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We define and study the spaces �p(R×Rn), 1 ≤ p ≤∞, that are of DLp type. Using the
harmonic analysis associated with the spherical mean operator, we give a new characteri-
zation of the dual space �′

p(R×Rn) and describe its bounded subsets. Next, we define a
convolution product in �′

p(R×Rn)×Mr(R×Rn), 1≤ r ≤ p <∞, and prove some new
results.

1. Introduction

The spherical mean operator � is defined, for a function f on Rn+1, even with respect to
the first variable, by

�( f )(r,x)=
∫
Sn
f (rη,x+ rξ)dσn(η,ξ), (r,x)∈R×Rn, (1.1)

where Sn is the unit sphere {(η,ξ)∈R×Rn : η2 +‖ξ‖2 = 1} in Rn+1 and σn is the surface
measure on Sn normalized to have total measure one.

This operator plays an important role and has many applications, for example, in im-
age processing of so-called synthetic aperture radar (SAR) data (see [7, 8]), or in the
linearized inverse scattering problem in acoustics [6]. In [10], the authors associate to the
operator � a Fourier transform and a convolution product and have established many
results of harmonic analysis (inversion formula, Paley-Wiener and Plancherel theorems,
etc.).

In [11], the authors define and study Weyl transforms related to the mean operator �
and have proved that these operators are compact. The spaces DLp , 1≤ p ≤∞, have been
studied by many authors [1, 2, 4, 5, 12, 13]. In this work, we introduce the function spaces
�p(R×Rn), 1≤ p ≤∞, similar to DLp , but replace the usual derivatives by the operator

L= l+
n∑
j=1

(
∂

∂xj

)2

, (1.2)
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where l is the Bessel operator defined on ]0,+∞[ by

l =
(
∂

∂r

)2

+
n

r

∂

∂r
. (1.3)

The main result of this paper gives a new characterization of the dual space �′
p(R×

Rn) of the space �p(R×Rn) and a description of its bounded subsets. More precisely,
in Section 2, we recall some harmonic results related to a convolution product and the
Fourier transform connected with the spherical mean operator, that we use in the follow-
ing sections.

In the Section 3, we define the space �p(R×Rn), 1≤ p ≤∞, to be the space of mea-
surable functions f on ]0,+∞[×Rn+1 such that for all k ∈N, Lk f belongs to the space
Lp(dν) (the space of functions of pth power integrable on [0,+∞[×Rn+1 with respect to
the measure rndr⊗dx). We give some properties of this space, in particular we prove that
it is a Frechet space.

Section 4 is consecrated to the study of the dual space �′
p(R×Rn). We give a nice

description of the elements of this space and we characterize its bounded subsets.
In the last section, we define and study a convolution product in �′

p(R × Rn) ×
Mr(R× Rn), 1 ≤ r ≤ p < ∞, where Mr(R× Rn) is the closure of the Schwartz space
S∗(R×Rn) in �r(R×Rn).

2. Spherical mean operator

In this section, we define and recall some properties of the spherical mean operator. For
more details see [3, 6, 10, 11]. We denote by

(A) �∗(R×Rn) the space of infinitely differentiable functions on R×Rn, even with
respect to the first variable,

(B) Sn the unit sphere in R×Rn,

Sn = {(η,ξ)∈R×Rn; η2 +‖ξ‖2 = 1
}

, (2.1)

where for ξ = (ξ1, . . . ,ξn), we have ‖ξ‖2 = ξ2
1 + ···+ ξ2

n ,
(C) dσ the normalized surface measure on Sn.

