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Rational arithmetic functions are arithmetic functions of the form g1∗···∗ gr ∗ h−1
1 ∗

···∗h−1
s , where gi, hj are completely multiplicative functions and ∗ denotes the Dirich-

let convolution. Four aspects of these functions are studied. First, some characterizations
of such functions are established; second, possible Busche-Ramanujan-type identities
are investigated; third, binomial-type identities are derived; and finally, properties of the
Kesava Menon norm of such functions are proved.

1. Introduction

By an arithmetic function we mean a complex-valued function whose domain is the set
of positive integers N. We define the addition and the Dirichlet convolution of two arith-
metic functions f and g, respectively, by

( f + g)(n)= f (n) + g(n), ( f ∗ g)(n)=
∑
i j=n

f (i)g( j). (1.1)

It is well known (see, e.g., [1, 5, 13, 19, 21]) that the set (�,+,∗) of all arithmetic func-
tions is a unique factorization domain with the arithmetic function

I(n)=

1 if n= 1,

0 otherwise,
(1.2)

being its convolution identity.
A nonzero arithmetic function f ∈� is called multiplicative, denoted by f ∈�, if

f (mn)= f (m) f (n) whenever (m,n)= 1. It is called completely multiplicative, denoted by
f ∈�, if f (mn)= f (m) f (n) for all m,n∈N.

For nonnegative integers r, s by an (r,s)-rational arithmetic function f , denoted by
f ∈�(r,s), we mean an arithmetic function which can be written as

f = g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s , (1.3)
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where each gi,hj ∈ �. Such functions were first studied by Vaidyanathaswamy [23] in
1931, and later by several authors; see, for example, [4, 6, 7, 9, 10, 13, 16, 18, 20]. Two
important classes of rational functions are �(1,1) whose elements are known as totients,
and �(2,0) whose elements are the so-called specially multiplicative functions. Character-
izations of these two classes can be found in [7, 10], respectively.

The present work deals with four aspects of rational arithmetic functions. In the next
section, some characterizations of these functions are derived and are then used in the
next sections to investigate whether two types of identities, the Busche-Ramanujan iden-
tity and the binomial identity, which are known to hold for totients and/or specially mul-
tiplicative functions, continue to hold for general rational arithmetic functions. In the
last section, the Kesava Menon norm of such functions is studied.

We will find it helpful to make use of two important concepts which we now recall. For
f ∈�, f (1)∈ R+, the Rearick logarithm of f (see [11, 14, 15]), denoted by Log f ∈�,
is defined via

(Log f )(1)= log f (1),

(Log f )(n)= 1
logn

∑
d|n

f (d) f −1
(
n

d

)
logd = 1

logn

(
df ∗ f −1)(n) (n > 1), (1.4)

where df (n)= f (n) logn denotes the log derivation of f . The Hsu’s generalized Möbius
function (see [2]) µr , r ∈R, is defined as

µr(n)=
∏
p|n

(
r

νp(n)

)
(−1)νp(n), (1.5)

where νp(n) is the highest power of the prime p dividing n. It is known (see [8, 12]) that
for f ∈�,

f ∈�=⇒ f r = µ−r f , (1.6)

and the converse holds under additional hypotheses.

2. Characterizations

In this section, r and s will generally denote nonnegative integers. Should either of them
be zero, the sum and/or any other expressions connected with them are taken to be zero.

Theorem 2.1. Let r, s be nonnegative integers and f ∈�. Then, f ∈ �(r,s)⇔ for each
prime p and each α∈N, there exist complex numbers a1(p), . . . ,ar(p), b1(p), . . . ,bs(p) such
that

(Log f )(n)=



1
α

[
a1(p)α + ···+ ar(p)α− b1(p)α−···− bs(p)α

]
if n= pα,

0 otherwise.
(2.1)
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Proof.

f ∈�(r,s)⇐⇒ f = g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s

(
gi,hj ∈�

)
⇐⇒ Log f = Logg1 + ···+ Loggr −Logh1−···−Loghs.

(2.2)

The result now follows immediately from Carroll’s theorem [3] which states that for
F ∈�,

F ∈�⇐⇒ (LogF)(n)=



1
α
F(p)α if n= pα,

0 otherwise.
(2.3)

�

Taking a1(p)α = f (pα+1)/ f (p), b1(p) = b(p) in Theorem 2.1, we get the following
corollary.

Corollary 2.2. Let f ∈�, with f (p) �= 0 for each prime p. Then f ∈�(1,1)⇐⇒ for each
prime p and each α∈N, there is a complex number b(p) such that

(Log f )(n)=




1
α

(
f
(
pα+1

)
f (p)

− b(p)α
)

if n= pα,

0 otherwise.

(2.4)

Theorem 2.3. Let r, s be nonnegative integers and f ∈�. Then f ∈ �(r,s)⇔ for each
prime p and each α∈N, there exist complex numbers a1(p), . . . ,ar(p), b1(p), . . . ,bs(p) such
that for all α≥ s,

f
(
pα
)= s∑

k=0

Gα−kHk, (2.5)

where

Gα−k =
∑

j1+···+ jr=α−k
a1(p) j1 ···ar(p) jr , G0 = 1,

Hk = (−1)k
∑

1≤i1<i2<···<ik≤s
bi1 (p)···bik (p), H0 = 1.

(2.6)

Proof.

f ∈�(r,s)⇐⇒ f = g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s

(
gi,hj ∈�

)
⇐⇒ f

(
pα
)= ∑

j1+···+ jr+k1+···+ks=α
g1(p) j1 ···gr(p) jr h−1

1

(
pk1
)···h−1

s

(
pks
)
.

