SET PARTITIONS WITH SUCCESSIONS AND SEPARATIONS
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Partitions of the set {1,2,...,n} are classified as having successions if a block contains con-
secutive integers, and separated otherwise. This paper constructs enumeration formulas
for such set partitions and some variations using Stirling numbers of the second kind.

1. Introduction

The number of ways of partitioning a set of m elements into k nonempty subsets (called
classes or blocks) is given by s2(m, k), the Stirling number of the second kind. Without
loss of generality we assume that the m elements have been labeled 1,2,...,m and consider
k-partitions of the set [m] = {1,2,...,m}. Substantial information on set partitions can be
found in [3, 8]. For connections of set partitions with the combinatorics of distributions
and occupancy, to which the objects considered in this paper are also related, see [2, 5].
Essential properties of the numbers s2(m, k) can be found in [3, 7].

Definition 1.1. A partition of [m] is said to be t-separated (¢ > 1) if the difference be-
tween every pair of integers in each class exceeds ¢t — 1 in absolute value. Denote the set
of t-separated k-partitions of [m] by H(m,k), and let h'(m, k) represent the cardinality
|H!(m,k)| of H'(m, k).

It follows that k! (m, k) = s2(m, k). For example, members of H>(10,4) include {1,4,7}
{2,5,8}1{3,6,9}{10}, {1,4,7,10}{2,6,9} {3} {5,8}, and {1,4,8}{2,5,9}{3,7}{6,10}.

Separated combinations of elements of [m] have been considered in [2, page 65], [5,
page 198], [8, page 20], and [9, page 26]. Our terminology is adapted from [2, page 65].
The set H?(m, k), which can also be described as the set of nonconsecutive partitions of
[m], has already found an application in the enumeration of complementing systems of
subsets of {0,1,...,m — 1} (see [4]).

Partitions with successions, which we define next, give another generalization of
H?(m, k), but in the opposite direction. The associated theory is relatively complicated.
We give the definition of partitions with pairwise successions here, and consider the gen-
eral case in Section 4.
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Definition 1.2. A partition of [m] is said to have r successions (r > 0) if it contains r pairs
of consecutive integers, where each pair of consecutive integers is counted within one
class, and a string of more than two consecutive integers in a class are considered two at
a time. The set of k-partitions of [m] with r successions will be denoted by C, (m, k).

Thus Co(m,k) = H?(m,k). For example, members of C5(10,4) include {1,2}{3,4,7}
15,6,9}18,10}, {1,2,3,5}14,6,7}{8,10} {9}, and {1,2,3,4}{5,7,9}{6,8} {10}.

Our terminology is consistent with that of [6, page 11] which deals with combinations
of elements of [m] with a prescribed number of successions. We define a distinguished
subset of C,(m,k).

Definition 1.3. Let p € C.(m,k). The r successions in p will be called detached if p con-
tains no f-string of consecutive integers, where t > 2. Denote the set of partitions of [m]
with r-detached successions by D, (m, k).

For example, members of D5(10,4) include {1,2} {3,4,7}{5,6,9} {8,10} and {1,2,4,5}
{3,6,7}{8,10} {9}. Note that {1,2,3,5}{4,6,7}1{8,10}{9} belongs to C5(10,4) but not to
D5(10,4) because the two successions in {1,2,3,5} are not detached.

Let ¢,(m,k) = |C;(m,k)| be the cardinality of C,(m,k). Similarly let d,(m,k) =
|D,(m,k)|. Then c,(m,k) = d,(m,k) for r = 0,1. The number ¢,(m,k) bears a kind of
duality relationship with d, (m, k), as shown in the next section.

Remark 1.4. Expectedly the set difference E,(m,k) = C,(m,k) — D,(m,k) consists of par-
titions of [m] with r-nondetached successions, that is, partitions in which at least a class
in each partition contains a string of three or more consecutive integers, provided r > 1.
As usual, let e,(m, k) = |E,(m,k)|. Hence e, (m, k) = c,(m,k) — d,(m,k).