Definition 2.1. The spherical mean operator is defined on �∗(R×Rn) by

∀(r,x)∈ [0,+∞[×Rn, � f (r,x)=
∫
Sn
f (rη,x+ rξ)dσn(η,ξ). (2.2)

For (µ,λ)∈ C×Cn, we put

∀(r,x)∈ [0,+∞[×Rn, ϕµ,λ(r,x)=�
(

cos(µ·)e−i〈λ/·〉)(r,x). (2.3)

We have

ϕµ,λ(r,x)= j(n−1)/2

(
r
√
µ2 + λ2

)
e−i〈λ/x〉, (2.4)
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where j(n−1)/2 is the normalized Bessel function defined by

j(n−1)/2(x)= 2(n−1)/2Γ
n+ 1

2
J(n−1)/2(z)
z(n−1)/2

= Γ
n+ 1

2

+∞∑
k=0

(−1)k

k!Γ
(
(2k+ 1 +n)/2

)( z
2

)2k (2.5)

with J(n−1)/2 the Bessel function of first kind and index (n− 1)/2 [9, 15], and if λ =
(λ1, . . . ,λn) ∈ Cn and x = (x1, . . . ,xn) ∈ Rn, we put λ2 = λ2

1 + ···+ λ2
n and 〈λ/x〉 = λ1x1 +

···+ λnxn.
The normalized Bessel function j(n−1)/2 has the following Mehler integral representa-

tion:

∀r ∈R, j(n−1)/2(r)= 2Γ
(
(n+ 1)/2

)
√
πΓ(n/2)

∫ 1

0

(
1− t2)n/2−1

cos(tr)dt, (2.6)

and therefore

∀k ∈N, ∀r ∈R,
∣∣ j(k)

(n−1)/2(r)
∣∣≤ 1. (2.7)

Moreover, for all λ∈ C, the function

r �−→ j(n−1)/2(λr) (2.8)

is the unique solution of the differential equation

lu(r)=−λ2u(r),

u(0)= 1, u′(0)= 0,
(2.9)

where l is the Bessel operator defined on ]0,+∞[ by (1.3).
On the other hand, the function ϕµ,λ is the unique solution of the system

Djv(r,x)=−iλjv(r,x), j = 1,2, . . . ,n,

(l−∆)v(r,x)=−µ2v(r,x),

v(0,0)= 1;
∂v

∂r
(0,x)= 0 ∀x ∈Rn,

(2.10)

where Dj = ∂/∂xj , and ∆ is the Laplacien operator on Rn:

∆=
n∑
j=1

D2
j . (2.11)

Now let Γ be the set

Γ=R×Rn∪ {(it,x); (t,x)∈R×Rn, |t| ≤ ‖x‖}. (2.12)
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We have for all (µ,λ)∈ Γ,

sup
(r,x)∈R×Rn

∣∣ϕµ,λ(r,x)
∣∣= 1. (2.13)

In the following, we will define a convolution product and the Fourier transform as-
sociated with the spherical mean operator. For this, we use the product formula for the
functions ϕµ,λ. For all (r,x),(s, y)∈R×Rn,

ϕµ,λ(r,x)ϕµ,λ(s, y)= Γ
(
(n+ 1)/2

)
√
πΓ(n/2)

∫ π
0
ϕµ,λ

(√
r2 + s2 + 2rscosθ,x+ y

)
× (sinθ)n−1θ.

(2.14)

We denote by (see [11])

(A) dν(r,x) the measure defined on [0,+∞[×Rn by

dν(r,x)= knrndr⊗dx (2.15)

with

kn = 1
2(n−1)/2Γ

(
(n+ 1)/2

)
(2π)n/2

; (2.16)

(B) Lp(dν), 1≤ p ≤ +∞, the space of measurable functions on [0,+∞[×Rn, satisfy-
ing

‖ f ‖p,ν =
(∫

Rn

∫∞
0

∣∣ f (r,x)
∣∣pdν(r,x)

)1/p

< +∞, 1≤ p < +∞,

‖ f ‖∞,ν = esssup
(r,x)∈[0,+∞[×Rn

∣∣ f (r,x)
∣∣ <∞, p = +∞;

(2.17)

(C) dγ(µ,λ) the measure defined on the set Γ by∫
Γ
f (µ,λ)dγ(µ,λ)= kn

{∫
Rn

∫∞
0
f (µ,λ)

