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We consider a stationary equation modeling the slip flow in a hard disk drive. A result of
existence is proven under different hypotheses than in the literature. The uniqueness of
solution followed from monotonicity techniques for nonlinear PDEs.

1. Introduction

The Ky Fan’s inequality is one of the most important results in nonlinear analysis. Indeed,
many practical and theoretical results, from various fields, are derived from it. Therefore,
its application attracted many researchers (see [2, 3]) and considerable results have been
obtained in this field of research. In this paper, we apply the theory related to the Ky Fan’s
inequality to treat the second-order slip equation modeling the performance of the air
bearing operating system.

The normalized second-order slip Reynolds equation considered in this paper is the
following (see [8, 9]):

∇
[(

H3P + 6KH2 + 6K2 H

P

)
∇P

]
=Λ ·∇(PH), (1.1)

where the air bearing normalized pressure P = P(x) is the unknown of the problem, the
normalized film thickness between the head and the magnetic disk is given by H =H(x),
K > 0 is the so-called Knudsen number, Λ is the bearing vector, and Ω⊆R2 is the region
(with smooth boundary ∂Ω) where the upper and lower bodies are in proximity.

In [4], Chipot and Luskin studied an analogous equation without the 6K2(H/P) term,
they proved existence and uniqueness by using a change of the unknown function which
leads to a new problem in which the nonlinearity appears in the convection term and
they used directly a fixed point argument to the problem. Due to the 6K2(H/P) term, this
proof does not work in our case to prove existence (see Remark 3.3), which motivated us
to look for applying other techniques than those of the fixed point. This has been made
in our work [1] where the existence of solutions was proved under some conditions on
the data of the problem. In this paper, we continue our investigation concerning the same
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problem, we prove an existence result with different hypotheses on the data, and we also
prove the uniqueness of solution using some monotonicity arguments.

2. Existence of solutions

We consider the following problem (�)

(�)

∇
[(

H3P + 6KH2 + 6K2 H

P

)
∇P

]
=Λ ·∇(PH) in Ω,

P =Ψ in ∂Ω.
(2.1)

We assume that the functionsH : Ω→R and Ψ : ∂Ω→R satisfy the following hypotheses:

H ∈W1,∞(Ω),

H is bounded in W1,∞(Ω), 0 < a≤H(x)≤ b a.e. in Ω.
(2.2)

Ψ is the restriction to ∂Ω of a smooth function Ψ̃ defined on Ω, such that

‖∇Ψ̃‖L2(Ω) ≤M. (2.3)

In order to give a variational formulation of (�), we introduce the following set:

V := {u∈H1(Ω)∩L∞(Ω) | ∃α > 0 such that u(x)≥ α a.e. in Ω
}
. (2.4)

In the following, we will use the notation

Br := {u∈H1(Ω) | u(x)≥ r a.e. in Ω
}
. (2.5)

Throughout this paper, ‖ · ‖ denotes the norm in L2(Ω).

Definition 2.1. We say that P is a weak solution of (�) if P− Ψ̃∈H1
0 (Ω), P ∈V , and∫

Ω

(
H3P + 6KH2 + 6K2 H

P

)
∇P ·∇vdx =

∫
Ω
PHΛ ·∇vdx, ∀v ∈H1

0 (Ω). (2.6)

In order to prove the existence, we need the following technical estimation; first we
consider the following inequality:∫

Ω

(
H3P + 6KH2 + 6K2 H

P

)
∇P ·∇(P− Ψ̃)dx ≤

∫
Ω
PHΛ ·∇(P− Ψ̃)dx. (2.7)

Proposition 2.2. If P is a solution of (2.7) such that P ∈ Br1 and r1 satisfies the following
hypothesis:

r1a
3 + 6Ka2 > Cp|Λ|+Cpb

3‖∇Ψ̃‖, (2.8)

(where Cp is the constant of Poincaré [7] and |Λ| is the Euclidean norm of Λ), then

‖∇P‖ ≤ C. (2.9)
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Proof. We put z = P− Ψ̃∈H1
0 (Ω), the inequality (2.7) can be written as