Remark 1.5. The related category of partitions of [m] in which every class consists of
consecutive integers is already well known. They correspond to the compositions of m
into k parts [1, page 55] and their number c(m, k) is given by the simple formula

m—1

c(m,k) = (k ) = c(m) Zc (m,k) =2m"1, (1.1)
k

The next two sections are devoted to statements and proofs of essential results. The last
section examines certain generalizations of them.

2. Statement of results

The first theorem gives the recurrence equation satisfied by the number h'(m,k) of t-
separated k-partitions of [m], and its solution.

TueoreMm 2.1. (1) h'(m,k) = h'(m — 1,k — 1) + (k — t + 1)ht(m — 1,k), h'(m,t) =1, 1 <
t<k<m.

(ii) ht(m,k) = s2(m —t+ 1,k — t+1).

(iii) hf(m) = > h'(m,k) = B(m — t + 1), where B(m) denotes the mth Bell number.
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Theorem 2.1(ii) implies the following relation for h'(m, k):
h(mk)=h" (m+j,k+j), j=0,+1,+2,... (2.1)
Thus in particular, A (m,k) = h'='(m — 1,k — 1),
h*(m,k) = h'(m — 1,k =1) = s2(m — 1,k = 1) = co(m, k), (2.2)
where the last equality follows from Definition 1.2. This implies
Rmk)=hm—t+2,k—t+2)=com—t+2,k—t+2). (2.3)

THEOREM 2.2. The number c,(m,k) of k-partitions of [m] with r successions satisfies the
recurrence

c(mk)=c,im—1L,k—-1)+(k—1)c,(m—1,k) +c,_1(m— 1,k),

O0<r<m-k, 1<k<m-r, coimk)=s2(m—-1,k-1). (2.4)
The following theorem gives the solution of (2.4).
THEOREM 2.3.
¢ (myk) = (m;l) 2m—-r—-1,k-1). (2.5)

Remark 2.4. Theorem 2.3 leads to the expected fact that >,. ¢, (m, k) = s2(m, k), the veri-
fication of which is immediate since it coincides with a standard identity, see, for example,
(5, page 43]. In particular, . ¢ (1,2) = Y ocpemn (™71) =2"71 =1 = 52(m,2).
By means of (2.4) and (2.5) we derive the following additional results for c,.(m, k).
(i)

(m‘z)c,<m,k):<m;l>c,1<m—1,k) o elmk) =" i (m—1,K),

r—1

(2.6)

which may be iterated to give
CAmk)=Q£—l£%pfﬂm—j—LkL 0<j<r (2.7)

(T’)j+1

where (m)y is the falling factorial defined by (m) = m(m —1)- - -(m —k+1).
Therefore
m—1

c,(m,k) = < . ) co(m —r,k). (2.8)

Note that (2.8) can also be obtained directly from (2.5) since co(m,k) = s2(m — 1,
k—1).
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(ii)

¢ (mk) = mrfi_l

r_l(c,(mfl,kf1)+(k71)c,(m71,k)). (2.9)

Observe that (ii) implies (2.6).
The following corollary is immediate from Theorem 2.3.

CoROLLARY 2.5. If ¢,(m) denotes the total number of partitions of [m] with r successions,
then

¢ (m) = (mr_l>B(m—r—l), m>r+1. (2.10)

Remark 2.6. Corollary 2.5 suggests the summation of (2.10) over r to obtain the total
number B(m) of partitions of [m]. This leads to the recurrence for the Bell numbers as
follows:

m—1 m—1 _ m—1 _
B(m)= > ¢;(m)= > (mr 1>B(m_r—1)= > (mniril>3(m—r—1). (2.11)
r=0 r=0 r=0

Thus by (2.11) we obtain a natural interpretation of the summands in the Bell recurrence
[9, page 23], Yo<j<m-1 (mj_l )B(j), as the distribution of the numbers of partitions of []
according to decreasing numbers r of successions in a partition, r = m — 1,m —2,...,0.

THEOREM 2.7. The number d,(m,k) of k-partitions of [m] with r-detached successions sat-
isfies the recurrence

d.(mk)=d,(m—-1,k-1)+(k-1)d,(m—-1,k)+d,_1(m—2,k—1)

+ (k= 1)d,—1(m - 2,k), (2.12)

do(m,k) =s2(m— 1,k —1),0 <r <|m/2],1 <k <m—r, where | N| denotes the integer
part of N, and the last equality in 1 < k < m — r requires m > 2r.