(2.7)

The result now follows by grouping terms on the right-hand side and using h−1(pk)= 0
for k ≥ 2. �
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A few known characterizations of two particular classes of functions, namely, those
in �(1,1), that is, totients (see [7]), and those in �(2,0), that is, specially multiplicative
functions (see [13, Theorem 1.12]), are immediate consequences of Theorem 2.3, which
we record in the following corollary together with a characterizing property of �(1,s) to
be used later.

Corollary 2.4. Let f ∈�. Then the following hold.
(i) f ∈�(1,1)⇔ for each prime p and each α∈N, there exists a complex number a(p)

such that

f
(
pα
)= a(p)α−1 f (p). (2.8)

(ii) f ∈�(2,0)⇔ for each prime p and each α(≥ 2)∈N,

f
(
pα+1)= f (p) f

(
pα
)

+ f
(
pα−1)[ f (p2)− f (p)2]. (2.9)

(iii) f ∈ �(1,s)⇔ for each prime p and each α ∈N, there exist complex numbers a(p),
b1(p), . . . ,bs(p) such that for all α≥ s,

f
(
pα
)= s∑

k=0

g(p)α−kHk, (2.10)

where

Hk = (−1)k
∑

1≤i1<i2<···<ik≤s
bi1 (p)···bik (p), H0 = 1. (2.11)

Simplified characterizations for rational arithmetic functions belonging to the classes
where r is 0 can similarly be obtained as in the next corollaries.

Corollary 2.5. Let s be a nonnegative integer and f ∈�. Then f ∈ �(0,s)⇔ for each
prime p, f (pα)= 0 for all α > s.

Proof.

f ∈�(0,s)⇐⇒ f = h−1
1 ∗···∗h−1

s

(
hi ∈�

)
⇐⇒ f

(
pα
)= ∑

i1+···+is=α
h−1

1

(
pi1
)···h−1

s

(
pis
)
. (2.12)

The result now follows by noting that for h ∈ �, we have h−1(p) = −h(p), h−1(pi) = 0
for i≥ 2, and that the s complex numbers h1(p), . . . ,hs(p) are uniquely determined by the
s values f (p), . . . , f (ps), which are generally arbitrary. In fact, by elementary symmetric
functions, we note that h1(p), . . . ,hs(p) are just all the s roots of

Xs + f (p)Xs−1 + ···+ f
(
ps−1)X + f

(
ps
)= 0. (2.13)

This indeed renders their existence, which was stated in the result of Theorem 2.3, to be
redundant. �
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Invoking upon the fact that f ∈ �(r,0) ⇔ f −1 ∈ �(0,r), we easily deduce our next
result which appears as [13, Problem 1.16, page 48].

Corollary 2.6. Let r be a nonnegative integer and f ∈�. Then

f ∈�(r,0)⇐⇒ for each prime p, f −1(pα)= 0 ∀α > r. (2.14)

Corollary 2.7. Let r be a nonnegative integer and f ∈�. Then f ∈ �(r,0)⇔ for each
prime p, and for all α≥ r,

f
(
pα+1)=−[ f (pα) f −1(p) + f

(
pα−1) f −1(p2)+ ···+ f

(
pα−r+1) f −1(pr)]. (2.15)

Proof. This follows by expanding f ∗ f −1 = I at the prime powers pα and applying the
result of Corollary 2.6. �

Recall that totients are elements of �(1,1). It seems natural to further characterize a
particular class of �(r,s), called here (r,s)-totients, defined by

f = gr ∗h−s, g,h∈�. (2.16)

Theorem 2.8. Let r, s be nonnegative integers, f ∈�. Then f is an (r,s)-totient⇔ for each
prime p and each α(> 2)∈N, there are complex numbers a(p), b(p) such that

f
(
pα
)= (−1)α

α∑
i=0

( −r
α− i

)(
s
i

)
a(p)α−ib(p)i. (2.17)

Proof. Using the definition and properties of Hsu’s generalized Möbius function men-
tioned in Section 1, we have

f is an (r,s)-totient ⇐⇒ f = gr ∗h−s = µ−rg ∗µsh

⇐⇒ f
(
pα
)= α∑

i=0

µ−rg
(
pα−i

)
µsh

(
pi
)
.

(2.18)

Taking a(p)= g(p), b(p)= h(p), the result follows. �

Another important characterization of �(r,s) involving recurrence is due to Rutkowski
[18] which states that f = g1 ∗ ··· ∗ gr ∗ h−1

1 ∗ ··· ∗ h−1
s ∈ �(r,s)⇔ for each prime p

and each α∈N, there exist complex numbers c1(p), . . . ,cr(p) such that

f
(
pα
)= c1(p) f

(
pα−1)+ ···+ cr(p) f

(
pα−r

)
(α > s), (2.19)

where

c1(p)=
r∑

i=1

gi(p), c2(p)=−
∑

1≤i1<i2≤r
gi1 (p)gi2 (p), . . . , cr(p)= (−1)r+1g1(p)···gr(p).

(2.20)

We will have occasion to use Rutkowski’s result later.
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3. Busche-Ramanujan-type identities

It is well known (see, e.g., [21, page 62], [7, 10], or [13]) that

f ∈�(2,0)⇐⇒ there exists B ∈� such that for all m,n∈N, we have

f (m) f (n)=
∑

d|(m,n)

f
(
mn

d2

)
B(d) (3.1)

⇐⇒ there exists F ∈� such that for all m,n∈N, we have

f (mn)=
∑

d|(m,n)

f
(
m

d

)
f
(
n

d

)
F(d), (3.2)

and that

f ∈�(1,1)⇐⇒ there exists h∈� such that for all m,n∈N, we have

f (m) f (n)=
∑

d|(m,n)

f
(
mn

d

)
h(d)µ(d) (3.3)

⇐⇒ there exists F ∈� such that for all m,n∈N, we have

f (mn)=
∑

d|(m,n)

f
(
m

d

)
f
(
n

d

)
F(d), (3.4)

whenever the greatest common unitary divisor (m,n)u = 1, f (p2) �= f (p)2 + F(p), and
f (p) �= 0 for all primes p. For the notion of unitary divisor, see [21, page 9].