∫
Ω

(
H3P + 6KH2 + 6K2 H

P

)
∇(z+ Ψ̃) ·∇zdx ≤

∫
Ω

(z+ Ψ̃)HΛ ·∇zdx,

∫
Ω

(
H3P + 6KH2)∇z2dx+

∫
Ω

6K2 H

P
∇z2dx

≤
∫
Ω
HΛ · z∇zdx+

∫
Ω
HΛ · Ψ̃∇zdx−

∫
Ω
H3P∇Ψ̃ ·∇zdx

−
∫
Ω

6KH2∇Ψ̃ ·∇zdx−
∫
Ω

6K2 H

P
∇Ψ̃ ·∇zdx,

(2.10)

then

(
a3r1 + 6Ka2)‖∇z‖2 ≤ Cp|Λ|b‖∇z‖2 + |Λ|b‖Ψ̃‖‖∇z‖

+Cpb
3‖∇Ψ̃‖‖∇z‖2 + b3‖Ψ̃‖‖∇Ψ̃‖‖∇z‖

+ 6Kb2‖∇Ψ̃‖‖∇z‖+ 6K2 b

r1
‖∇Ψ̃‖‖∇z‖,

(2.11)

that is,

(
a3r1 + 6Ka2−Cp|Λ|b− b3‖∇Ψ̃‖)‖∇z‖

≤ |Λ|b‖Ψ̃‖+ b3‖Ψ̃‖‖∇Ψ̃‖+ 6Kb2‖∇Ψ̃‖+ 6K2 b

r1
‖∇Ψ̃‖.

(2.12)

However, if the hypothesis (2.8) is verified, therefore ‖∇z‖ ≤ Cte, with Cte = (|Λ|b‖Ψ̃‖+
b3‖Ψ̃‖‖∇Ψ̃‖+6Kb2‖∇Ψ̃‖+ 6K2(b/r1)‖∇Ψ̃‖)/(a3r1 + 6Ka2−Cp|Λ|b− b3‖∇Ψ̃‖). It fol-
lows that

‖∇P‖ ≤ ‖∇z‖+‖∇Ψ̃‖ ≤ C. (2.13)

�

Remark 2.3. Independently of data, we can always find r1 such that

r1 >
Cp|Λ|+Cpb3‖∇Ψ̃‖− 6Ka2

a3
. (2.14)

We prove the existence of a weak solution of (�) by using a change of the unknown
function [1]. Let us write for P > 0 that

(
H3P + 6KH2 + 6K2 H

P

)
∇P =H3∇

(
P2

2
+ 6K

P

H
+ 6K2 log(P)

H2

)
+ 6KPH∇H + 12K2 log(P)∇H.

(2.15)
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The new unknown function will be

u= P2

2
+ 6K

P

H
+ 6K2 log(P)

H2
. (2.16)

We consider the function g :]0,+∞[→R,

g(t)= t2

2
+ 6Kt+ 6K2 log(t). (2.17)

It is easy to see that g is an increasing and bijective function. We deduce from the above
definition that

P = 1
H
κ(x,u), (2.18)

with

κ(x,u)= g−1(H2u+ 6K2 logH
)
. (2.19)

Our initial problem (�) becomes in u

(
�u
)

∇· (H3∇u)=∇· [(Λ− 6K∇H)κ(x,u)− 12K2 logκ(x,u)∇H]

+∇· [12K2 logH∇H] in Ω,

u=Ψu = g(Ψ) in ∂Ω.

(2.20)

We set Ψ̃u = g(Ψ̃).

Definition 2.4. u is a weak solution of (�u) if u− Ψ̃u ∈H1
0 (Ω) and

∫
Ω
H3∇u ·∇vdx =

∫
Ω

[
(Λ− 6K∇H)κ(x,u)− 12K2 logκ(x,u)∇H
+ 12K2 logH∇H] ·∇vdx, ∀v ∈H1

0 (Ω).
(2.21)

The equivalence between (�) and (�u) is given by the following lemma.

Lemma 2.5. u is a weak solution of (�u) if and only if P, given by (2.18), is a weak solution
of (�).