The solution of (2.12) is given in the next theorem.
THEOREM 2.8.

m-—r
r

d.(m,k) = ( )sZ(m—r—l,k—l), l<k<m-r (2.13)

Using (2.13) and previous results additional relations are obtained for d,(m, k).
(i) First, from (2.5) and (2.13), it is deduced that

d.(m,k) = (m—r),

(m—1) ¢ (m,k). (2.14)
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(ii) By using (2.14) in (2.6),

(k) = =2 m -1, (2.15)

which may be iterated to

— ()
d,(m,k) = %d,_j(m—j,k), 1<j<r (2.16)
j

where (m)®) is the rising factorial defined by (m)*) = m(m+1)- - - (m+k — 1). Therefore

d,(m,k) = <mr_’> do(m — 1,k). (2.17)
(iif)
d(mk) = 2 (d,(m -1,k - 1)+ (k- 1)d,(m —1,k)) (2.18)
m—2r
or
dy(mk) = 221 (d, -2,k — 1)+ (k= 1)d,_1 (m — 2,k)). (2.19)

The following corollary follows from Theorem 2.8.

CoroLLARY 2.9. If d,(m) denotes the total number of partitions of [m] with r-detached
successions, then

d,(m)=(mr_r)B(m—r—1), m=r+1. (2.20)
Hence, by (2.13),
d(m) = =00y (2.21)
' (m_ 1)r ! ’ )

The following corollary relates to the number e,(m,k) = ¢,(m,k) — d,(m,k) (see
Remark 1.4): (i) follows from (2.5) and (2.13), and (ii) from (2.10) and (2.20).

CoroLLARY 2.10. (i) e,(m, k) = [("™ ') = (", ") ]s2(m —r — 1,k —1).
(i) e,(m) = Sre (mk) = [("™') — (") ]B(m—r—1).

A nice generalization of the numbers d,(m, k) is given in Theorem 4.1 below.
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3. Proofs of theorems

We give the proofs of Theorems 2.1, 2.2, 2.3, 2.7, and 2.8. We recall the basic recurrence
for the Stirling set numbers s2(m, k) [3, page 245], [7]:

s2(m,k) =s2(m— 1,k — 1) + ks2(m — 1,k),

200,0)=1,  s2(n,0) = 2(0,k) =0 for nk >0, (3.1)
Proof of Theorem 2.1. (i) The set of t-separated k-partitions of [m] is represented by
H'(m,k). To find a member of H'(m,k), we either insert the class {m} into any p €
H'(m—1,k—1) in h'(m — 1,k — 1) possible ways, or put the integer m into any class of
each p € H'(m — 1,k) which does not meet the set {m — 1,m —2,...,m —t+1}. Since
{m—1,m—2,....,m—t+1} has t — 1 elements which must belong to t — 1 different
classes, the latter case gives rise to (k —t + 1)h'(m — 1,k) partitions. Thus the result fol-
lows:

ht(m,k) = h'(m—1,k—1)+ (k- t+ 1)k (m — 1,k). (3.2)

The starting value h(m,t) = 1 counts the unique partition of [m] into a complete set of
residue classes modulo t. The bounds 1 <t < k < m are therefore clear.

(ii) We prove (ii) by induction on m. The formula is true for m = 1 since h'(1,0) =
0 =s2(1,0), and A'(1,1) = 1 = s2(1,1). Assume that (ii) holds for all positive integers up
to m. Then part (i) gives

h'(m+1,k) = h'(mk — 1) + (k — t + 1) (m, k)
=s2m—t+Lk—-t)+(k—t+1)s2(m—t+1,k—t+1) (3.3)
=s2(m—t,k—t+1),

where the second equality is the inductive hypothesis and the third follows from (3.1).
Hence (ii) is true for m + 1, and the proof is complete.
(iii) This follows from (ii) and the definition of the Bell number B(m) [9, page 20]:

B(m) = 252(m,k). (3.4)
k U

Proof of Theorem 2.2, that is, (2.4). Recall that C,(m,k) is the set of k-partitions of [m]
with r successions. To find a p € C,(m,k) (m >k > 0), we can either insert the singleton
{m} into any g € C,(m — 1,k — 1) or we can put the integer m into any k — 1 classes of a
q € C,(m — 1,k), which does not contain m — 1. There are clearly (k — 1)c,(m — 1,k) pos-
sibilities in the second case. It remains to count those p € C,(m,k) in which m and m — 1
belong to the same class. These partitions are obtained by putting m into the class con-
taining m — 1 in each q € C,_;(m — 1,k). Hence the main result (2.4) follows. The num-
ber co(m, k) is completely determined by the first two cases, that is, co(m,k) = co(m —
Lk—1)+(k—1)co(m—1,k), with ¢y(1,1) = 1, ¢o(2,1) = 0. Since co(m, k) = h2(m + 1,k),
it follows from Theorem 2.1 that ¢y(m, k) = s2(m — 1,k — 1). Since C,(m, k) contains the
partition {1}{2}---{k—1}{k,k+1,...,m —k+1}, and {k,k+1,...,m} contains m — k
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successions, we must have 0 < r < m — k. The range of k is a consequence of the obser-
vation that any p € C,(m, k) with maximal k has the general form {1,2}{3,4} - - - {2r —
1,2r}{2r+1}{2r+2},..., {m}. O

Proof of Theorem 2.3, that is, (2.5). We apply induction on m. The following results show
that (2.5) holds for m = 1,2:

o(L1) = 1= (g) 2(0,0), co(2,1)=0= ((1)) 2(1,0), c(2,2)=1= (é) 201,1),

(21)=1= (Dsz(o,O), 6(2,2) =0 = (Dsz(o,n.

(3.5)

Assume that (2.5) holds for all positive integers up to m. Then Theorem 2.2 gives
c(m+1,k) = c;(m,k — 1) + (k = 1)c,(m, k) + c,—1(m, k)

=(mr_1>s2(m—r—1,k—2)+(k—1)<mr_1)52(m—r—1,k—1)

(" Nam-rk-1)

e | 2m=r,
_(m-t (2m—r—-1,k-=2)+(k—1s2(m—r—1,k—1))
S\ r ’ ’ (3.6)

+ (T:;) s2(m—r,k—1)
m—1 3 m—1
= . 2m—-r,k—1)+ o1 2m—-r,k—1)

= (T) 2m—-r,k—1).

The second equality is the inductive hypothesis and the fourth follows from (3.1). Finally,
the fifth equality follows from the Pascal triangle of binomial coefficients. Thus (2.5)
holds for m + 1. Hence Theorem 2.3 follows by mathematical induction. O

Proof of Theorem 2.7, that is, (2.12). Recall that D,(m,k) denotes the set of k-partitions
of [m] with r-detached successions. There are three ways to locate a member of D, (m, k).

(i) We can insert the singleton {m} into any p € D,(m — 1,k —1) ind,(m — 1,k — 1)
ways.

(ii) We can put the integer m into a class of a p € D,(m — 1,k) which does not contain
m — 1 to get a total of (k — 1)(d,(m — 1,k)) partitions.

(iii) Lastly we count the p € D,(m, k) in which m and m — 1 belong to a class. These are
obtained by putting m into the class containing m — 1 in any q € D, (m — 1,k) in which
m — 1 is not part of a succession. The latter partitions are counted by d,_;(m — 2,k — 1) +
(k—1)d,—1(m — 2,k), where r > 0. Adding all the partitions in (i), (ii), and (iii) gives the
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main result, namely (2.12). For the starting values note that dy(m,k) = c¢o(m, k) which is
s2(m — 1,k — 1) by Theorem 2.2. The range of r follows from the fact that [m] contains
exactly | m/2] disjoint 2-subsets of consecutive integers; the range of k is specified as
in the proof of Theorem 2.2. The condition on the last inequality follows from the fact
that m < 2r = m — 2r < 0 = [m] contains less than r distinct pairs of consecutive integers
which implies d,(m,m —r) = 0. (Il

