LOCAL EXTREMA IN RANDOM TREES
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The number of local maxima (resp., local minima) in a tree T € J,, rooted at r € [n] is
denoted by M,(T) (resp., by m,(T)). We find exact formulas as rational functions of n
for the expectation and variance of M;(T) and m,(T) when T € T, is chosen randomly
according to a uniform distribution. As a consequence, a.a.s. M;(T) and m,(T) belong
to a relatively small interval when T € 7.

1. Introduction

The extension of permutation statistics to labelled trees is the subject of a number of
articles. Generating functions for the number of labelled trees of several types according
to the number of ascents and descents are given in [4]. A functional equation satisfied
by the generating function for the number of labelled trees according to the number of
descents and leaves is given in [5]. Central and local limit theorems for the number of
ascents or of descents in uniformly random labelled trees are given in [1]. A functional
equation satisfied by the generating function for the number of labelled trees according
to the number of inversions is given in [7]. Related results are contained in [6]. A formula
for the expected number of inversions of a uniformly random labelled tree is given in [9].
Formulas for the expectation and variance of the number of inversions of a uniformly
random labelled tree are given in [2].

Local extrema (in the literature as local maxima and local minima; peaks and troughs;
collectively turning points; related to phases) in permutations have a long history; see
[10] and references there in. The examination of local maxima (equivalently, local min-
ima) in permutations is more recent. A recurrence relation and a generating function
for the number of permutations according to the number of local maxima are given in
[10]. A central limit theorem for the number of local maxima in a uniformly random
permutation also is given in [10]. In this note, we extend local extrema in permutations
to labelled trees and examine local maxima (equivalently, local minima) in uniformly
random labelled trees.

For n > 2, let 7, denote the set of trees with vertex set [n] := {1,...,n}. When T, T, €
Tn, Ty = T, if and only if Ty and T, have the same edge set. Let T € I, r € [n], and
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Table 1.1
k
T](T’l,k) = tn(n>k)

0 1 2 3 4

2 1 0 0 0 0

" 3 2 1 0 0 0
4 6 9 1 0 0

5 24 73 27 1 0

distinct i, j,k € [n]. We say T rooted at r has a local maximum at path ijk if and only if
j > i,k and the path in T from r to k contains the path ijk. Similarly, T rooted at r has
a local minimum at path ijk if and only if j < i,k and the path in T from r to k contains
the path ijk. Let M,(T) = M,,(T) (resp., m.(T) = m, ,(T)) denote the number of local
maxima (resp., local minima) of T € 7, rooted at r. Then M,(T),m,(T) € {0,...,n—2}.
Let T,(n,k) (resp., t-(n,k)) denote the number of trees in T, rooted at r with precisely
k local maxima (resp., k local minima). Then T,(n,k) = t,(n,k) = 0 for k ¢ {0,...,n— 2}
and ZZ;S T,(n,k) = ZZ;Z t.(n,k) = n"2. As with the other statistics extended to labelled
trees, roots ¥ = 1,1 are appropriate. The values of T (n,k) = t,(n,k) (see Lemma 2.1) are
givenin Table 1.1 for2<n<5and0<k <n-2.

We work in the probability space ), consisting of all trees in 7, where each tree is
chosen randomly according to a uniform distribution. Hence, Pr(T) = 1/n" 2 for T € T ,..
A property Q of trees in {J ,} holds asymptotically almost surely (a.a.s.) on {Q,} if and
only iflim,_. Pr(T € J, : T has property Q) — 1 as n — .

The parameters M, and m, are then random variables on (2, whose exact expectations
E(M,), E(m,) and variances 0*(M,), 0%(m,) we find as rational functions of n (r = 1,n).
From Theorem 2.5,

_2n’ =3n* —5n+6

E(My) = E(m,) = 2128,

5 4 3 2 (L1)
7n’> —20n* +75n° — 40n= — 322n+ 300
2(My) = o? = .
o (M) = o (m,) =
As a consequence, a.a.s. on {Q,},
E(M;) — w(n)o(M;) < My,m, < E(M;) + w(n)o (M), (1.2)

where w(n) — oo arbitrarily slowly as n — co. (See Corollary 2.6 for this and further re-
sults.)

We mention that should (M; — E(M;))/0(M;) 4 N(0,1), we could only conclude the
above inequality for M;, m, a.a.s. on {Q,}. Of course, asymptotic normality of M;, m,,
gives more information about the distribution of M;, m, than their a.a.s. properties.