Identities (3.1) and (3.2) are known as Busche-Ramanujan identities, while (3.4) is
called the restricted Busche-Ramanujan identity because of the restrictions on m, n. In
this section, we ask whether similar identities hold for functions in general �(r,s). An
earlier affirmative answer to a particular case of this problem appears in [9, Theorem 4.2]
which in our terminology states that for f = g1∗ g2∗h−1 ∈�(2,1), we have

f (mn)=
∑

d|(m,n)

(
g1∗ g2

)(m
d

)
f
(
n

d

)
µ(d)g1(d)g2(d), (3.5)

whenever γ(m) | γ(n), where γ(m) denotes the product of all distinct primes factors of m.
We will show that there are similar Busche-Ramanujan-type identities for functions in
the classes �(r,s) with r = 1,2, but are possible for r ≥ 3 with rather artificial flavor. As
to be expected, the identities are of restricted form, that is, hold with conditions on m, n.

Definition 3.1. Let s be a nonnegative integer. A pair (m,n) ∈ N×N is said to be s-
excessive if for each prime p dividing (m,n), either νp(m)≥ νp(n) + s or νp(n)≥ νp(m) +
s, where νp(m) denotes the highest power of p appearing in m.

Note that the 0-excessive pairs are trivially all pairs of natural numbers, while the 1-
excessive pairs (m,n) correspond exactly to those with the greatest common unitary divi-
sor (m,n)u = 1.



V. Laohakosol and N. Pabhapote 4003

Theorem 3.2. Let s be a nonnegative integer and f = g ∗ h−1
1 ∗ ··· ∗ h−1

s ∈ �(1,s). For
each prime p, if g(p) �= 0, and

∑s
k=0 g(p)s−kHk �= 0, whereHk=(−1)k

∑
1≤i1<i2<···<ik≤s hi1 (p)

···hik (p), H0 = 1, then there exists F ∈� such that

f (mn)=
∑

d|(m,n)

f
(
m

d

)
f
(
n

d

)
F(d), (3.6)

for each s-excessive pair (m,n).

Proof. Since f ∈�, the identity holds for all m, n with (m,n) = 1. It thus remains to
prove this identity when (m,n) > 1. For such s-excessive pair (m,n), let their prime
factorizations be

m= pa1
1 ··· pauu qc1

11 ···qcv1v, n= pb1
1 ··· pbuu qd1

21 ···qdw2w, (3.7)

where pi, q1 j , q2k are distinct primes; ai, bj , ck, dl are positive integers. By multiplicativity,
we can write

f (mn)=Q
u∏
i=1

f
(
pai+bii

)
, (3.8)

where

Q = f
(
qc1

11

)··· f (qcv1v

)
f
(
qd1

21

)··· f (qdw2w

)
. (3.9)

The right-hand side of the identity becomes

∑
d|(m,n)

f
(
m

d

)
f
(
n

d

)
F(d)=Q

u∏
i=1

min(ai,bi)∑
j=0

f
(
p
ai− j
i

)
f
(
p
bi− j
i

)
F
(
p
j
i

)
. (3.10)

Assuming without loss of generality that νp(m)≥ νp(n) + s, that is, a≥ b+ s, the identity
will be established if we can find F ∈� satisfying

f
(
pa+b)= b∑

j=0

f
(
pa− j

)
f
(
pb− j

)
F
(
p j
)
, (3.11)

for each prime p. It suffices to exhibit F(p j), the values of F at prime powers, independent
of a and b, such that

fa+b =
b∑
j=0

fa− j fb− jF j , (3.12)

where, for short, we put f (pi)= fi, F(p j)= Fj . Substituting b= 1 into (3.12), we have

fa+1 = fa f1 + fa−1F1 (a≥ s+ 1). (3.13)
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Replacing fa+1, fa, fa−1, f1 using Corollary 2.4(iii), we have

s∑
k=0

g(p)a+1−kHk =
(
g(p)−

s∑
i=1

hi(p)

) s∑
k=0

g(p)a−kHk +F1

s∑
k=0

g(p)a−1−kHk, (3.14)

yielding F1 = g(p)
∑s

i=1hi(p), which is independent of a, provided that g(p) and∑s
k=0 g(p)a−1−kHk are nonzero. Substituting b = 2 into (3.12), we get

fa+2 = fa f2 + fa−1 f1F1 + fa−2F2 (a≥ s+ 2). (3.15)

Replacing fa+2, fa, fa−1, f2, f1, using Corollary 2.4(iii) and the value of F1, we find that

F2 = g(p)2

[( s∑
i=1

hi(p)

)2

−
∑

1≤i1<i2≤s
hi1 (p)hi2 (p)

]
, (3.16)

independent of a. In general, for fixed j, from Corollary 2.4(iii), with a− j ≥ s, we have

fa+ j = g2 j fa− j , fa+ j−1 = g2 j−1 fa− j , . . . , fa− j+1 = g fa− j . (3.17)

Substituting these and the previous values of Fi (i < j) into (3.12), and dividing by fa− j ,
we uniquely determine Fj independent of a. Note that the division by fa− j is legitimate
because from g(p), fs =

∑s
k=0 g

s−kHk being nonzero, we immediately infer that fa �= 0 for
all a≥ s. �

Theorem 3.3. Let s∈N. If f = g1∗ g2∗h−1
1 ∗···∗h−1

s ∈�(2,s), then

f (mn)=
∑

d|(m,n)

(
g1∗ g2

)(m
d

)
f
(
n

d

)
µ(d)

(
g1g2

)
(d), (3.18)

for each (s− 1)-excessive pair (m,n) with γ(m) | γ(n).

