s2(m,k)=
k∑
i=1

(−1)k−iim

k!


k
i


 (m, k ≥ 0) (2.5)

yields the following corresponding formula:

nc(m,k)=
k−1∑
c=1

(−1)k−1−ccm−1

(k− 1)!


k− 1

c


 , nc(1,1)= 1, 1≤ k ≤m. (2.6)

If b∗(m) denotes the total number of nonconsecutive partitions of {1,2, . . . ,m}, then
it is easily deduced from (2.3) that

b∗(m)= B(m− 1), m≥ 1, (2.7)

where B(m) denotes the mth Bell number.

Lemma 2.3. nc(m,2)= 1, m> 1.
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Proof. This follows from (2.6) or, more completely, from the proof of Theorem 2.1. �

Notation 2.4. Given any S∈ CS(Nn), let Degen(S) denote the set of all degenerations of S.
Let Degen(S,k) denote the set of all k-degenerations of S and let degen(S,k) be an element
of Degen(S,k). Theorem 1.4 says that CS(Nn)=∪(Degen(S), S∈UCS(Nn)), and implies
that CS(k,Nn)=∪(Degen(S,k), S∈UCS(Nn) and |S| ≥ k).

It is now straightforward to deduce the following characterization theorem [4, Theo-
rems 1 and 2] for complementing pairs for Nn.

Theorem 2.5 (C. T. Long). (i) {A,B} ∈ CS(2,Nn) (n ≥ 2) if and only if there exists a
sequence g1,g2, . . . ,gv of integers corresponding to the factorization n = g1 ···gv of n such
that A and B are sets of all finite sums of the form

a=
�(v−1)/2�∑

i=0

x2im2i, b =
�(v−2)/2�∑

i=0

x2i+1m2i+1, (2.8)

respectively, with m0 = 1, mi = g1g2 ···gi, and 0≤ xi < mi+1.
(ii) |CS(2,Nn)| = f (n)− 1, where f (n) is the number of ordered factorizations of n.

Proof. (i) This follows from the fact that the unique shape p = {{1,3, . . .},{2,4, . . .}} given
by Lemma 2.3 induces degen(S,2)= {S1⊕ S3⊕···⊕ S[(v−1)/2], S2⊕ S4⊕···⊕ S[(v−2)/2]}
for every S = {S1, . . . ,Sv} ∈ UCS(Nn), v = 2,3, . . . ,Ω(n). For a fixed S = {S1, . . . ,Sv}, any
other partition q induces degen(S,2) if and only if {u,u+ 2, . . . ,x,x+ 1, . . .} ∈ q(u∈ {1,2})
if and only if Sx ⊕ Sx+1 is a simplex by Theorem 1.5(ii) if and only if there exists some
T ∈UCS(Nn) such that v > |T| ≥ 2 and degen(S,2)= degen(T ,2) such that degen(T ,2)
is induced by p. Thus the action of p on each S ∈ UCS(Nn) with |S| > 1 contributes a
unique member to CS(2,Nn).

(ii) In Remark 1.2(iii) we showed that |UCS(Nn)|= f (n) and, by part (i), |Degen(S,2)|
= 1 for every S∈UCS(Nn) with |S| > 1. �

Remark 2.6. In his original theorem, Long [4] states the result of Theorem 2.5(ii) as
|CS(2,Nn)| = f (n) such that {Nn} = {{0},Nn} ∈ CS(2,Nn). However, the strict form
given above is more suitable for generalization as shown below.

3. Essential complementing k-tuples and a structure theorem

Definition 3.1. Let S∈UCS(v,Nn), v = 1,2, . . . ,Ω(n). Then any T ∈ CS(k,Nn) (1 < k ≤ v)
will be called essential if it is induced by the partition p of {1,2, . . . ,v} into a complete set
of residue classes, modulo k. p is also referred to as essential.

Denote the set of essential k-complementing systems of subsets for Nn by ECS(k,Nn).
Then ECS(k,Nn) �= ∅ since {S1, . . . ,Sk} ∈ ECS(k,Nn). Thus UCS(Nn)⊆ ECS(Nn).

We have the following natural extension of Long’s theorem.

Theorem 3.2. (i) {T1, . . . ,Tk} ∈ ECS(k,Nn) (n ≥ 2) if and only if there exists a sequence
g1,g2, . . . ,gv of integers corresponding to the factorization n= g1 ···gv (k ≤ v) of n such that
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each set Ti consists of all finite sums of the form

ti =
∑
j≥0

xk j+imk j+i, (3.1)

where m0 = 1, mi = g1g2 ···gi, and 0≤ xi < mi+1, 1≤ i≤ k.