Proof. It is clear from (2.15) that the two variational formulas are equivalent. And from
(2.16), it is obvious that if P ∈V , then u∈H1(Ω). It remains to show that if u is a solution
of (�u), then P ∈ V . From (2.18), we have that P ∈H1(Ω) since (g−1)′ is bounded. On
the other hand, we have classically u∈ L∞(Ω). From (2.18), we deduce that P belongs to
L∞(Ω) with P bounded away from 0, and the proof is ended. �
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We consider the following two inequalities:∫
Ω

(
H3P + 6KH2 + 6K2 H

P

)
∇P ·∇(P− Ψ̃)dx ≤

∫
Ω
PHΛ ·∇(P− Ψ̃)dx, (2.22)∫

Ω
H3∇w ·∇wdx ≤

∫
Ω

(Λ− 6K∇H)κ1(x,w) ·∇wdx−
∫
Ω

12K2 logκ1(x,w)∇H ·∇wdx

+
∫
Ω

12K2 logH∇H ·∇wdx−
∫
Ω
H3∇Ψ̃u ·∇wdx,

(2.23)

with κ1 such that κ1(x,w̃)= κ(x,w̃+ Ψ̃u) and w = u− Ψ̃u.
Due to the fact that for all s∈R,

0≤ dg−1

ds
(s)= g−1(s)(

g−1
)2

(s) + 6Kg−1(s) + 6K2
≤ 1

6K
,

0≤ d

ds
log

(
g−1(s)

)= 1(
g−1

)2
(s) + 6Kg−1(s) + 6K2

≤ 1
6K2

,

(2.24)

we have the following result.

Lemma 2.6. Let w be a solution of the inequality (2.23) such that w+ Ψ̃u ≥ r2 with r2 verifies
the condition

r2 ≥ g
(
r1b
)− 6K2 log(a)

a2
, (2.25)

then ‖ ∇w ‖≤ C1 with C1 a positive constant.

Proof. Let w be a solution of (2.23), we make the inverse change of variable, we deduce
that P verifies (2.22). Since r2 satisfies (2.25), then P ∈ Br1 with r1 verifies the condition
(2.8). And according to Proposition 2.2, there exists a constant C such that ‖∇P‖ ≤ C,
while using (2.18), (2.19), and (2.24), we get ‖∇w‖ ≤ C1. �

Now we give the main result of this section.

Theorem 2.7. If

(H)


Ψ̃u ≥ g(r1b)− 6K2 log(a)

a2
a.e. in Ω,

with r1 verifies the hypothesis (2.8),
(2.26)

then there exists at least one weak solution for (�).

For the proof, we need the following proposition which is a generalization of the Ky
Fan’s lemma.

Notation 2.8. We denote by �(X) the family of all nonempty finite subsets of X and by
�(X ,x0) all elements of �(X) containing x0. We will denote by conv(A) the convex hull

of A, by A
X

the closure of A in X , and by intX(A) the interior of A in X .
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Definition 2.9 [6]. Σ : X→2E is said to be a KKM-application if for allA∈�(X), conv(A)⊆⋃
χ∈A

Σ(χ).

Proposition 2.10 [5]. Let X be a nonempty convex subset ⊆ E (a topological vector space)
and Σ : X → 2E is a KKM-application, suppose that there exists x0 ∈ X such that

(i) Σ(x0)∩X
X

is compact on X ;
(ii) for all A∈�(X ,x0), for all χ ∈ conv(A), Σ(χ)∩ conv(A) is closed in conv(A);

(iii) for all A∈�(X ,x0), X ∩ (
⋂

χ∈conv(A)
Σ(χ))

X ∩ conv(A)= (
⋂

χ∈conv(A)
Σ(χ))∩ conv(A).

Then
⋂
χ∈X

Σ(χ) 
= ∅.

First, we will prove the following lemma which will be useful thereafter.

Lemma 2.11. The following application

Π(χ,·) : H1
0 (Ω)−→R,

q �−→
∫
Ω
H3∇q ·∇(q− χ)dx−

∫
Ω
F(q) ·∇(q− χ)dx,

(2.27)

with

F(q) := (Λ− 6K∇H)κ1(x,q)− 12K2 logκ1(x,q)∇H + 12K2 logH∇H −H3∇Ψ̃u,

(2.28)

is weakly lower semicontinuous.