(
µ2 +‖λ‖2)(n−1)/2

µdµdλ

+
∫
Rn

∫ ‖λ‖
0

f (iµ,λ)
(‖λ‖2−µ2)(n−1)/2

µdµdλ
}

;

(2.18)

(D) Lp(dγ), 1≤ p ≤ +∞, the space of measurable functions on Γ, satisfying

‖ f ‖p,γ =
(∫

Γ

∣∣ f (µ,λ)
∣∣pdγ(µ,λ)

)1/p

< +∞, 1≤ p < +∞,

‖ f ‖∞,γ = esssup
(µ,λ)∈Γ

∣∣ f (µ,λ)
∣∣ <∞, p = +∞.

(2.19)

Definition 2.2. (i) The translation operator associated with the spherical mean operator
is defined on L1(dν) by for all (r,x),(s, y)∈ [0,+∞[×Rn,

τ(r,x) f (s, y)= Γ
(
(n+ 1)/2

)
√
πΓ(n/2)

∫ π
0
f
(√
r2 + s2 + 2rscosθ,x+ y

)
(sinθ)n−1dθ. (2.20)
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(ii) A convolution product associated with the spherical mean operator of f ,g ∈
L1(dν) is defined by for all (r,x)∈ [0,+∞[×Rn,

f ∗ g(r,x)=
∫
Rn

∫∞
0
f (s, y)τ(r,−x)ğ(s, y)dν(s, y), (2.21)

where

ğ(r,x)= g(r,−x). (2.22)

We have the following properties.

(A) τ(r,x)ϕµ,λ(s, y)= ϕµ,λ(r,x)ϕµ,λ(s, y).
(B) If f ∈Lp(dν), 1≤ p ≤ +∞, then for all (s, y)∈ [0,+∞[×Rn, the function τ(s,y) f ∈

Lp(dν), and we have

∥∥τ(s,y) f
∥∥
p,ν ≤ ‖ f ‖p,ν. (2.23)

(C) Let 1≤ p,q,r ≤ +∞ such that 1/r = 1/p+ 1/q− 1, then for all f ∈ Lp(dν) and all
g ∈ Lq(dν), the function f ∗ g ∈ Lr(dν), and we have

‖ f ∗ g‖r,ν ≤ ‖ f ‖p,ν‖g‖q,ν. (2.24)

Definition 2.3. The Fourier transform associated with the spherical mean operator is de-
fined on L1(dν) by

∀(µ,λ)∈ Γ, � f (µ,λ)=
∫
Rn

∫∞
0
f (r,x)ϕµ,λ(r,x)dν(r,x). (2.25)

We have the following properties.

(A) For all (µ,λ)∈ Γ,

� f (µ,λ)= Bo�̃ f (µ,λ), (2.26)

where for all (µ,λ)∈R×Rn,

�̃ f (µ,λ)=
∫
Rn

∫∞
0
f (r,x) j(n−1)/2(rµ)e−i〈λ/x〉dν(r,x),

∀(µ,λ)∈ Γ, B f (µ,λ)= f
(√
µ2 + λ2,λ

)
.

(2.27)

(B) For f ∈ L1(dν) such that � f ∈ L1(dγ), we have the inversion formula for �: for
almost every (r,x)∈ [0,+∞[×Rn,

f (r,x)=
∫∫

Γ
� f (µ,λ)ϕµ,λ(r,x)dγ(µ,λ). (2.28)
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(C) Let f be in L1(dν). For all (s, y)∈ [0,+∞[×Rn, we have

∀(µ,λ)∈ Γ, �
(
τ(s,−y) f

)
(µ,λ)= ϕµ,λ(s, y)� f (µ,λ). (2.29)

(D) For f ,g ∈ L1(dν), we have

∀(µ,λ)∈ Γ, �( f ∗ g)(µ,λ)=� f (µ,λ)�g(µ,λ). (2.30)

(E) For all p ∈ [1,+∞] and f ∈ Lp(dν),

B f ∈ Lp(dγ), ‖B f ‖p,γ = ‖ f ‖p,ν. (2.31)

In particular, the mapping B is an isometric isomorphism from L2(dν) onto L2(dγ).