Let N denote the nonnegative integers and let R denote the real numbers. The expec-
tation of a random variable X is denoted by E(X) and its variance by Var(X). We refer the
reader to Moon [8] for trees and Durrett [3] for probability.
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2. Results

We first show that local maxima in trees rooted at r and local minima in trees rooted at
n+ 1 — r are equidistributed.

Lemma 2.1. Forr € [n],
T, (n,k) = tyy1-r(n,k) (0<k<n-2). (2.1)

Proof. The bijection i — n+1—i (i € [n]) induces a bijection T € T, —» T’ € T ,,, where
T =~T'. Then r,...,i,j,k (with j >ik) is a pathin T ifand only if n+1—r,...,n+1—
iLbn+tl—jn+l—k(withn+1l-—j<n+1-i,n+1-k)isapathin7’. Hence, M,(T) =
Mu+1-r(T"). Consequently, T (n,k) = t,41-,(n,k) for0 <k <n-2. O

In view of Lemma 2.1, we consider only M;.
Let (x)g=x"=1(xeR)and (x)x=(x)---(x—k+1) (k=1,x € R). Forn € Nand
a,x € R, let

n

z}]i_ Pn(-x kz“ kx) Qna kZ: k+a)x,
k=0 =0 =0

Ru(x) = > (m)i(k+1)(k+7)x".

k=0

(2.2)

We require the following technical result which allows us to calculate the exact expecta-
tion and variance of M; as rational functions of n.

LEmMmA 2.2. Fornym—1€ N,

Py() = By (m), (2.3)

m)— B, (m), (2.4)
m

and forn—2,m—1€N,

Rn(l) = nr;—!n(n2 +8n+7)E,(m) —

m

= (2n+7)E,-1(m) + ——E,_2(m). (2.5)
m

Proof. (All derivatives are with respect to real x). First,

R i S Re (2.6)

n!
so that

P,(x) = n!x"E,(x71), (2.7)
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and hence

Pn(i) _ ;—!En(m). (2.8)

Next, (2.7) gives

and hence

Qpa(x) = xP;,(x) + aPy(x)

=nlx"(n+a)E,(x ) —nlx"'E,_ 1 (x71), (2.9)
Q”'“<l> - n_!(”+“)En(m) - n—!,lEn—l(m). (2.10)
m m" mn

Finally, (2.7) gives

and hence

Ri(
m

Ry (x) = x*P} (x) + 9xP},(x) + 7P, (x)
=nlx"(n*+8n+7)E,(x ") —nlx" 1 2n+7)E,_ (x7!) (2.11)

+nlx"2E, ,(x 1),

n! n!

n!
) = 84 T Ea ) — Bt () + B Ea(m). (2.12)
(|
CoRroLLARY 2.3. For j,n—1€Nwith0 < j<n,
1
Qn*j,j (;) =n. (2.13)

Proof. For0 < j <n— 1, our result follows from Lemma 2.2. For j = n, our result follows
from the definition of Q,; ;(x). O

We require the following result of Moon [8].

THEOREM 2.4 (Moon [8]). Let F be a forest with vertex set [n] having w components of

orders pi,..

> Po- Then the number of distinct trees in I, containing F is pn“"z, where

p=Dp1---Po-

We now give our main result. Here M, = M, ,,.

THEOREM 2.5. For Q,, (n>2),

hence,

2n® —3n2 —5n+6

EM,) = ,
(M) o
; a5 17 (2.14)

5y 20m% —39m° — 115n* +495n° — 1751 — 1266n + 1080

E(Ml)z >
180n4
> —20m* +75n° — 40n* — 322n +

02(M1)=Va1‘(M1)=7n On* +75n On” —322n 300. (2.15)

60n*
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Proof. The theorem can be seen to be true for 2 < n < 5 using Table 1.1. Assume n > 6. Let
Iy =1 j,k):1<k<i<j<n}, Lin=1{(j,k):1<i<k<j<n},and I, =I,; UIL,.
For (i,j,k) € I, and T € J, let

1, ijkisalocal maximum in T rooted at 1;
Xi,jo (T) = : (2.16)
0, otherwise;
hence,
M= > Xijk- (2.17)

(i,j,k)EL,

We remind the reader that ij, jk are always edges in a tree by using thick lines in our
diagrams.

