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A variational method given by Ritz has been applied to the Zakharov equation to con-
struct an analytical solution. The solution of Zakharov equation gives a good description
of both linear and nonlinear evolutions of instabilities generated in waves due to modu-
lation. The spatially periodic trial function is chosen in the form of combination of Ja-
cobian elliptic functions with the dependence of its parameters subject to optimization.
This Zakharov equation is reduced to nonlinear Schrödinger equation in the static limit.

1. Introduction

The Zakharov equation [14] can be formulated as the envelope equation of a dispersive
wave system [12], which is almost monochromatic and highly nonlinear. The Zakharov
equation has various applications in physics in a theory of deep-water waves [8], com-
munication [6], and nonlinear pulse propagation in fibers [2]. In the static limit of the
field, the Zakharov equation is reduced to nonlinear Schrödinger equation [7].

The inverse scattering technique discovered by Zabusky and Kruskal [13] is a powerful
tool for exact solution of integrable equations, like the KdV equation and the nonlinear
Schrödinger equation. For nonintegrable equations, like the Zakharov equation, the Ritz
variational method may be used for approximative solution.

Anderson [2] first explains the nonlinear pulse propagation in optical fibers as gov-
erned by the nonlinear Schrödinger equation using variational approach. He used secant-
type trial function. But the main shortcoming of the use of trial function was the inabil-
ity to account for changes in pulse shape. Then he used Gaussian type of trial function
in which trial function amplitude, width, and frequency of the function may vary, but
the Gaussian shape was assumed inherently preserved. The Gaussian shape pulse [5]
Ψ(t,x) = A(x)exp[−t2/2a2x+ ibxt2] will reproduce the exact solution from variational
problem in linear limit.

2. Variational formulation of Zakharov equation

The Zakharov equations given by

iEt +Exx −nE = 0, ntt −nxx −|E|2xx = 0 (2.1)
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are the coupled partial differential equations. Here, E(x, t) is the slowly varying envelope
of the high-frequency field, and n is the density of the media or ions in media. These
Zakharov equations can be approximated by nonlinear Schrödinger equation [5, 4].

The Zakharov equation (2.1) can be formulated as the variational problem corre-
sponding to Lagrangian

L(t)=
∫ λ/2

−λ/2
℘(x, t)dx. (2.2)

Lagrangian ℘(x, t) is given by

℘(x, t)= i

2

[
E∗Et − c · c]−∣∣Ex∣∣2

+
1
2

[{
ut −

(
E ·E∗)}2−u2

x

]
, (2.3)

where

ut = n+ |E|2. (2.4)

The asterisks and c · c denote the complex conjugate, and the limit of integration is the
periodicity length λ, which will later be assumed as constant.

Now, first we will reproduce the Zakharov equations by using Euler-Lagrange equa-
tions:

∂℘
∂E
− d

dt

∂℘
∂Et

− d

dx

∂℘
∂Ex

= 0,

∂℘
∂u
− d

dt

∂℘
∂ut

− d

dx

∂℘
∂ux

= 0.
(2.5)

On substituting the values from (2.3) in (2.5), we obtain the Zakharov equation (2.1)
which shows that the selection of Lagrangian density (2.2) is compatible.

We employ the Ritz variational principle to the action integral S(t) = ∫L(t)dt with
respect to time-dependent parameters of the trial function which admits:

(1) the shape of an unmodulated wave with a sinusoidal disturbance,
(2) provide spatial periodicity of the Lagrangian with period λ.

So, these features are provided by [10, 11]

E(x, t)= A(t)
[
dn(z;β) +βcn(z;β)

]× exp
[
i
{
kz

α
+ ccos

(
2πz
αλ

)
+φ

}]
. (2.6)

The time-dependent functions, independent from one another, are A, β, c, φ, α, x0, and
k.