Proof. Clearly, the identity holds for all m, n with γ(m) | γ(n) and (m,n) = 1. It thus
remains to prove this identity when (m,n) > 1. For each (s− 1)-excessive pair (m,n) with
γ(m) | γ(n), let their prime factorizations be

m= pa1
1 ··· pauu , n= pb1

1 ··· pbuu , (3.19)

where pi are distinct primes, ai nonnegative integers, and bi positive integers, ai ≤ bi (i=
1,2,3, . . . ,u). By multiplicativity, we can write

f (mn)=
u∏
i=1

f
(
pai+bii

)
. (3.20)
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The right-hand side of the identity becomes

∑
d|(m,n)

(
g1∗ g2

)(m
d

)
f
(
n

d

)
µ(d)

(
g1g2

)
(d)

=
u∏
i=1

ai∑
j=0

(
g1∗ g2

)(
p
ai− j
i

)
f
(
p
bi− j
i

)
µ
(
p j
)(
g1g2

)(
p j
)
.

(3.21)

The identity will be established if we can show that

f
(
pa+b)= a∑

j=0

(
g1∗ g2

)(
pa− j

)
f
(
pb− j

)
µ
(
p j
)(
g1g2

)(
p j
)
, (3.22)

for each prime p and a∈N∪{0}, b ∈Nwith b ≥ a+ s− 1. To this end, it suffices to show
that

fa+b = g∗a fb− g∗a−1 fb−1g
′
1, (3.23)

where f (pi)= fi, (g1∗ g2)(pi)= g∗i , (g1g2)(p j)= g′j .
For a = 0, (3.23) trivially holds. When a = 1, b ≥ s, from Rutkowski’s recurrence, we

get

fb+1 = c1 fb + c2 fb−1. (3.24)

Noting that c1 = g∗1 , c2 = −g′1, (3.23) follows in this case. Now proceed by induction on
a. Assume that (3.23) holds up to a− 1. Again by Rutkowski’s recurrence, when b+ a≥
s− 1, noting also that f and g1∗ g2 satisfy the same recurrence, we have

fa+b = c1 fb+a−1 + c2 fb+a−2

= c1
(
g∗a−1 fb− g∗a−2 fb−1g

′
1

)
+ c2

(
g∗a−1 fb−1− g∗a−2 fb−2g

′
1

)
= c1g

∗
a−1 fb + g∗a−2 fbc2 + c2g

∗
a−1 fb−1

= g∗a fb− g∗a−1 fb−1g
′
1,

(3.25)

as required. �

Theorem 3.3 as stated does not include the case �(2, 0) because (−1)-excessive pair is
not defined. However, going through the above proof, we see that in this case, we simply
get the result of Haukkanen referred to in (3.5) above. Since functions in �(2,0) satisfy
the Busche-Ramanujan identity, a natural question to ask is whether a �(3,0)-function
enjoys such property. A trivial example of the identity function I = I ∗ I ∗ I = I ∗ I ,
which belongs to both �(2,0) and �(3,0), shows that the answer is affirmative in cer-
tain cases, while u∗ u∗ u= µ−3 ∈�(3,0) does not satisfy the Busche-Ramanujan iden-
tity. Some necessary conditions for �(3,0)-functions to satisfy the Busche-Ramanujan
identity are given in the next proposition.
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Proposition 3.4. Let f ∈�(3,0). If f satisfies the Busche-Ramanujan identity

f (mn)=
∑

d|(m,n)

f
(
m

d

)
f
(
n

d

)
F(d) (m,n∈N), (3.26)

where F ∈�, then for each prime p, there are five possibilities:
(1) f (pn)= 0 for all n≥ 1, or
(2) f (pn)= ( f (p))n for all n≥ 1, or
(3) f (p2n)= ( f (p2))n, f (p2n−1)= 0 for all n≥ 1, or
(4) f (pn)= (1 +n)( f (p)/2)n for all n≥ 1, or
(5) f (pn)= (1/2)(1 + f (p)/D)(( f1 +D)/2)n + (1/2)(1− f1/D)(( f1−D)/2)n for all n≥

1, where D =
√

4 f (p2)− 3( f (p))2 �= 0.

Proof. Proceeding as in the proof of Theorem 3.2, we are looking for necessary conditions
for f to satisfy the Busche-Ramanujan identity and this amounts to finding F ∈� such
that

fa+b =
b∑
j=0

fa− j fb− jF j , (3.27)

for each prime p and a ≥ b, that is, assuming without loss of generality that νp(m) ≥
νp(n). Substituting b = 1 into (3.27), we obtain the main recurrence relation

fa+1 = fa f1 + fa−1F1 (a≥ 1). (3.28)

Putting a= 1, we get F1 = f2− f 2
1 . From Corollary 2.7,

fa f1 + fa−1F1 = fa f1 + fa−1
(
f2− f 2

1

)
+ fa−2

(
f3− 2 f1 f2 + f 3

1

)
, (3.29)

which entails

fa−1F1 = c2 fa−1 + c3 fa−2 (a≥ 3), (3.30)

where c2 = f2− f 2
1 , c3 = f3− 2 f1 f2 + f 3

1 . Using F1 = f2− f 2
1 = c2, this last relation simpli-

fies to c3 fa−2 = 0 (a≥ 3), and so either
(i) fn = 0 for all n≥ 1, or

(ii) 0= c3 = f3− 2 f1 f2 + f 3
1 .

In the latter situation, we divide into two cases according to c2 = 0 or c2 �= 0.

Case 1 (c2 = 0). In this case, it easily follows from the main recurrence relation that fa =
f a1 for all a≥ 1.
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Case 2 (c2 �= 0). In this case, we further subdivide into two subcases according to f1 = 0
or not.

Subcase 2.1 ( f1 = 0, and so f2 = c2 �= 0). Using the main recurrence relation, it is easily
checked that f (p2n)= ( f (p2))n, and f (p2n−1)= 0 for all n≥ 1.