Expectation of M. We consider the following two cases according to the path S of T from
1 through ijk. Only E(X(; jx)) # 0 need to be considered.
Case 1 (i #1). Here

. a=0
internal
vertices

There are (a+4)n"~%5 trees in I, containing a specific tree S by Theorem 2.4; there are
(n —4), specific trees containing a vertices between 1, i; and there are 2 ("gl) choices for
(i, j,k). Hence,

Z(n—4)aa;u4 = (n3;21)3 (2.18)

> E(Xijn) = (n_nl)s

(i,j.k)ELy a=0
14i

by Lemma 2.2.
Case 2 (i=1). Here

1=i k

There are 3n"~* trees in 7, containing a specific tree S by Theorem 2.4; and there are
(”;1) choices for (j,k). Hence,

3(” — 1)2
2nz

> E(Xujn) =

(L,j k)€l

(2.19)
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From (2.18), (2.19),

(n—1); 3(n—1), 2n*-3n>-5n+6

E(M,) = + = 2.20
(M) 3n2 2n? 6n2 ( )
Variance of M,. Here
2
Mf=< > X(n;xk)) =M+ > Kirsjisk) Xinyjoska)s (2.21)
(i,j,k) €I, ((i1,515k1)5 (2, j2rka) ) ELF

where L¥ = {((i1, j1,k1), (i2, jo k2)) € Ly X Iy 2 (in, ji, k1) # (i jarka) b

First, we describe how we calculate E(M?) — E(M,).

We first consider 3 - 2 = 6 cases according to #{i, j1,k1,i2, j2,k2} = 6, 5, or 4, and,
whether 1 & {i}, ji,ki,i2, j2,ka} or 1 € {iy, j1,k1,i2, ja,ka}. In each of these six cases, we
further partition as described below.

For ((i1, j1,k1), (i2, j2,k2)) € I}, we consider the possible subtrees S = S((;, j, k), (ir,jo.k2))
of [n] determined by the path from 1 to the second coordinate i, j,k, relative to the path
from 1 to the first coordinate i jiki. The possible subtrees 8" = S, ;. 1) i, j, k) are in-
cluded above by definition. Only E(X;, j, k,)X(ijuk,)) # 0 need to be considered. This
gives nine types of subtrees of [n] total among these six cases.

For the symmetric types 1, 3, 5, 7, and 9, S “looks like” §". We count the number tg
of trees T € I, containing S = S((i,,j, k,),(ir,j.k,)) and the number is of such ((iy, ji,k1),
(i2, j2,k2)). The product ists counts each tree T € I, containing S twice; once for S and
once for §'. For each such tree T, X(;, j, k) (T) X1y, jo. k) (T) = 1 = X(iy,jo. k) (T) X (i) o k) (T).

For the asymmetric types 2, 4, 6, and 8, S “looks different” than §’. We introduce sub-
EYPES ST, o) (k) A0 (G, o k) (i k) SO that T € Ty contains 8= S ) s, i ) i
and only if T contains &’ = S{(iz) ko), (i, jukn) Dote the different orders. We count the num-
ber ts: of trees T € J,, containing S% and the number ig- of such ((i1, j1,k1), (2, j2, k2)) for
z = x, y. The sum ig:fs +igr tsy counts each tree T € T, containing $* and S$”; once for §*
and once for §”. For each such tree T', X(;, j, k) (T)X(i,,jo.k0) (T) = 1 = X3y, jp o) (T) X iy j k) (T).

For each type, the above count(s) are divided by n"~? then simplified using Lemma 2.2
and Corollary 2.3. Summing over the types of a particular case i (1 < i < 6) gives

Z E(X(ihjl»kl)X(iz,jz,kz))' (2.22)

((ir,j15k1)5 (2, k2 ) ) €LY
case i

The sum over all six cases is then E(M?) — E(M).
In what follows, (n — 1) = E,_7(n) = 0 for n = 6 and E,,_o(n) =0 for n = 6,7,8 as
usual. All cases appear for n = 9.
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Case 3 (#{il)jl)kl)iZ)j2>k2} = 6) 1 ¢ {il)jl)kl)iZ)jZ)kZ})'