Proof. Let qn weakly converges to q in H1
0 (Ω), then there exists a subsequence qnk such

that qnk tends to q in L2(Ω) and ∇qnk weakly converges to ∇q in L2(Ω), therefore while
using Lebesgue’s dominated convergence theorem and estimation (2.24), we obtain∫

Ω
a2F

(
qnk
) ·∇(qnk − χ

)
dx =

∫
Ω
a2F

(
qnk
) ·∇qnk dx−

∫
Ω
a2F

(
qnk
) ·∇χdx

−→
∫
Ω
a2F(q) ·∇qdx−

∫
Ω
a2F(q) ·∇χdx.

(2.29)

For the other term of Π(χ,qnk ), we have∫
Ω
H3∇qnk ·∇

(
qnk − χ

)
dx =

∫
Ω
H3∇qnk ·∇qnk dx−

∫
Ω
H3∇qnk ·∇χdx. (2.30)

As∇qnk weakly converges to∇q in L2(Ω), then
∫
ΩH

3∇qnk ·∇χdx converges to
∫
ΩH

3∇q ·
∇χdx. Moreover, as the application T : L2(Ω)→R, z �→ ∫

ΩH
3z2dx is convex and weakly

semicontinuous in L2(Ω), then lim(H3((∇qnk)2 − (∇q)2)) ≥ 0. From where the result
follows. �

Proof of Theorem 2.7. According to Lemma 2.5, it is sufficient to prove the existence of a
solution for the following problem.
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Find w ∈H1
0 (Ω) such that∫

Ω
H3∇w ·∇vdx =

∫
Ω

(Λ− 6K∇H)κ1(x,w) ·∇vdx−
∫
Ω

12K2 logκ1(x,w)∇H ·∇vdx

+
∫
Ω

12K2 logH∇H ·∇vdx−
∫
Ω
H3∇Ψ̃u ·∇vdx ∀v ∈H1

0 (Ω),

(2.31)
with κ1(x,w)= κ(x,w+ Ψ̃u).

Let us consider the space E :=H1
0 (Ω) endowed of its weak topology and

X := {ϕ∈ E | ‖∇ϕ‖ ≤ C1 + γ, ϕ+ Ψ̃u ≥ r2 a.e. in Ω
}

, (2.32)

with γ a constant sufficiently large, r2 satisfies Ψ̃u ≥ r2 ≥ (g(r1b)− 6K2 log(a))/(a2) a.e. in
Ω, and C1 is the constant given in Lemma 2.6.

Let us consider, for every χ ∈ X , the set

Σ(χ) :=
{
q ∈ X :

∫
Ω
H3∇q ·∇(q− χ)dx−

∫
Ω
F(q) ·∇(q− χ)dx ≤ 0

}
. (2.33)

It is obvious that q satisfies (2.31) if and only if q ∈ Σ(χ) for each χ ∈ E. So, the proof of
the existence of solutions is thus reduced to prove that⋂

χ∈E
Σ(χ) 
= ∅. (2.34)

We will show that conditions of Proposition 2.10 are satisfied.
Since the application χ→Π(χ,q) is linear, then Σ is a KKM-application.
For condition (i), it is sufficient to take

K := X = {ϕ∈ E | ‖∇ϕ‖ ≤ C1 + γ, ϕ+ Ψ̃u ≥ r2 a.e. in Ω
}
. (2.35)

From Lemma 2.11, we have that q �→Π(χ,q) is weakly lower semicontinuous in H1
0 (Ω),

so conditions (ii) and (iii) are satisfied.
It follows by application of Proposition 2.10 that there exists w ∈ K such that

Π(χ,w)≤ 0 ∀χ ∈ X. (2.36)

In particular, for χ = 0 ∈ X (due to (H)), we get that w satisfies the inequality (2.23),
which implies, according to Lemma 2.6, that ‖∇w‖ ≤ C1, and by following w + εσ ∈
int(X) for all σ in �+(Ω) and ε appropriately chosen.