Subcase 2.2 ( f1 �= 0). In this case, the main recurrence relation is a second-order recur-
rence with constant coefficients whose characteristic equation is x2 − f1x− c2 = 0, with

roots (1/2)( f1±D), where D =
√
f 2
1 + 4c2. The solutions corresponding to D = 0 or D �= 0

are listed as (4) and (5), respectively, in the statement of the proposition. �

In the proof of Proposition 3.4, Case 1 contains, as a special case, the identity func-
tion, while other cases contain some nontrivial �(2,0)-functions, and some nontrivial
�-functions. Proposition 3.4 indicates somewhat that �(3,0)-functions which satisfy rea-
sonable Busche-Ramanujan-type identity can be artificially constructed from those sat-
isfying conditions in any of the five cases. We now give an example to substantiate this
claim. Recall from Corollary 2.7 that f ∈�(3,0)⇔ for each prime p and integers e ≥ 3,
we have

fe+1 = fe f1 + fe−1A+ fe−2B, (2.31)

where fe = f (pe), A = A(p) = f2 − f 2
1 , B = B(p) = f3 − 2 f2 f1 + f 3

1 . Should there be a
Busche-Ramanujan-type identity, subject to certain conditions on m, n, proceeding as in
the proof of Theorem 3.2, we deduce that there must exist F ∈� satisfying

fa+b =
b∑
i=0

fa−i fb−iFi, (2.32)

where a≥ b, Fi = F(pi). Consider the �(3,0)-function defined by

f (1)= 1, f
(
2a
)

(a≥ 1) (2.33)

satisfying (2.31) with

B(2)= f
(
23)− 2 f

(
22) f (21)+ f

(
23)= 0,

f
(
pa
)= 0 (a≥ 1)

(2.34)

for all other primes p ≥ 3. This particular function f ∈�(3,0) because it satisfies (2.31)
with A(2), A(p), B(p) (p prime ≥ 3) arbitrary but B(2) = 0. It satisfies the Busche-
Ramanujan identity (2.32) with F(2) = A(2), F(2i) = F(p j) = 0 (i ≥ 2, j ≥ 1). The sit-
uations for general �(3,s) and �(r,s) with r ≥ 3 are analogous. The details are omitted.

Another class of identities for functions in �(2, 0), called extended Busche-Ramanujan
identity, is due to Redmond and Sivaramakrishnan [16] which states that for f ∈ �,
define

t0(n)= t(n), tk(n)=

t(n) if n | k,

0 otherwise.
(2.35)
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Let T0 = T , Tk = µ∗ tk. If f = g1∗ g2 ∈�(2,0), then

∑
d|(m,n)

f
(
m

d

)
f
(
n

d

)(
g1g2

)
(d)Tk(d)=

∑
d|(m,n,k)

t(d)
(
g1g2

)
(d) f

(
mn

d2

)
. (2.36)

Using exactly the same proof as in [16, Theorem 13], together with the result of Theorem
3.3, we have the following theorem.

Theorem 3.5. Let s∈N. If f = g1∗ g2∗h−1
1 ∗···∗h−1

s ∈�(2, s), then

∑
d|(m,n)

(
g1∗ g2

)(m
d

)
f
(
n

d

)(
g1g2

)
(d)Tk(d)=

∑
d|(m,n,k)

t(d)
(
g1g2

)
(d) f

(
mn

d2

)
, (3.37)

for each (s− 1)-excessive pair (m,n) with γ(m) | γ(n).

4. Binomial-type identities

It is known, see, for example, [16] or [21, Chapter 13], that if f = g1∗ g2 ∈�(2,0), then
f satisfies the so-called binomial identity

f
(
pk
)= [k/2]∑

j=0

(−1) j
(
k− j
j

)
f (p)k−2 j(g1(p)g2(p)

) j
, (4.1)

where p is a prime, k ∈N. In [6], another form of binomial identity is found, namely,

2k f
(
pk
)= [k/2]∑

i=0

(
k+ 1
2i+ 1

)
f (p)k−2i[ f (p)2− 4g1(p)g2(p)

]i
. (4.2)

The derivation of (4.1) in [16] is by induction, while that of (4.2) in [6] is based on solv-
ing second-order recurrence relation. Making use of certain Chebyshev-type identities,
Haukkanen also derived the following inverse forms of (4.1) and (4.2):

f (p)k =
[k/2]∑
i=0

{(
k
i

)
−
(

k
i− 1

)}
f
(
pk−2i)(g1(p)g2(p)

)i
, (4.3)

(k+ 1) f (p)k =
[k/2]∑
i=0

(
k+ 1

2i

)
d2i2k−2i f

(
pk−2i)( f (p)2− 4g1(p)g2(p)

)i
, (4.4)

where d2i is defined as in [17, Section 3.4], namely, via the generating series relation

2x
ex − e−x

=
∞∑
i=0

d2i
x2i

(2i)!
. (4.5)
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Our objective in this section is to use Rutkowski’s recurrence to derive binomial-type
identities and their inverse forms similar to (4.1)–(4.4) for elements in �(2,s). Our start-
ing point comes from the observation that (4.1) and (4.2) are indeed equivalent through
a combinatorial identity, which we now elaborate.

