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We provide improved versions of the statements and proofs of the two main theorems of
Hilton (2001), together with the statement and proof of a new theorem on the localization
of nilpotent groups.

1. Introduction

In a paper [1] published in 2001, we modified a famous theorem of Issai Schur, which
asserts that if G is a group with center Z, such that G/Z is finite, then the commuta-
tor subgroup G′ = [G,G] is also finite. Our modification was twofold; in the first place,
we confined ourselves to nilpotent groups G, so that we could use effective localization
methods at an arbitrary family P of primes, and, second, we relativized the situation by
replacing G by a pair of groups (G,N), where N is a normal subgroup of G. Then Z was
replaced by the centralizer CG(N) of N in G, and [G,G] was replaced by [G,N].

We also considered in [1] a partial converse of Schur’s theorem and its modification. In
this partial converse, we showed that G/Z is finite if G′ is finite, provided that G is finitely
generated (fg). In talks the author has given on this topic, he has expressed the opinion
that the converse would not hold without some supplementary hypothesis. This remark
was taken up by Dr. Edwin Clark of the University of South Florida, who raised the ques-
tion on sci.math.research, and quickly received negative answers from Derek Holt and
Andreas Caronti, whose counterexamples were very similar, being infinite extraspecial p-
groups. Thus Holt considered a group G with generators xi, yi, i > 0, and z, subject to the
relations x

p
i = y

p
i = zp = 1, [xi,xj] = [yi, yj] = 1, and [xi, yi] = z, [xi, yj] = 1, i �= j, and

[z,xi] = [z, yi] = 1, for all i. Then Z = G′ = 〈z〉 is finite, but G/Z is infinite. The present
author is very grateful to Edwin Clark for providing this elucidation.

In Section 2, we provide improved versions of the proofs of the two main theorems of
[1], namely, if P is a family of primes with complementary family Q, then Theorems 2.1
and 2.3 hold.

It is a striking fact, not brought out in [1], that, whereas the proof of Theorem 2.1
leans heavily on the P-localization theory of nilpotent groups, the proof of Theorem 2.3
does not use localization methods.
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In Section 3, we prove a localization theorem which is closely related to the arguments
involved in proving Theorem 2.1.

We close the introduction by remarking that the assertions of Theorems 2.1 and 2.3
make good sense because, indeed, CG(N) is a normal subgroup of G. To see this, let x ∈
CG(N), y ∈G, z ∈N . We want to show that yxy−1 ∈ CG(N). Now

yxy−1zyx−1y−1 = yx
(
y−1zy

)
x−1y−1. (1.1)

But y−1zy ∈N since N is normal in G, so x(y−1zy)x−1 = y−1zy, and yxy−1zyx−1y−1 =
yx(y−1zy)x−1y−1 = y(y−1zy)y−1 = z, whence yxy−1 ∈ CG(N).

2. The main theorems

Theorem 2.1. If G/CG(N) is a Q-group, then [G,N] is a Q-group.

Proof. We P-localize. Of course e : G→ GP kills G/CG(N), a Q-group; but localization
preserves quotients, so

CG(N)P =GP. (2.1)

We next prove a general result on the localization of nilpotent groups (which, of course,
does not require the hypothesis of Theorem 2.1). We state it as a lemma.

Lemma 2.2. CGP (NP) is P-local, and CG(N)P ⊆ CGP (NP)⊆GP .

Proof of Lemma 2.2. We first prove that, if x ∈ CG(N), y ∈NP , then ex commutes with y.
For yq = ez for some Q-number q, with z ∈N . Thus (ex)yq(ex−1)= e(xzx−1)= ez = yq,
since x centralizes N . Since qth roots are unique in GP , (ex)y(ex−1)= y, as claimed.

We next prove that if u ∈ CG(N)P , then y commutes with u. For there exists a q-
number k such that uk = ex for x ∈ CG(N). Thus yuk y−1 = uk, whence, by the uniqueness
of kth roots in GP , yuy−1 = u, so y commutes with u.