Type 1. Here
b=0 i J2 ka
internal
vertlces/
1 . 2"
Sllinjukouiz, k) * O O O O
x#i, 1k 1 X i jl ky
a=0
internal

vertices

There are (a+ b+ 7)n"~%"b=8 trees in T, containing a specific tree S! by Theorem 2.4;
there are (n — 7) .15 specific trees containing a vertices between 1, i; and b vertices between

X, ip; there are a+ 1 choices for x; and there are 2(";1) . 2(";4) such pairs ((i1, j1, k1),

(i2, j2,k2)). Observe that T contains S(l( k) for a, b, x if and only if T contains

i1, j1,k1), (12, j2s
S(l(iz,jz,kz),(il,jl,kl)) for a’, b’, x. Hence, (each such pair appears once)
(n—1)s (a+1)(a+b+7)
Z E(X(ihjl,kl)X(iz>j2,kz)) = 916 Z (7’1 - 7)a+bT
(i1, j1,k1)5(i2, j2,k2) ) ELY (a,b)eN?
T Type 1 0<a+b<n-7

a

_ (1= "i(n_ ) @”’Z”(n_a_mﬁbw
nﬂ

b
9ne a=0 b=0 n
(n—1)s g a+1
= -7
o uzo(n Ja= 3

o PR

In>
(n—1) 2(n-1)!
T ot 3pn2 Ener(n)
(2.23)
by Lemma 2.2, and Corollary 2.3.
Type 2. First subtypes 21, 25, 23 are
k,
J2
2 . N\
Sivjidinjnke)) * © C O O
ir# 1,0 1 X=1 i jl ki
azO:)ther

internal
vertices
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ks
22 . N //) O O
S((illeA)klA))(i2:j2:k2)) 1O ~ ~ ~ O
i2, o #1,i1 1 1 X =72 1 i kl
a=0 other
internal
vertices
23 . ) ) )
S juk) ok * O O=—0—0 O O O
is,faska #1501 1 15 J2 x= ky 11 1 ki
a=0 other
internal

vertices

In each of the subcases, we have replaced one of the a+ 1 edges uv between 1, i}, with
the path ux = i,v, uirx = jov or ui, jox = kv, where the rest of the path i j,k; is as in-
dicated. In each of these three subcases, there are (a+ 7)n"~%8 trees in 7, containing
a specific tree $*', §?2, $% by Theorem 2.4; there are (n — 7), specific trees containing a
other vertices between 1, i;; there are a + 1 choices for x, equivalently, uv; and there are

2(”’1) . 2(”;4) such pairs ((i1, j1, k1), (i2, j2,k2)). Next, subtype 24 is

3
iz j2 k2
L b=0
internal
vertices x
24 . O
Sk, (ijok)) * O O . O
x=i,j1 or ki 1 v o0 jl ky
a=0
internal

vertices

There are (a+b+7)n" %08 trees in 7, containing a specific tree $* by Theorem 2.4;
there are (n — 7) 445 specific trees containing a vertices between 1, 7; and b vertices between

X, i3 there are 3 choices for x = i}, ji, or ki; and there are 2(”?) . 2(”;4) such pairs
.o .o : 21200 : :
((i1>j1,k1), (i2, j2,k2)). Observe that T contains S((lﬁ,jlikl);(ibjbkz)) for a, x if and only if T

contains S?fiz, inko)y(injukny for @’ b’ x. Hence, (each such pair appears once)
Z E(X(il,jl,kl)X(iz,jz,kz))
((i15515k1), (i, o k2 ) €LY
T Type 2
-7
(n—1) | .~ (a+1)(a+7) a+b+7
=S (-7 T s S (e e
9n — ne N ne
a=0 (a,b)eN

0<a+b<n-7
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_ ”S—n:)é{zzz _7)a(a+1aa+7 "Zn 7)a "i a+:b+7}
= "3;6”6{(””"? (n—5)E,7(n) - ( )(2 ~7)E,_ g(n)+( 7> H(")?g
- n—l)s{Z(nnS )+4n_14}

= %En_g(m +(4n — 14)%

(2.24)

by Lemma 2.2 and Corollary 2.3. (The first 3 above is number of subcases and the second
3 is the number of choices for x.)
Summing (2.23), (2.24) gives the following equation:

E(Xi1,ju k) Xz joske) )
((i1,515k1)5 (2, forka ) ) ELE
#{i1,j1,k1502, 52,k } =6,1¢ {ir, jiok1si2, 20k b