Starting from (4.2), we have

f
(
pk
)= [k/2]∑

i=0

(
k+ 1

2i+ 1

)(
f (p)

2

)k−2i
[(

f (p)
2

)2

− g1(p)g2(p)

]i

=
[k/2]∑
i=0

(
k+ 1

2i+ 1

)(
f (p)

2

)k−2i i∑
j=0

(
i

j

)(
f (p)

2

)2i−2 j[− g1(p)g2(p)
] j

=
[k/2]∑
j=0

[k/2]∑
i= j

(
k+ 1

2i+ 1

)(
i

j

)(
f (p)

2

)k−2 j[− g1(p)g2(p)
] j

=
[k/2]∑
j=0

(−1) j f (p)k−2 j[g1(p)g2(p)
] j( 1

2k−2 j

) [k/2]∑
i= j

(
k+ 1

2i+ 1

)(
i

j

)

=
[k/2]∑
j=0

(−1) j
(
k− j

j

)
f (p)k−2 j[g1(p)g2(p)

] j
,

(4.6)

which is (4.1). The last equality follows from the combinatorial identity

[k/2]∑
i= j

(
k+ 1

2i+ 1

)(
i

j

)
= 2k−2 j

(
k− j

j

)
(4.7)

which appears in Riordan [17, problem 18(c)].

Theorem 4.1. Let s∈N and f = g ∗G∗h−1
1 ∗···∗h−1

s ∈�(2,s). For each prime p and
each k > 0,

2k+s f
(
pk+s)= (A+B)Sk+s(p)− 2

(
Bg(p) +AG(p)

)
Sk+s−1(p), (4.8)

f
(
pk+s)= (A+B)

[(k+s)/2]∑
j=0

(−1) j
(
k+ s− j

j

)[
f (p) +H(p)

]k+s−2 j[
g(p)G(p)

] j

− (Bg(p) +AG(p)
)Sk+s−1(p)

2k+s−1
,

(4.9)



4010 Properties of rational arithmetic functions

where

H(p)=
s∑

i=1

hi(p), A= f
(
p1+s

)
G(p)− f

(
p2+s

)
g
(
p1+s

)(
G(p)− g(p)

) , B = f
(
p2+s

)− g(p) f
(
p1+s

)
G
(
p1+s

)(
G(p)− g(p)

) ,

(4.10)

Sk+s(p)=
[(k+s)/2]∑

i=0

(
k+ s+ 1

2i+ 1

)[
f (p) +H(p)

]k+s−2i[
g(p)−G(p)

]2i

=
[(k+s)/2]∑

i=0

(
k+ s+ 1

2i+ 1

)[
f (p) +H(p)

]k+s−2i
[(

f (p) +H(p)
)2− 4g(p)G(p)

]i
.

(4.11)

Proof. Since f = g ∗G∗H−1, with H−1 = h−1
1 ∗···∗h−1

s , we have

f (p)= g(p) +G(p)−H(p). (4.12)

For brevity, we put

fk = f
(
pk
)
, gk = g

(
pk
)
, Gk =G

(
pk
)
, H =H(p). (4.13)

By Rutkowski’s theorem,

fk = C fk−1 +D fk−2 (k > s), (4.14)

where

C = g1 +G1 = f1 +H , D =−g1G1. (4.15)

The characteristic polynomial of this recurrence is r2 −Cr −D, whose two roots are g1

and G1. Let ∆= g1−G1.
If g1 �=G1, then ∆ �= 0, and the general solution of this recurrence is of the form

fk+s = Agk+s
1 +BGk+s

1 (k > 0). (4.16)

Using the two initial values

f1+s = Ag1+s
1 +BG1+s

1 , f2+s =Ag2+s
1 +BG2+s

1 , (4.17)

we get

A= − f1+sG1 + f2+s

g1+s
1 ∆

, B = − f2+s + g1 f1+s

G1+s
1 ∆

. (4.18)

Thus,

fk+s = A
(
C+∆

2

)k+s

+B
(
C−∆

2

)k+s

, (4.19)
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and so

2k+s fk+s = A
k+s∑
i=0

(
k+ s
i

)
Ck+s−i∆i +B

k+s∑
i=0

(
k+ s
i

)
Ck+s−i(−∆)i

= (A+B)
[(k+s)/2]∑

i=0

(
k+ s

2i

)
Ck+s−2i∆2i

+ (A−B)
[(k+s−1)/2]∑

i=0

(
k+ s
2i+ 1

)
Ck+s−2i−1∆2i+1

= (A+B)
[(k+s)/2]∑

i=0

(
k+ s

2i

)
Ck+s−2i∆2i

+
(
A+B− 2

(
Bg1 +AG1

C

)) [(k+s−1)/2]∑
i=0

(
k+ s
2i+ 1

)
Ck+s−2i∆2i

= (A+B)
[(k+s)/2]∑

i=0

(
k+ s+ 1

2i+ 1

)
Ck+s−2i∆2i

− 2
(
Bg1 +AG1

) [(k+s−1)/2]∑
i=0

(
k+ s
2i+ 1

)
Ck+s−2i−1∆2i.

(4.20)

If g1 = G1, then ∆ = 0. Without loss of generality, we may assume that g1 = G1 := r �= 0,
for otherwise the desired result is trivial. The general solution of our recurrence now takes
the shape

fk+s =A′rk+s + (k+ s)B′rk+s (k > 0). (4.21)

Using the initial conditions

f1+s = A′r1+s + (1 + s)B′r1+s, f2+s =A′r2+s + (2 + s)B′r2+s, (4.22)

we get

A′ = (2 + s)r f1+s− (1 + s) f2+s

r2+s
, B′ = f2+s− r f1+s

r2+s
, r = C

2
. (4.23)

Therefore,

2k+s fk+s =
(
A′ + (k+ s)B′

)
Ck+s, (4.24)

which agrees with (4.20) under the limit ∆→ 0, and the first identity is established. To
establish the second identity, we proceed to use the combinatorial identity alluded to
above. Since

2k+s f
(
pk+s)= (A+B)

[(k+s)/2]∑
i=0

(
k+ s+ 1

2i+ 1

)
Ck+s−2i∆2i

− 2
(
Bg1 +AG1

)
Sk+s−1(p),

(4.25)
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we have

f
(
pk+s)= (A+B)

[(k+s)/2]∑
i=0

(
k+ s+ 1

2i+ 1

)(
C

2

)k+s−2i
[(

C

2

)2

+D

]i

− (Bg1 +AG1
)Sk+s−1(p)