Now, of course, u∈GP and u centralizes NP . Thus

CG(N)P ⊆ CGP (NP)⊆GP. (2.2)

It remains to prove that CGP (NP) is P-local. Let u ∈ CGP (NP) and let q be a Q-number.
Then u = vq, v ∈ GP , and, for all y ∈ NP , yuy−1 = u. Hence yvq y−1 = vq and, taking
unique qth roots in GP , yvy−1 = v, so that v ∈ CGP (NP), completing the proof of
Lemma 2.2. �

We revert to the proof of Theorem 2.1. From (2.1) and (2.2), we know that CGP (NP)=
GP , so that [GP ,NP] = 1. Thus the P-localization of [G,N] is trivial, so that [G,N] is a
Q-group, as claimed. �

We turn now to Theorem 2.3.

Theorem 2.3. If [G,N] is a Q-group of exponent m, then G/CG(N) is a Q-group of expo-
nent dividing mc−1, where nilG= c.
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Proof. We adopt the proof strategy of [1] up to the conclusion of [1, Lemma 2.3], which
asserts that, if a,b ∈ G, where bm = 1, nilG= c, and if b ∈ Γ jG, the jth term of the lower
central series of G, then

(ab)m
c− j = am

c− j
. (2.3)

(Here, by contrast with [1], we adopt the convention that Γ0(G)=G, Γi+1(G)= [G,Γi(G)],
i ≥ 0.) To complete the proof of Theorem 2.3, we consider the commutator [x, y] =
x−1y−1xy; x ∈G, y ∈N . By hypothesis, [x, y]m = 1 for some Q-number m, independent
of x and y. Then x[x, y]= y−1xy, so that by (2.3),

(
y−1xy

)mc−1 = xm
c−1

, (2.4)

since [x, y]∈ Γ1G. Thus

y−1xm
c−1
y = xm

c−1
, (2.5)

so that, for all x ∈ G, xm
c−1 ∈ CG(N). This completes the proof that G/CG(N) has expo-

nent dividing mc−1. But m is a Q-number so that G/CG(N) is a Q-group. �

Notice that no localization arguments have been used in the proof of Theorem 2.3.

3. A related theorem

In this section, we prove a theorem which is, in fact, a stronger form of [1, Theorem
2.4]. We consider the following commutative diagram of nilpotent groups and homo-
morphisms:

G
ϕ

α

H

β

G
ϕ

G

(3.1)

Theorem 3.1. Suppose, in (3.1), that ϕ is P-bijective and α, β are P-injective. Then ϕ is
P-bijective if and only if ϕ has the following property Π: for all x ∈ G such that ϕx ∈ imβ,
there exists a Q-number n such that xn ∈ imα.

Proof. We first remark that since ϕα is P-injective, βϕ is P-injective, so ϕ is P-injective,
with no reference to property Π. Thus we only have to prove that ϕ is P-surjective if and
only if ϕ has property Π.

Suppose that ϕ is P-surjective, and let x ∈ G with ϕx = βy, y ∈H . Then there exist a
Q-number m and an element z ∈G with ϕz = ym. Then

ϕxm = βym = βϕz = ϕαz. (3.2)

But ϕ is P-injective, so xm = (αz)u, where u� = 1 for some Q-number �. Suppose that
nilG= c. Then (see [1, Lemma 2.2]) xm�c = αz�

c
. However, m�c is a Q-number, so ϕ has

property Π.
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Suppose now, conversely, that ϕ has property Π and let y ∈ H . Then, since ϕ is P-
surjective, there exist a Q-number m and an element x ∈G such that

ϕx = βyn. (3.3)

Since ϕ has property Π, we infer that there is a Q-number � such that x� ∈ imα; that is to
say, x� = αz, for some z ∈G. Then

βyn� = ϕx� = ϕαz = βϕz. (3.4)

But β is P-injective, so yn� = (ϕz)v, where vk = 1, for some Q-number k. Suppose that
nilH = c. Then (again by [1, Lemma 2.2]) yn�k

c = ϕzk
c
. But n�kc is a Q-number, so ϕ is

P-surjective. �

Corollary 3.2. Under the hypotheses of Theorem 3.1, if α is P-surjective, then ϕ is P-
bijective.

Proof. For ϕ certainly has property Π since, for all x ∈G, there exists a Q-number n such
that xn ∈ imα. �

Note, finally, that under the hypotheses of Theorem 2.1 (or, of course, Theorem 2.3),
the diagram

CG(N)

e

G

e

CG(N)P GP

(3.5)

is a very special case of diagram (3.1).
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