Here, dn(z;β) and cn(z;β) are the Jacobian elliptic functions for z = α(x − x0) and
α= 4K(β)/λ, and K(β) is the complete elliptic integral of first kind. For small parameters
β and c, one obtain from (2.6)

E(x, t)=A(t)
[
1 + (β+ ic)cosz

]× exp i
[
kz

α
+φ

]
. (2.7)

Equation (2.7) describes envelops of a finite amplitude wave with (wave number k)
slightly modulated by a plane wave with wave number α. We have seen that Zakharov
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equation is reduced to NLS equation in the static limit n=−|E|2 [7, 9]. So the total La-
grangian (2.3) can be written as

℘= ℘NLS +℘1, (2.8)

where

℘NLS = i

2

[
E∗Et − c · c]−∣∣Ex∣∣2

+
1
2

(
E ·E∗)2

. (2.9)

(Euler-Lagrange equation reproduces the NLS equation from ℘NLS) and

℘1 =−1
2

(
E∗E

)2
+

1
2

[{
ut −

(
E ·E∗)}2−ux

2
]

(2.10)

is the additional part. So the action integral for Zakharov equation becomes

S=
∫ (
℘NLS +℘1

)
dt. (2.11)

Now we assume trial function for ℘1 as

u= B(t)EE∗. (2.12)

Now we substitute our trial function in (2.2) after changing α(x− x0)= z and k(t)=
V/2. We get

L= α−1A2

[
ctI1 +

(
−φt − Vx0,t

2
+
V 2

4

)
I2− 4π2c2

λ2
I3

]
−αA2I4 +

1
2
α−1A4I5

+α−1A2

((
Bt − 1

)2

2
A2− 1

)
I5− B2

2
αA4I6,

(2.13)

where

I1 =
∫ 2k

−2k
dz
[
dn(z;β) +βcn(z;β)

]2
cos

(
πz

2K

)
= 2π2 sgn(β)

K sinh
(
πK ′ /2K

) ,

I2 =
∫ 2k

−2k
dz
[
dn(z;β) +βcn(z;β)

]2 = 4
[
2E−β

′2K
]= 4C1,

I3 =
∫ 2k

−2k
dz
[
dn(z;β) +βcn(z;β)

]2
sin2

(
πz

2K

)
= 2

[
2E−β

′2K − π2(
K sinh

(
πK ′ /2K)

)],

I4 =
∫ 2k

−2k
dz
[
d

dz

{
dn(z;β) +βcn(z;β)

}]2

= 4
3

[(
1 +β2)E− (1−β2)K]= 4C2

3
,

I5 =
∫ 2k

−2k
dz
[
dn(z;β) +βcn

(
z;β)

]4 = 4
3

[
8
(
1 +β2)E− (5 + 3β2)(1−β2)K]= 4C3

3
,

I6 =
∫ 2k

−2k
dz
[
d

dz

{
dn(z;β) +βcn(z;β)

}2
]2

= 4C4

3
.

(2.14)
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Here, assumptions α= 4K/λ and
(1) D =−2dE/d(β2)= (K −E)/β2 > 0,
(2) B =−2dK/d(β2)= (E−β

′2K)/(β2β
′2) > 0,

(3) C =−2dB/d(β2)= [(2−β)2K − 2E]/β4 > 0, β
′ = 1−β2,

are used to calculate above integrals. C1, C2, C3, and C4 are the quantities in fraction
and are the combination of complete elliptic integrals K , E, and their argument β. So the
action integral S becomes

S=
∫
Ldt

=
∫
dt
[
− λA2

K
C1

{
φt − V

2
x0t +

V 2

4
+

2π2c2

λ2

}
− π2λA2 sgnβct[

2K2 sinh
(
πK ′/2K

)]
+

2π4A2c2

λK2 sinh
(
πK ′/2K

) − 16KA2C2

3λ
+
λC3A4

(
Bt − 1

)2

6K
− 8B2KA4C4

3λ

]
.