Proof of Theorem 2.8, that is, (2.13). We apply induction on m. Since d,(m, k) = ¢,(m,k)
for r = 0,1, it follows from (the proof of) Theorem 2.3 that (2.13) holds for m = 1,2.
Assume that (2.13) holds for all positive integers up to m. Then Theorem 2.7 gives

dy(m+1,k) = dy(m,k — 1)+ (k = )d,(m, k) +dy_i (m — 1Lk — 1)+ (k = dy_1(m — 1,k)
- (m;r)SZ(m—r—l,k—2)+(k—l) (mr_r)SZ(m—r—l,k— 1)
r—1

+(m_r>sz(m—r—1,k—z)+(k—1)(’f__lr)sz(m—r—l,k—n

= (mr’) (s2m-r—Lk=2)+(k—1)s2(m—r—1,k—1))

r—1

- (’”r‘ r) 2m—rk—1)+ (’r”__f) 2(m—r,k—1)

= (m_rJrl)sZ(m—r,k— 1).

r—1

+<m_r> (2(m—1—1,k—2)+(k—1)s2(m—r— 1,k — 1))

(3.7)

The second equality is the inductive hypothesis, the fourth follows from (3.1), and the last
follows from the Pascal triangle of binomial coefficients. Hence the proof of Theorem 2.8
follows by mathematical induction. O

4. Some generalizations

Let a partition of [m] be said to have r t-successions (r > 0,¢ > 1) if it contains exactly
r t-strings of consecutive integers, where each t-string of consecutive integers is counted
within one class, and a string of more than ¢ consecutive integers in a class are consid-
ered t at a time. Denote the set of k-partitions of [m] with r t-successions by C;(m, k,r).
As before let ¢;(m, k,r) = |Ci(m,k,r)|. It follows that ¢, (m,k) = c;(m,k,r) and co(m, k) =
c1(m,k,m). Similarly, we generalize D,(m,k) by letting D;(m,k,r) represent the set of
k-partitions of [m] with r ¢-successions in which every string of consecutive integers ap-
pearing in a class has length 1 or ¢. Thus D, (m, k) = D, (m,k,r); di(m,k,r) = |Di(m, k,7)|.

It turns out that there is an easy closed formula for d;(m,k,r) whereas the one for
ci(m,k,r) remains inscrutable.

The proofs of the first two parts of the following theorem are analogous to those of
Theorems 2.7, 2.8, respectively. The details are omitted.
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TaeoreM 4.1. (1) diy(m,k,r) = d;(m — 1,k — 1,r) + (k- 1)d;(m — 1,k,r) + d;(m — t,k —
Lr—=1)+(k-1d(m—-tkyr—1),0<r<[m/t], 1 <k<m-(t-1)r, d(m,k,0) =
2(m—1,k—1).

(ii) de(m, k,r) = ("D )2(m— (t— Dr — Lk —1).

(iii) de(m,r) = Ypde(m,k,r) = (" D) B(m— (t— 1)r — 1).

It follows from Theorem 4.1(ii) that

di(m,k,r) =d;_j(m— jr,k,r), j=0,1,...,t—1,

~am— -k = ("4 Y aogm -, 4

where dy (m,k,r) = (V') dy(m,k,m),do(m, k) = d1(m,k,m).

Let W,(m,k,r) represent the set of k-partitions of [m] with r ¢-successions in which
every string of consecutive integers appearing in a class has length at most ¢. Then the set
difference E;(m,k,r) = C(m,k,r) — Wy(m,k,r) consists of those partitions in C;(m,k,r)
in which at least one class in each partition contains a string of ¢ + 1 consecutive integers,
provided that both f and r are greater than 1. It follows that D;(m, k,r) = W(m,k,r)
Ci(m,k,r), with Dy(m,k,r) = Wy(m,k,r), and W¢(m,k,r) = Ci(m,k,r) for (t,r) = (1,r),
(t,1). As usual let w(m, k,r) = |W(m, k,r)|.

We are unable to find a concise formula for w;(m,k,r) (t >2) (and hence ¢;(m,k,r)),
not even when t = 3 and r = 1. However, we have the following computational result
which is established by extending the inclusion-exclusion-type reasoning used in the
proof of Theorem 2.2.