Now, we put in (2.36) χ =w+ εσ + γξ ∈ X for any ξ ∈H1
0 (Ω) and convenient value of

γ, then we get∫
Ω
H3∇w ·∇(− (εσ + γξ)

)
dx−

∫
Ω
F(w) ·∇(− (εσ + γξ)

)
dx ≤ 0 ∀ξ ∈H1

0 (Ω),

(2.37)
and if we take ξ = (1/γ)(−εσ +φ) with φ ∈H1

0 (Ω), we deduce that w verifies (2.31), and
the proof is ended. �

By following, we have solutions for the problems (�u) and (�).
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3. Uniqueness of solutions

Next, we give a uniqueness result for the problem (�) using a general monotonicity for a
class of semilinear elliptic problems.

First, we prove a uniqueness and monotonicity result for weak solutions to the prob-
lem (�u).

Lemma 3.1. There exists uniqueness among all weak solutions to problem (�u). Further,
suppose that ui is a weak solution to (�u) corresponding to the boundary data Ψi

u, i= 1,2.
If Ψ1

u ≥Ψ2
u a.e. on ∂Ω, then u1 ≥ u2 a.e. in Ω.

Proof. We assume that Ψ1
u ≥Ψ2

u a.e. on ∂Ω, and we put

l(x,u)= (Λ− 6K∇H)κ(x,u)− 12K2 logκ(x,u)∇H + 12K2 logH∇H. (3.1)

First, we prove that for all ξ ∈ C∞(Ω) and ξ > 0, we have∫
[u2−u1>0]

H3(x)∇(u2−u1
) ·∇ξ − (l(x,u2

)− l
(
x,u1

)) ·∇ξ dx ≤ 0, (3.2)

where

[
u2−u1 > 0

]= {x ∈Ω | u2(x)−u1(x) > 0
}
. (3.3)

So, we consider for ε > 0 that

ζ =min

((
u2−u1

)+

ε
,ξ

)
, (3.4)

where

ϕ+(x)=max
(
ϕ(x),0

)
. (3.5)

Note that ζ ∈H1
0 (Ω) since ζ(x)= 0 for x ∈ ∂Ω.

It follows from subtracting (2.21) with u= u2 from (2.21) with u= u1 that∫
Ω
H3(x)∇(u2−u1

) ·∇ζ − (l(x,u2
)− l

(
x,u1

)) ·∇ζ dx = 0, (3.6)

which for ζ given by (3.4) is equivalent to∫
[u2−u1>εξ]

H3(x)∇(u2−u1
) ·∇ξ − (l(x,u2

)− l
(
x,u1

)) ·∇ξ dx
+

1
ε

∫
[0<u2−u1≤εξ]

H3(x)
∣∣∇(u2−u1

)∣∣2
dx

− 1
ε

∫
[0<u2−u1≤εξ]

(
l
(
x,u2

)− l
(
x,u1

)) ·∇(u2−u1
)
dx = 0,

(3.7)
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where [
u2−u1 > εξ

]= {x ∈Ω | u2(x)−u1(x) > εξ
}

,[
0 < u2−u1 ≤ εξ

]= {x ∈Ω | 0 < u2(x)−u1(x)≤ εξ},
(3.8)

we estimate the last integral above by

I =
∫

[0<u2−u1≤εξ]

(
l
(
x,u2

)− l
(
x,u1

)) ·∇(u2−u1
)
dx

≤
(∫

[0<u2−u1≤εξ]
H−3(x)

∣∣l(x,u2
)− l

(
x,u1

)∣∣2
dx

)1/2

×
(∫

[0<u2−u1≤εξ]
H3(x)

∣∣∇(u2−u1
)∣∣2

dx

)1/2

≤ 1
4

∫
[0<u2−u1≤εξ]

H−3(x)
∣∣l(x,u2

)− l
(
x,u1

)∣∣2
dx

+
∫

[0<u2−u1≤εξ]
H3(x)

∣∣∇(u2−u1
)∣∣2

dx.