(2.15)

The variable x0 is absent in the action integral except for the combination φ−Vx0/2,
and hence all trajectories x0(t) are equivalent provided that φ(t) is approximately shifted.

Now we proceed to study the variational equations for the parameters A, β, c, B, and
φ with the help of Euler-Lagrange equations. Then, our system of equations, which fol-
lows from action integral, consists of the following conservation laws and Euler-Lagrange
equations [1].

(1) Integrated variation ϕ equation (Plasmon number N conservation):

A2
[

2E
K
− (1−β2)]= N

λ
(where N is constant called Plasmon number). (2.16)

(2) The Hamiltonian H :

H − NV 2

4
=U +

c2

2M
+
λA4C3Bt

2

6K
+

8β2KA4C1

3
, (2.17)

where U = 16KA2C2/3λ− λA4C3/6K , and time-dependent mass

M =
(

λ

4π2

)[
N

λ
− π2A2{

K2 sinh
(
πK ′/K

)}]−1

. (2.18)

(3) Variation c equation:

∂Q

∂t
= c

M
, (2.19)

where Q, which plays the role of a generalized coordinate, is the amplitude of the
first Fourier mode of |E2|2 and

Q = πλA2 sgnβ
[2K2 sinh(πK ′/2K)]

. (2.20)
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Figure 3.1. Numerical solution to the Zakharov equations in static limit. The initial conditions are
A= 1, α= 1.2, β= c = 0.1, and V = 0.

(4) Variation A equation:

Nφt +Qct = NV 2

4
− c2

2M
− 16KA2C2

3λ
+
λC3A4

(
Bt − 1

)2

3K
− 32KA4C4

3λ
. (2.21)

(5) Variation B equation:

λC3A4Btt

3K
+

32KA4C4B

3λ
= 0. (2.22)

Equations (2.16) to (2.19) form a closed system, while (2.21) and (2.22) contribute to the
phase φ and parameter B only. The variational criterion either leaves these functions or
φ and B undetermined. The equation (2.16) to (2.19) may be solved by a single nonele-
mentary quadrature.

3. A direct numerical method

Zakharov equations

iEt +Exx −nE = 0,

ntt −nxx −|E|2xx = 0
(3.1)

can directly be solved by finite difference scheme [3], where E(x, t) is the slowly varying
envelope of the high-frequency field and is given by Es(x, t) = A(t)[1 + (β + ic)cosz]×
exp i[kz/α+ φ]. The initial conditions in static limit are A = 1, α = 1.2, β = c = 0.1, and
V = 0, α(x− x0)= z, x0 = 0. A specific Crank-Nicholson scheme of finite difference with
step length h= 0.4 in x, and l = 1 in t (time), is applied for first part, and a simple finite
difference scheme is used for second part of the equation with same step lengths. The
solution is given below.

Figure 3.2 shows the example that corresponds to H −NV 2/4 > U (β = 0). These re-
sults, with β = c = 0.1, can be compared with the outcome from the numerical integration
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Figure 3.2. Solution to the theoretical model (2.16)–(2.19). The initial conditions are A= 1, α= 1.2,
β = c = 0.1, V = 0, and ϕ= 0.

of Zakharov equations shown in Figure 3.1. In particular, the value of maximum fields
and the exchange of energy between the first two modes closely follows the variational
method.

4. Conclusion

We applied Ritz variational principle based on the Zakharov-Lagrangian to solve the Za-
kharov equation, which may be a model for both linear and nonlinear evolution of some
instabilities in a wave system or flow. Spatial variance of trial function was assumed a
priori, while time dependence of its parameters was subject to optimization. The crucial
point, finding an appropriate trial function, was solved by introducing the variability to
parameters of a stationary solution of the Zakharov equation. We chose the solution in
the form of a combination of Jacobian elliptic functions. The results of the theoretical
model compare well the numerical solution to Zakharov equation.
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