(ii) |ECS(k,Nn)| =∑Ω(n)
i=k f (n, i), where f (n,k) is the number of ordered k-factorizations

of n.

Proof. (i) For each k and essential partition p of {1, . . . ,v | v ≥ k} there is an injective
degeneration map

dgn(p) :
{
S∈UCS

(
Nn
) | |S| ≥ k

}−→ CS
(
k,Nn

)
. (3.2)

Indeed dgn(p)(S) �= dgn(p)(H) ⇒ {Ti = ⊕Sr | r ≡ i(modk)} �= {Ti = ⊕Hr | r ≡
i(modk)} ⇒ S �=H . Hence dgn(p) is a well-defined mapping. The injectivity of dgn(p)
is easily established by following the above implications backward (see also the statement
immediately following (3.4) below).

The image of dgn(p) is clearly ECS(k,Nn). We see that the restriction of dgn(p) to
UCS(k,Nn) is the identity map.

(ii) By part (i) and Remark 1.2(iii) we have

∣∣ECS
(
k,Nn

)∣∣= ∣∣UCS
(
k,Nn

)∣∣+
∣∣ECS

(
k,Nn

)−UCS
(
k,Nn

)∣∣
= f (n,k) +

∑
i>k

f (n, i). (3.3)

�

We next define the class vector of a set partition [8].

Definitions 3.3. The class vector of a k-partition of {1, . . . ,v} is the v-vector (e1, . . . ,ev) in
which ei ∈ {1, . . . ,k} and ei belongs to class i for each i.

For example the partition {{1,7},{2,3,5},{4,6}} ∈ SP(7,3) is represented by the class
vector (1,2,2,3,2,3,1).

Thus if (e1, . . . ,ew) represents p ∈NC(w,k), then ei �= ei+1 for all i,1≤ i < w; but if w ≤
v and (e1, . . . ,ev) represents q ∈ SP(v,k)−NC(w,k), then ei = ei+1 = ··· = ei+c (0 < c < v)
for some i.

Thus for 1≤ k ≤w ≤ v, the contraction map

F : SP(v,k)−→NC(w,k) (3.4)

can be defined by setting F(q)= q if q ∈NC(w,k) and F(q)= p if p is represented by the
class vector obtained from the class vector hq of q by replacing every sequence of equal
and consecutive components ei,ei+1, . . . ,ei+c ∈ hq with the common value ei.

It follows that the restriction of F to NC(w,k) is the identity map.
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Since every essential partition p (represented by the class vector {1,2, . . . ,k,1,2, . . . ,k,1,
2, . . .}) also belongs to NC(w,k), the last sentence implies that the map (3.2) is indeed
injective.

Remark 3.4. Theorem 2.5 also follows from Theorem 3.2 by setting k = 2 and noting
that the degeneration map (3.2) is then surjective. To see this let T ∈ CS(2,Nn). Then by
Theorem 1.4 there exists S= {S1, . . . ,Sv} ∈UCS(Nn), v ≥ 2, and a map dgn(q) such that
dgn(q)(S,k)= T . But Lemma 2.3 shows that |NC(w,2)| = 1 which, by (3.4), implies that
q = p. Hence (3.2) is surjective.

We now turn to the problem of characterizing all complementing k-tuples for Nn.
First we observe that it is not possible to state a simple rule for all T ∈ CS(k,Nn), k > 2, as
appeared in (3.1) since the sets in a general p ∈ SP(v,k) (v > k) can be constituted quite
arbitrarily.

Theorem 1.4 implies that every T ∈ CS(k,Nn) is induced by some p ∈ SP(v,k), k ≤ v.
But operationally we need only NC(v,k), and not SP(v,k), to determine all of CS(k,Nn),
using (3.2), in view of the surjective contraction map (3.4) and the fact that Theorem
1.5(ii) enables the automatic coupling of consecutive simplices thus making all partitions
in SP(v,k)−NC(v,k) redundant. Hence the partitions in NC(v,k) effectively account for
all S∈ CS(k,Nn), for each v ≥ k.

Since nc(k,k)= 1 and the singleton NC(k,k) contains the essential partition, it follows
from (3.2) that every map dgn(q) in which q ∈NC(v,k) is not the essential partition is
necessarily defined on the reduced domain {S ∈ UCS(Nn) | |S| > k}. Hence for each v
(1 ≤ v ≤ Ω(n)), there exist precisely nc(v,k) maps, dgn(p), with p ∈ NC(v,k); and so
by Remark 1.2(iii), there is a total of f (n,v)nc(v,k) contributions to CS(k,Nn). Thus
|CS(k,Nn)|may be found by summing f (n,v)nc(v,k) over v.