CoROLLARY 4.2. w(m,k,r) satisfies the following recurrence:

wi(m,k,r) =wi(m—1,k—1,r)+(k— 1)w,(m— Lk,r)+wi(m—t,k—1,r—1)
-2
+k—Dwi(m—tkr—1)+> (w(m-u—1,k—1,7) (4.2)
u=1

+(k—1)wi(m—u-—1,k,r)),

0<r<[m/th1 <k<m—(t—1)r,w(mk,0) ="

integer part of N.

wi—1(m,k, j), where | N | is the

Proof. There are three ways to find an element of W, (m,k,r).

(1) We can insert the singleton {m} into any p € W,(m — 1,k — 1,r) in w,(m — 1,k —
1,r) possible ways.

(2) We can put the integer m into a class of p € W;(m — 1,k,r) under two situations:
(i) if m — 1 is part of a v-succession, t — 1 < v <t (k > 2), then put m into any

class of p which does not contain m — 1;

(ii) else put m into any class of p.
We note that (ii) requires only those p € W,(m — 1,k,r) in which the integer m —
1 is part of a u-succession for 1 < u < t — 2. Thus the total number of partitions
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from (ii) is

-2
k Z (we(m—u—1,k—1,r)+(k—1)w(m—u—1,k,r)) (4.3)

u=1

since wi(m —u — 1,k — 1,r)+ (k — 1)w,(m —u — 1,k,r) counts the p € Wy(m —
1,k,7) in which m — 1 is part of a u-succession: treating the « numbers m — u, m —
u+1,...,m—1asan integer N, then a needed p € W;(m — 1,k,r) can be formed
by inserting {N} intoa q € Wy(m —u — 1,k — 1,r) in w¢(m — u,k — 1,r) possible
ways, or by putting N into any of k — 1 classes of each g € W;(m —u — 1,k,r)
which does not contain m — u — 1, which can happen in (k — D)wi(m —u —1,k,r)
ways. Thus the total number of partitions from (i) is

-2
(k— 1)<wt(m— Lk,r)= > (w(m—u—1,k=1,r)+ (k- Dw(m—u-— 1,k,r))>.

u=1

(4.4)
Hence the number of partitions from (2.5), by adding (4.3) and (4.4), is
-2
(k—Dwi(m—1,k,r)+ Z (wem—u—-1L,k—1,r)+(k—D)w,(m—u—1,k,r)). (4.5)
u=1

(3) We count the p € W;(m,k,r) in which m and m — 1 belong to a t-succession.
These are obtained by putting m into the class of m — 1 inany g € Wy(m — 1,k,r —
1) containing m — 1 as part of a (t — 1)-succession. The required partitions are
enumerated by

wim—tk—1r—1)+(k—Dw(m—t,k,r—1). (4.6)
Adding all the partitions from (1), (2), and (3) gives the desired result:

wi(m,k,r) = wi(m—1,k—1,r)+ (k- D)wi(m — 1,k,r)
t—2
+> (wm—u—-1,k=1,r)+ (k- Dw,(m—u—1,k,r)) (4.7)

u=1
+wi(m—t,k—1L,r—1)+(k—1)wi(m—t,k,r —1).
It is clear that w;(m, k,0) = Z;f(/)(t%” wi—1(m, k, j). This completes the proof of Corollary
4.2. O

Remark 4.3. In the proof of Corollary 4.2, the apparent simplification suggested by enu-
merating the partitions from 2(i) first (since there are only two summands), and then
obtaining those from 2(ii) by complementation, leads to the following three-group con-
tribution instead of (4.5):

kwi(m —1,k,r) — Z (w(m—v—1,k—-1,r)+(k—Dw(m—v—1,kr)). (4.8)

v=t—1
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However, (4.8) will not always give correct results because it is inconsistent with the cu-
mulative “origin” w;(m, k,0). This is easily verified by a few actual computations.

Corollary 4.2 is a special case of the following result.

THEOREM 4.4. ¢(m,k,r) satisfies the following recurrence:

c(mk,r) =c;(m—1Lk—1,r)+ (k= 1)c;(m—1L,k,r)+c;(m—1,k,r — 1)

+> (e¢m—u—-1Lk—1,r)+(k—1)c;(m—u—1,k,r))

- Z (cm—u—Lk-1r—=1)+(k-1e(m—u—1Lkr—1)), (4.9)

j
O<r<m-k—t+2, 1<t<m, 1<k<m-—r(t—1).