(n—=1) 2(n—1)! 2(n—1)! (n—1)¢
- _ E, 24y dn— 14
In* 3nn—2 o)+ 3nn—2 s(n)+ (4n ) 3n® (2.25)
(n-1) 2§(n-1) (n—1)7 (n—1)s
= N — 2 —
Int 3 n® * no (2n=7) noé
_(n=1)
Int
Case 4 (#{iIleakl)iZ)j2>k2} = 5) 1 é {il>j1)kl7i2)j2)k2})-
Type 3. Here
ks
J2
3 . ~\
Stk * O —O—< O
1 i =1, J1 ki
a;O
internal

vertices

There are (a+6)n" %7 trees in I, containing a specific tree §* by Theorem 2.4; there are
(n — 6), specific trees containing a vertices between 1, i;; and there are 16 (" g1> such pairs
((i1> j1,k1), (i2, j2,k2)) (for 5 elements in {2,...,n}, there are 2 - 6 = 12 pairs with largest
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elements ji, j», and there are 2 - 2 = 4 pairs with j; > k; > j, or j» >k, > ji). Observe that
T .contains S, iikDs(injasky) if and only if T' contains Si ))- Hence, (each such
pair appears once)

i, j2,k2), (i1, j1,k1

2n—1)5 "L a+6 2(n-1)s
Z E(X(il‘jl‘kl)X(iZ:jZ;kZ)) = 1515 Z (n—06)a na = 1514
i,k (i, jorka) €L a=0
T Type 3
(2.26)
by Corollary 2.3.
Type 4. First subtypes 4,, 4, are
ka
J2
4 .

S(linsjikirlinisks)) * O I S e

N . o 1] Nn=n ki

a=0
internal
vertices
ks
J2
S42 . O O
((irsj15k1) (125 f2rka)) * V el
. . o1y J1 ki =i,
a=0
internal

vertices

In either subcase, there are (a+ 6)n""%7 trees in 7, containing a specific tree $*', $* by
Theorem 2.4; there are (n — 6), specific trees containing a vertices between 1, 7;; there
are 24(";) such pairs ((i1, j1,k1),(i2, j2,k2)) total (for 5 elements in {2,...,n}; there are
6+2 = 8 pairs with j, > i, = j; or j, >k, > i, = j; for 4;; there are 2 - 6 = 12 pairs with
largest elements j, j,; and there are 2 - 2 = 4 pairs with j; >i; > j, or j, >k > j; for 4;).
Next subtypes 43, 44 are

k>
43 . 7\ //) 7\
S juki ) (imink) * © D . O
1 . s = fi ki
a>0

internal
vertices
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44 . N\ ~ ~ ~\
S(Gijuk ok * O O : : O
. . )iy J2 h=k J1 ki
a=0
internal

vertices

In either subcase, there are (a + 6)n" %7 trees in J, containing a specific tree S*, S*
by Theorem 2.4; there are (n — 6), specific trees containing a vertices between 1, i,; and
there are 24(”;1> such pairs ((i1, j1,k1), (i2, j2,k2)) total (for 5 elements in {2,...,n}, there
are 6 +2 = 8 pairs with j; > i} = j, or j; > k; > i, = j, for 43; there are 2 - 6 = 12 pairs
with largest elements ji, j,, and there are 2 - 2 = 4 pairs with j, > i, > j; or ji >k; > j,
for 44). Observe that T contains S?fil,jl,kl),(iz,jz,kz)) ifand only if T contains S?Z¥2z’j2’k2))(i1)j1)kl))
for i = 1,2. Hence, (each such pair appears once)

2n—1)5 =8 +6 2(n-1)
%;(n_@aa _sn—1)s

EXjikn Xinjod)) = 5 a 5t

((irsj1skr)s(iasf25k2)) LY
T Type 4

(2.27)

by Corollary 2.3. (The number of subcases has been accounted for.) Summing (2.26),
(2.27) gives the following equation:

2(1’1—1)5 2(1’1—1)5 8(1’1—1)5
E(X(il’jl’kl)X(injZ)k2)) = 1514 + 574 = 1514

((i1,j15k1)5 (12, j25k2) ) ELY
#in, k1002, 2,k2 Y =5,1€ (i1, j1,k1,02,j2,ka }
(2.28)

Case 5 (#{i1, j1,k1,12, j2, k2 } = 4, 1 & {i1, j1, k1,12, j2, k2 }).
Type 5. Here

k,

O "/)O

ii=10  j1= ) ki
« y )
. a=0
internal
vertices

5 .
S((ibjbkl))(iZ;jZakz)) ' ?