2k+s−1

= (A+B)
[(k+s)/2]∑

i=0

(
k+ s+ 1

2i+ 1

)(
C

2

)k+s−2i i∑
j=0

(
i
j

)(
C

2

)2i−2 j

D j

− (Bg1 +AG1
)Sk+s−1(p)

2k+s−1

= (A+B)
[(k+s)/2]∑

j=0

Ck+s−2 jD j
(

1
2k+s−2 j

) [(k+s)/2]∑
i= j

(
k+ s+ 1

2i+ 1

)(
i
j

)

− (Bg1 +AG1
)Sk+s−1(p)

2k+s−1

= (A+B)
[(k+s)/2]∑

j=0

(
k+ s− j

j

)
Ck+s−2 jD j − (Bg1 +AG1

)Sk+s−1(p)
2k+s−1

,

(4.26)

where the last equality follows from the identity of Riordan [17, Problem 18(c), page
87]. �

The results of Theorem 4.1 reduce to the identities (4.1) and (4.2) when s= 0, because
then A+B = 1 and Bg(p) +AG(p) =H(p) = 0. It remains to establish inverse forms of
the two identities of Theorem 4.1.

Theorem 4.2. Let s∈N and f = g ∗G∗h−1
1 ∗···∗h−1

s ∈�(2,s). For each prime p and
each integer k > 0,

Sk+s(p)= 2k+s

A+B

k−1∑
i=0

(
Bg(p) +AG(p)

A+B

)i
f
(
pk+s−i)+

(
2
(
Bg(p) +AG(p)

)
A+B

)k
Ss,

(k+ s+ 1)
(
f (p) +H(p)

)k+s =
[(k+s)/2]∑

i=0

(
k+ s+ 1

2i

)
d2iSk+s−2i(p)

×
[(

f (p) +H(p)
)2− 4g(p)G(p)

]i
,(

f (p) +H(p)
)k+s

= 1
A+B

[(k+s)/2]∑
i=0

[(
k+ s
i

)
−
(
k+ s
i− 1

)]

×
[
f
(
pk+s−2i)+

(
Bg(p) +AG(p)

)Sk+s−2i−1(p)
2k+s−2i−1

](
g(p)G(p)

)i
,

(4.27)

where Sk+s(p), H(p), A, B are as defined in Theorem 4.1 and d2i is as defined in (4.4).
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Proof. The first identity, for Sk+s(p), comes immediately from solving the first-order non-
homogeneous recurrence (4.8) in Theorem 4.1, where we define gs := fs := Ss(p)/2s. The
second identity, for (k+ s+ 1)( f (p) +H(p))k+s, follows from the inverse relation, see, for
example, [6, page 160],

ak =
[k/2]∑
i=0

(
k+ 1
2i+ 1

)
bk−2ic

i⇐⇒ (k+ 1)bk =
[k/2]∑
i=0

(
k+ 1

2i

)
d2iak−2ic

i, (4.28)

applied to (4.11) of Theorem 4.1. The third identity, for ( f (p) +H(p))k+s, follows from
the inverse relation, see, for example, [6, page 159],

ak =
[k/2]∑
i=0

(−1)i
(
k− i
i

)
bk−2ic

i⇐⇒ bk =
[k/2]∑
i=0

[(
k
i

)
−
(

k
i− 1

)]
ak−2ic

i, (4.29)

applied to (4.9) of Theorem 4.1. �

We end this section by remarking that it seems unlikely for functions in �(r,s) with
r > 2 to have similar binomial-type identities.

5. Kesava Menon norm

For f ∈�, its Kesava Menon norm N f is an arithmetic function defined by (see [16, 20])

N f (n) := ( f ∗ λ f )
(
n2), (5.1)

where λ is the well-known Liouville’s function, λ(n) = (−1)Ω(n), Ω(n) being the total
number of prime factors of n counted with multiplicity. Observe that N f ∈� and λ∈�
which implies (see [23]) that λ( f ∗ g)= λ f ∗ λg when f ,g ∈�. For nonnegative integer
m, the mth power (Kesava Menon) norm of f ∈� is inductively defined by

N0 f = f , N1 f =N f , Nm f =N
(
Nm−1 f

)
. (5.2)

It is shown in [20, Theorem 3.3, page 160] that

f ∈�(2,0)=⇒N f ∈�(2,0), (5.3)

and in [16, Theorem 3, page 214] that for nonnegative integer m,

f1, f2 ∈�(2,0)=⇒Nm
(
f1∗ f2

)=Nm f1∗Nm f2. (5.4)

In this section, we prove that both of these properties hold for elements in general �(r,s).

Theorem 5.1. Let r, s be positive integers and f ∈�(r,s). Then N f ∈�(r,s).
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Proof. Let f = g1∗···∗ gr ∗ h−1
1 ∗···∗ h−1

s . By the distributivity of completely multi-
plicative functions, we get

f ∗ λ f = (g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s

)∗ (λ(g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s

))
= (g1∗ λg1

)∗···∗ (gr ∗ λgr
)∗ (h−1

1 ∗ λh−1
1

)∗···∗ (h−1
s ∗ λh−1

s

)
= (g1(u∗ λ)

)∗···∗ (gr(u∗ λ)
)∗ (h−1

1 ∗ λh−1
1

)∗···∗ (h−1
s ∗ λh−1

s

)
,

(5.5)

where u∈� is the unit function, u(n)= 1 (n∈N). Using

(u∗ λ)(n)=

1 if n is a perfect square,

0 otherwise,
(5.6)

and for h∈�, p prime,

(
h−1∗ λh−1)(pk)=




1 if k = 0,

−h(p)2 if k = 2,

0 otherwise,

(5.7)

we have for each prime p and k ∈N∪{0} that

N f
(
pk
)= ( f ∗ λ f )