Before sketching the proof of Theorem 4.4 we state the special case of t = 3.

COROLLARY 4.5.

c(m,k,r) =cs(m—1,k—1,r)+(k—1)cs(m— 1,k,r)+cs(m—2,k— 1,r)
+(k—1Des(m—2,k,r)+cs(m—1L,k,r—1) —c3s(m—2,k—1,r—1)
—(k=1Des(m—2,k,r - 1),

2] (4.10)

a(mk0)= (’”]_J> 2(m—1—j,k—1),

=0
O<r<m-k—-1, 1<k<m-2r.

(A derivation of the pool of starting values c3(m,k,0) is given at the end of the proof of
Theorem 4.4 below.)

Using (4.10) the numbers c3(m,k,r) are computed and displayed in Tables 4.1 and
42 forr=1and r =2, where 1 <m < 10 and 1 < k < m. The row sums c;(m,r) =

>k c3(m,k,r) are given in the last columns.

Proof of Theorem 4.4. The contributions to C,(m,k,r) follow exactly as in the proof of
Corollary 4.2 except in the third case, that is,

(1) ¢(m—1,k—1,r);

2) (k—De(m—1,kr)+ 352 (clm—u—1,k—1,r) + (k= De,(m—u—1,k,r));

(3) this time, the p € Ci(m,k,r) in which m and m — 1 belong to a t-succession are
obtained by putting m into the class of m — 1 in the g € Ci(m — 1,k,r — 1) hav-
ing m — 1 as part of a v-succession, where t — 1 <v < t+r — 1. By part (2)(i)
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Table 4.1. Partitions of [m] with one three-succession ¢;(m,k,1).

m\k 1 2 3 4 5 6 7 8§ 9 Sum
1 0 — — — — —_ = — 0
2 0 0 — — — — —_ = — 0
3 1 0 0 — — — —_ - — 1
4 0 2 0 0 — — —_ = — 2
5 0 5 3 0 0 — —_ = — 8
6 0 10 18 4 0 0 _ = — 32
7 0 20 74 42 5 0 0 —_ — 141
8§ 0 38 266 282 80 6 0 0 — 672
9 0 71 889 1564 785 135 7 0 O 3451

10 0 130 2846 7808 6150 1810 210 8§ 0 18962
Table 4.2. Partitions of [m] with two three-successions c;(m,k,2).

m\k 1 2 3 4 5 6 7 8 9 10 Sum
1 0 — — — — — _ = = — 0
2 0 0 — — — — _ = - — 0
3 0 0 0 — — — _ = - — 0
4 1 0 0 — — — _ = - — 1
5 0 2 0 0 0 — — — — 2
6 0 6 3 0 0 0 _ = - — 9
7 0 13 21 4 0 0 O — — — 38
8 0 29 95 48 5 0 0 0o — — 177
9 0 60 372 354 90 6 0 0 0 — 882

10 0 122 1342 2125 965 150 7 0 0 0 4711

the number of such partitions is

-2
c(m—1,kr—1)— Z (ctm—u—1,k—1,r—1)+(k—Dc;(m—u—1,k,r—1)).
u=1

(4.11)
Adding all the partitions from (1), (2), and (3) gives the desired result:
c(mk,r) =ci(m—1,k—1,r)+ (k—1)¢c;(m — 1,k,r)
t-2
+ Z (ctm—u—-1Lk—-1,r)+(k—Dci(m—u—1,k,r)) +c,(m—1,k,r—1)
u=1
-2

~ D (em—u—-1k=1,r = 1)+ (k= e;(m—u—Lkr—1)).
u=1

(4.12)



Augustine O. Munagi 463
For starting values, we have ¢;(m,k,0) = Z}-Z’S(H)J wi—1(m,k, j) since a partition with-
out a t-succession has successions of length at most t — 1. In particular if ¢ = 3, then

c3(m,k,0) = ZET{)” wy(m, k, j), which equals Z}’:"é“ (m;j )s2(m—1- j,k—1),by Theorem

2.3. This completes the proof of Theorem 4.4. O
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