There are (a+5)n" ¢ trees in 7, containing a specific tree S> by Theorem 2.4; there are
(n —5), specific trees containing a vertices between 1, i1; and there are 6(”;1) such pairs
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((i1> j1,k1), (i2, ja,k2)). Observe that T contains S?(il,jl,kl),(iz,jz,kz)) if and only if T contains

S(S(iz,jz,kz),(il,jl,k|))' Hence, (each such pair appears once)

-5
(n—1)4 < a+5  (n—1),
> EX k) Xnjnk)) = =5 z(n—S)a—na =0
((irsjrskr)(iasjaska)) LY a=0
#in,j1ok102, 2,k Y =4, 1€ (i1, j1,k1,02, 52,k )
(2.29)
by Corollary 2.3.
Case 6 (#{il)jlakl>i2)j2>k2} = 6) le {il>j1)k1)i2>j2)k3})'
Type 6. First subtypes 6, 6,, 65 are
k
j2
S61 . 7\ 7\ o
((i15j15k1)5(1,j2,k2)) ~
x=1=1 i Ji ki
a;O
internal
vertices
ka
62 . //) O O
Stk Lk O C O . O
l=i, x=j i j1 ki
u;O
internal
vertices
63 .
Stk Lk | Omm=C O O : O
1=1, J2 x=k i ) ki
a;O
internal
vertices

In each of these three subcases, there are (a+6)n" 977 trees in J, containing a spe-
cific tree S%, §%, §% by Theorem 2.4; there are (n — 6), specific trees containing a ver-

tices between x, i1; and there are (”;1) . 2(”;3) such pairs ((i1, j1,k1), (1,42, j2)). Next
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subtype 64 is

a=0
internal \
564 ' vertices x
((1,j1,k1)5(i2, j2ska))

x=1,j; ork;

1=1 Ji ki

There are (a+6)n"%7 trees in 7, containing a specific tree $* by Theorem 2.4; there
are (n — 6), specific trees containing a vertices between x, i,; there are 3 choices for x =

1, j1, or ki; and there are (”;1> . 2(";3) such pairs ((1, j1,k1), (iz, j2,k2)). Observe that T

. obia . . .6
contains S((‘flfj.l J(Ljask)) for @, x if and only if T contains S((, ;, k) i, ) for @ x. Hence,
(each such pair appears once)

E(X(ilsjl‘kl)X(iZy]lZ:kZ) )
((i1,j15k1)5 (2, f2 k) ) ELY

#{i1,j1,k1502,j2,k2} =6,1€ {i1,j1,k1,02,2,k2 }

(n—1)s (=8 +6 S +6 2.30
:”67155{3;(;1—6)(1‘1#1+3;0(n—6)a“ } (2.30)

ne

_(n=1)s
=

by Corollary 2.3. (The first 3 and second 3 above are the number of subcases, i.e., choices
for x.)

Case 7 (#1i1, j1, k1,12, jo, ko } = 5, 1 € {iy, ji, k1,2, o, k2 }).

Type 7. Here

ks

J2

7 .
(L ik (L) - O
=01 =1 Ji ki

There are 51" ° trees in J,, containing a specific tree §” by Theorem 2.4; and there are
(”;1) . (”;3> such pairs ((1, j1,k1),(1, j2,k2)). Observe that T contains 3(7(1,j1,k1),(1,j2,k2)) if

and only if T contains inko)(1,juky)) - Hence, (each such pair occurs once)

Lj1,

5(1’1 - 1)4

EX ik X)) = =

((1,j15k1),(1, jask2 ) ELE
T Type 7

(2.31)
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Type 8. First subtypes 8, 8, are
k>