(
p2k)

=
∑
(2k)

g1(u∗ λ)
(
pi1
)···gr(u∗ λ)

(
pir
)(
h−1

1 ∗ λh−1
1

)(
p j1
)···(h−s1 ∗ λh−1

s

)(
p js
)

=
∑
(k)

g1g1
(
pi1
)···grgr(pir)(h1h1

)−1(
p j1
)···(hshs)−1(

p js
)
,

(5.8)

where
∑

(l) denotes the sum taken over all (r + s)-tuples of nonnegative integers (i1, . . . , ir ,
j1, . . . , js) such that i1 + ··· + is + j1 + ··· + js = l. Since N f ∈ � and gigi,hjhj ∈ �, it
follows that N f ∈�(r,s). �

The gist of Theorem 5.1 is that

f = g1∗···∗ gr ∗h−1
1 ∗···∗h−1

s

=⇒N f = (g1g1
)∗···∗ (grgr)∗ (h1h1

)−1∗···∗ (hshs)−1
.

(5.9)

Theorem 5.1 remains valid when r and/or s is 0 for we can always, if needed, convolute
by I or I−1.

Immediate from these remarks is the following corollary.

Corollary 5.2. Let m,r,s∈N∪{0}. Then the following hold.
(i) f = g1 ∗ ··· ∗ gr ∗ h−1

1 ∗ ··· ∗ h−1
s ∈ �(r,s) ⇒ Nm f = (g1)2m ∗ ··· ∗ (gr)2m ∗

((h1)2m)−1∗···∗ ((hs)2m)−1, where (gi)m = gi ···gi (m times).
(ii) f1, f2 ∈�(r,s)⇒Nm( f1∗ f2)=Nm f1∗Nm f2.
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The Kesava Menon norm of f ∈� is closely related to its (ordinary) square ( f )2 as
seen from the following two identities of Sivaramakrishnan [20]. If f = g1∗ g2 ∈�(2,0),
then

f (n)2 =
∑
d|n

N f
(
n

d

)
θ(d)

(
g1g2

)
(d), (5.10)

∑
d|n

λ(d) f (d)2 f
(
n

d

)2

=
∑
d|n

λ(d)N f (d)N f
(
n

d

)
, (5.11)

where θ(n)= 2ω(n), ω(n) being the number of distinct prime factors of n. We next show
that similar identities hold for functions in �(2,1).

Theorem 5.3. Let f = g1∗ g2∗h−1 ∈�(2,1) and let N f be its Kesava Menon norm.Then
there exists G∈� such that(

g1∗ g2
)
f =N f ∗G∗ (g1g2

)
,(

g1∗ g2
)
f ∗ λ

(
g1∗ g2

)
f = (N f ∗ λN f )∗ (G∗ λG)∗ g1g2(u∗ λ).

(5.12)

Further, G is defined on prime powers by G(pe)= f −1(p2e) (e ∈N), and u(n)= 1 (n∈N).

Proof. Define f̄ = f ∗ λ f ∈�. Observe that

f̄ (n)=

N f (

√
n) if n is a perfect square,

0 otherwise,
(5.13)

and that

f
(
n2)= ( f̄ ∗ λ f −1)(n2)=∑

i|n2

f̄ (i)λ f −1
(
n2

i

)
=
∑
j|n
N f ( j) f −1

(
n2

j2

)
. (5.14)

Define G ∈� by G(1) = 1, G(pe) = f −1(p2e) (p prime,e ∈ N), and extend it by mul-
tiplicativity to all positive integers. Thus, f (n2) = (N f ∗G)(n). On the other hand, by
Theorem 3.2, when s= 1, we have

f
(
n2)=∑

d|n

((
g1∗ g2

)
f
)(n

d

)(
µg1g2

)
(d). (5.15)

Thus (g1∗ g2) f ∗ (µg1g2)=N f ∗G, and the first identity follows by noting that as g1g2 ∈
�, then (µg1g2)−1 = g1g2.

To prove the second identity, using the first identity and the distributivity of λ∈�, we
have

λ
(
g1∗ g2

)
f = λ

(
N f ∗G∗ g1g2

)= λN f ∗ λG∗ λg1g2. (5.16)

Thus,
(
g1∗ g2

)
f ∗ λ

(
g1∗ g2

)
f = (N f ∗ λN f )∗ (G∗ λG)∗ (g1g2∗ λg1g2

)
, (5.17)

and the desired result follows from the distributivity of g1g2 ∈�. �
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Theorem 5.3 yields the following immediate consequences.

Corollary 5.4. If f = g1∗ g2∗h−1 ∈�(2,1), N f is its Kesava Menon norm, and G∈�
as defined in Theorem 5.3, then

f (n)
(
g1∗ g2

)
(n)=

∑
i jk=n

N f (i)G( j)
(
g1g2

)
(k),

∑
d|n

((
g1∗ g2

)
f
)(n

d

)(
λ
(
g1∗ g2

)
f
)
(d)=

∑
i jk=n

(N f ∗ λN f )(i)(G∗ λG)( j)
(
g1g2(u∗ λ)

)
(k).

(5.18)

Note that for f = g1∗ g2 ∈�(2,0), if we interpret G∈� by

G(1)= 1, G(p)= (g1g2
)
(p), G

(
pe
)= 0 for prime p and integer e ≥ 2, (5.19)

then G∗ (g1g2) = θg1g2 and (G∗ λG)∗ (g1g2)(u∗ λ) = I , where θ(n) = 2ω(n), I is the
convolution identity, and so the identities in Corollary 5.4 reduce to (5.10) and (5.11),
respectively.

Added note. Regarding Theorem 5.1, it has been pointed out by one of the referees that
N f for rational arithmetic functions f of order (r,s) has already been given in P. Haukka-
nen’s review on [22].
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