(3.9)

Due to fact that for all s∈R,

0≤ dg−1

ds
(s)= g−1(s)(

g−1
)2

(s) + 6Kg−1(s) + 6K2
≤ 1

6K
,

0≤ d

ds
log

(
g−1(s)

)= 1(
g−1

)2
(s) + 6Kg−1(s) + 6K2

≤ 1
6K2

,

(3.10)

and H ∈W1,∞(Ω), and the inequality
√
A+

√
B ≥√A+B, it is easy to check that

∃M > 0,
∣∣l(x,u1

)− l
(
x,u2

)∣∣2 ≤M
∣∣u1−u2

∣∣, ∀x ∈Ω, u2 ∈R, (3.11)

we have also

H3(x)≥ a3 > 0 a.e. x ∈Ω, (3.12)

using the estimate (3.9) in (3.7), we obtain from (3.11) and (3.12)∫
[u2−u1>εξ]

H3(x)∇(u2−u1
) ·∇ξ − (l(x,u2

)− l
(
x,u1

)) ·∇ξ dx
≤ 1

4ε

∫
[0<u2−u1≤εξ]

H−3(x)
∣∣l(x,u2

)− l
(
x,u1

)∣∣2
dx ≤ Mmaxξ

4a3

∫
[0<u2−u1≤εξ]

dx.

(3.13)
Now the measure of the set [0 < u2 − u1 ≤ εξ] goes to zero as ε→ 0. Thus, the estimate
(3.2) follows from (3.13).

Now, we set V = (V1,V2) = (−(Λ2 − 6K∇2H), (Λ1 − 6K∇1H)), and s > 0. We then
set

ξ
(
x1,x2

)=W − exp
(
s
(
V1x1 +V2x2

))
, (3.14)
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where W is a constant chosen large enough so that ξ > 0. If we set ξ from (3.14) in (3.2),
we obtain∫

[u2−u1>0]
H3(x)∇(u2−u1

) ·∇ξ + 12K2( logκ
(
x,u2

)− logκ
(
x,u1

))∇H ·∇ξ dx ≤ 0,

(3.15)
since (Λ− 6K∇H) ·∇ξ = 0 for all x ∈Ω. Now it follows from integration by parts that∫

[u2−u1>0]
H3(x)∇(u2−u1

) ·∇ξ dx = ∫
Ω
H3(x)∇(u2−u1

)+ ·∇ξ dx

=−
∫
Ω

(
u2−u1

)+∇· (H3(x)∇ξ)dx
=−

∫
[u2−u1>0]

(
u2−u1

)∇· (H3(x)∇ξ)dx,

(3.16)

so from (3.15), we obtain∫
[u2−u1>0]

(
u2−u1

)[−∇· (H3(x)∇ξ)+ j(x)∇H ·∇ξ]dx ≤ 0, (3.17)

where

j(x)=


12K2

(
logκ

(
x,u2(x)

)− logκ
(
x,u1(x)

))
u2(x)−u1(x)

if u2(x) 
= u1(x),

0 if u2(x)= u1(x),

(3.18)

if K = 0, then j = 0. Further, for K 
= 0,

∣∣ logκ
(
x,u2

)− logκ
(
x,u1

)∣∣≤ C

K2

∣∣u2−u1
∣∣. (3.19)

Thus, j ∈ L∞(Ω). Also we have that

−∇· (H3(x)∇ξ)+ j(x)∇H ·∇ξ
=−H3(x)�ξ −∇H3 ·∇ξ + j(x)∇H ·∇ξ
= exp

(
s
(
V1x1 +V2x2

))[
H3(x)s2V 2 +

(∇H3 ·V)s− j(x)
(∇H ·V)s], (3.20)

hence, it follows that for s sufficiently large,

−∇· (H3(x)∇ξ)+ j(x)∇H ·∇ξ > 0 (3.21)

for all x ∈Ω. Inequalities (3.17) and (3.21) thus allow us to conclude that (u2−u1)+ = 0
a.e. This concludes the proof of the lemma. �

Proposition 3.2. There exists uniqueness among all weak solutions to the problem (�).

Proof. The proof is an obvious consequence of Lemmas 2.5 and 3.1. �
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Remark 3.3. Due to the estimation

0≤ d

ds
log

(
g−1(s)

)= 1(
g−1

)2
(s) + 6Kg−1(s) + 6K2

≤ 1
6K2

, (3.22)

the behaviour of the function s→ log(g−1(s)) is linear for s→−∞. So, we cannot obtain
an estimation for logκ(x,u) of the type | logκ(x,u)| ≤ c|u|τ with 0 < τ < 1 which is the
key in [4] for the proof of the existence. For this reason, we opted for another technique
to prove the existence of solutions for (�u).
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