J2

8 .
S((lhjl)kl)»(fz,]'z,kz)) . C I O
1=1 J1=1 ki

ks

J2

82 . 7\
Stk ik © O »
1=14 J1 ki=1

In either subcase, there are 51" trees in 7, containing a specific tree S, $8 by Theorem
2.4; and there are 8(";1> such pairs ((1, ji, k1), (iz, j2, k2)) total (for 4 elementsin {2,...,n},
there are 2+ 1 = 3 pairs with j, > j; = i, or j, >k, > i, = j; for 8;; and there are 2 +2 +
1 = 5 pairs with largest elements jj, j, or j, > k; > j; for 8,). Next subtypes 83, 84 are

ks
SS3 . C //) A~ O
(i1, j1,k1),(1,j2,k2)) ] ) ] -
1=1 Jo=1 J1 ki
St e O O O O
(i1, j1,k1),(1,j2,k2)) ] ) -
=1 ]2 ky =1, n ki

In either subcase, there are 51"~ trees in 7, containing a specific tree $%, $® by Theorem
2.4; and there are 8(";1> such pairs ((iy, j1, k1), (1, j2,k2)) total (for 4 elementsin {2,...,n},
there are 2+ 1 = 3 pairs with j; > j, =i or j; >k; > i, = j, for 83; and there are 2 +2 +
1 = 5 pairs with largest elements j;, j, or j; > k; > j, for 84). Observe that T contains
S?él,j1,k1),(iz,jz,kz)) if and only if T contains S?Ezz,jz,kz),(l,jl,kl)) for i = 1,2. Hence, (each such
pair occurs once)

5(1’! - 1)4 5(1’1 — 1)4 10(71 — 1)4
> EXGjk Xjok) = =5 7 =5 7 =5 (232)
((i1sj15k1) (i j2 k) ) ELE
T Type 8




Lane Clark 3881

(The number of subcases has been accounted for.) Summing (2.31), (2.32) gives the fol-
lowing equation:

> E(Xiy juk) Xz joska) )
((i1,515k1)5 (2 j2rka2) ) ELE
#li, jiokii, o,k Y =5,1€ (i1, jibkbi2, 52,k (233)
B 5(n—1), + 10(n—1)4 _ 55(n—1)4
C 4nt 3nt o 12mt

Case 8 (#{il)jl)kl)i21j27k2} = 4) le {il)jl)kl)iZ)jZ)kZ})-

Type 9. Here
ky
9 . /
SjnkLjk)) © O C O
l=i1=1 J1=)2 ki

There are 4n"~> trees in J,, containing a specific tree $° by Theorem 2.4; and there are

2(”;1> such pairs ((1, j1,k1),(1,j2,k2)). Observe that T contains S?(l,jl,kﬂ,(l,jz,kz)) if and

only if T contains S?(l, ko) (1,juky)) - Hence, (each such pair occurs once)

Lj1
4(n - 1)3

Ewe (2.34)

E(X(ilel)kl)X(i2’j2’k2)) =
(i1, j1ok1), (25 j2 k) ) ELY
#{i1,j1,k1502, )2,k Y =4,1€{i1,]1,k1,5i2,2,k2 }

After all this preparation, we are now able to find the second moment and the variance
of M;. From (2.21), summing (2.20), (2.25), (2.28)—(2.30), (2.33), (2.34) gives

2n3—3n2—5n+6+ (n—1) 8n—1)5 (n—1),

E(M?) =
(M7) 612 9nt 1504 4nd
(1’1—1)5 55(1’1—1)4 4(1’1— 1)3
+ + + 2.35
n4 12n4 3n3 ( )
20m° — 391 — 115n* +495n> — 17517 — 12661 + 1080
a 180n4 '

Hence, (2.20), (2.35) give

7n° — 20n* + 7513 — 40n? — 3221+ 300

O'2(M1) =Val‘(M1) = 6014

(2.36)
]

As a consequence of Theorem 2.5, a.a.s. on {Q,}, M,(T) and m,(T) belong to a rela-
tively small interval for T € 7 ,,. Again, M, = M ,.

COROLLARY 2.6. For {Q,},

Pr(|M; —E(M)| <w(n)o(M;)) — 1 asn— oo, (2.37)



3882 Local extrema in random trees
where w(n) — oo arbitarily slowly as n — oo. Hence, a.a.s. on {Q,},

g —w(n)n® < M, < g +w(n)n’s, (2.38)

where w(n) — oo arbitarily slowly as n — .

Proof. By Chebyshev’s inequality,

PI‘(|M1 —E(M1)| > w(n)a(Ml)) <

< — — 00, 2.
o2 (n) 0 asn o0 (2.39)

provided that w(n) — oo as n — oo. This implies our result. O
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