Hence we obtain the following structure theorem for CS(k,Nn).

Theorem 3.5. (i) {T1,T2, . . . ,Tk} ∈ CS(k,Nn) (n≥ 2) if and only if there exists a sequence
g1,g2, . . . ,gv of integers corresponding to the factorization n= g1 ···gv of n such that each set
Ti is given by all finite sums of the form

ti =
∑
j≥0

xjmj , j ∈ pi ∈ p ∈NC(v,k), v ≥ k, (3.5)

where m0 = 1, mi = g1g2 ···gi, 0≤ xi < mi+1, pi ⊂ {1,2, . . . ,v}, and NC(v,k) is the set of all
k-partitions of {1,2, . . . ,v} in which no member of each partition contains a pair of consecu-
tive integers.

(ii)

∣∣CS
(
k,Nn

)∣∣= Ω(n)∑
v=k

f (n,v)nc(v,k)=
Ω(n)∑
v=k

f (n,v)s2(v− 1,k− 1), (3.6)

where the second equality follows from (2.3) and f (n,k) denotes the number of ordered k-
factorizations of n.
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Remark 3.6. (i) Theorem 3.2 follows from Theorem 3.5 by noting that the essential par-
tition p is the unique member of NC(v,k) such that dgn(p) is defined on the maximal
domain {S∈UCS(Nn) | |S| ≥ k} which forces nc(v,k)= 1 for all v ≥ k.

(ii) We observe that any fixed S ∈UCS(k,Nn) gives rise, via degenerations, to a total
of B(k) complementing systems T ∈ CS(Nn). In particular, if n is a prime power, then a
single Bell number counts the whole of CS(Nn) in view of Theorem 1.8, that is,

∣∣CS
(
Nn
)∣∣= B(r), n= pr . (3.7)

(iii) Furthermore, n = pr has a unique ordered prime factorization, which implies
that PCS(Nn) = {S = {[1, p],[p, p], . . . , [pr−1, p]}}. By Theorem 1.5(ii) each T ∈UCS(k,
Nn) is a degeneration of S induced by a partition of the set {1, . . . ,r} into subsets of
consecutive integers. For each k (1 ≤ k ≤ r) this corresponds to the process of putting
k − 1 slashes into any of the r − 1 possible spaces between r identical symbols. Thus
|UCS(k,Nn)| is counted by the number of k-compositions of r [1, page 55]. Hence

∣∣UCS
(
k,Nn

)∣∣=

r− 1

k− 1


 , n= pr (r > 0),

=⇒ ∣∣UCS
(
Nn
)∣∣= 2r−1.

(3.8)

(iv) Thus the function B(m)− 2m−1, m = 1,2, . . . [5] also counts the complementing
systems of subsets for {0,1, . . . , pm− 1} in which at least one member is not a simplex
or, equivalently, the partitions of the set {1,2, . . . ,m} in which at least one class of each
partition contains a pair of nonconsecutive integers.

(v) Formula (3.7) can be generalized by summing |CS(k,Nn)| over k, 1 ≤ k ≤Ω(n),
to give

∣∣CS
(
Nn
)∣∣= Ω(n)∑

v=1

f (n,v)b∗(v)=
Ω(n)∑
v=1

f (n,v)B(v− 1), (3.9)

where b∗(v)=∑Ω(n)
k=1 nc(v,k) and the second equality follows from (2.7).

(vi) Taking (3.9) in conjunction with (3.7) we have B(r)=∑r
v=1 f (n,v)B(v− 1), where

n= pr ; and since f (n,v)= ( r−1
v−1

)
from (3.8), we obtain the familiar recurrence for the Bell

numbers:

B(r)=
r∑

v=1


r− 1

v− 1


B(v− 1)=

r−1∑
v=0


r− 1

v


B(v). (3.10)

The distributions of |CS(N32)| and |CS(N60)| are provided as examples in Tables 3.1
and 3.2.
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Table 3.1. Distribution of |CS(N32)|.

k 1 2 3 4 5 Sum∣∣UCS
(
k,N32

)∣∣ 1 4 6 4 1 16∣∣CS
(
k,N32

)−UCS
(
k,N32

)∣∣ 0 11 19 6 0 36∣∣CS
(
k,N32

)∣∣ 1 15 25 10 1 52

Table 3.2. Distribution of |CS(N60)|.

k 1 2 3 4 Sum∣∣UCS
(
k,N60

)∣∣ 1 10 21 12 44∣∣CS
(
k,N60

)−UCS
(
k,N60

)∣∣ 0 33 36 0 69∣∣CS
(
k,N60

)∣∣ 1 43 57 12 113
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