The mapping �̃ is also an isometric isomorphism from L2(dν) onto itself. Consequently,
the Fourier transform � is an isometric isomorphism from L2(dν) onto L2(dγ).

Thus,

∀ f ∈ L2(dν), � f ∈ L2(dγ), ‖� f ‖2,γ = ‖ f ‖2,ν. (2.32)

Proposition 2.4 (see[11]). Let f be in Lp(dν), with p ∈ [1,2]. Then � f ∈ Lp′(dγ), with
1/p+ 1/p′ = 1, and

‖� f ‖p′,γ ≤ ‖ f ‖p,ν. (2.33)

We denote by

(A) S∗(R×Rn) the space of infinitely differentiable functions on R×Rn, even with
respect to the first variable, rapidly decreasing together with all their derivatives;

(B) S∗(Γ) the space of infinitely differentiable functions on Γ, even with respect to the
first variable, rapidly decreasing together with all their derivatives; that means for
all k1,k2 ∈N, for all α∈Nn,

sup

{(
1 + |µ|2 +‖λ‖2)k1

∣∣∣∣∣
(
∂

∂µ

)k2

Dα
λ f (µ,λ)

∣∣∣∣∣; (µ,λ)∈ Γ

}
< +∞, (2.34)

where

∂ f

∂µ
(µ,λ)=


∂

∂r

(
f (r,λ)

)
if µ= r ∈R,

1
i

∂

∂t

(
f (it,λ)

)
if µ= it, |t| ≤ ‖λ‖,

Dα
λ =

(
∂

∂λ1

)α1( ∂

∂λ2

)α2

···
(
∂

∂λn

)αn
,

(2.35)

(see [10]);
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(C) S′∗(R×Rn) and S′∗(Γ) are, respectively, the dual spaces of S∗(R×Rn) and S∗(Γ).

Each of these spaces is equipped with its usual topology.

Remark 2.5. From [10], the Fourier transform � is a topological isomorphism from
S∗(R×Rn) onto S∗(Γ). The inverse mapping is given by for all (r,x)∈R×Rn,

�−1 f (r,x)=
∫
Γ
f (µ,λ)ϕµ,λ(r,x)dγ(µ,λ). (2.36)

Definition 2.6. The Fourier transform � is defined on S′∗(R×Rn) by

∀T ∈ S′∗
(
R×Rn

)
,

〈
�(T),ϕ

〉= 〈T ,�−1(ϕ)
〉

, ϕ∈ S∗(Γ). (2.37)

Since the Fourier transform � is an isomorphism from S∗(R×Rn) onto S∗(Γ), we
deduce that � is also an isomorphism from S′∗(R×Rn) onto S′∗(Γ).

3. The space �p(R×Rn)

We denote by

(A) L the partial differential operator defined by

L=−
(
∂2

∂r2
+
n

r

∂

∂r

)
−

n∑
j=0

∂2

∂x2
j

; (3.1)

(B) for f ∈ Lp(dν), p ∈ [1,∞], Tf is the element of S′∗(R×Rn) defined by

〈
Tf ,ϕ

〉= ∫
Rn

∫∞
0
f (r,x)ϕ(r,x)dν(r,x), ϕ∈ S∗

(
R×Rn

)
; (3.2)

(C) for g ∈ Lp(dγ), p ∈ [1,∞], Tg is the element of S′∗(Γ) defined by

〈
Tg ,ψ

〉= ∫
Γ
g(µ,λ)ψ(µ,λ)dγ(µ,λ), ψ ∈ S∗(Γ). (3.3)

From Proposition 2.4 and Remark 2.5, we deduce that for all f ∈ Lp(dν), 1 ≤ p ≤ 2,
� f belongs to the space Lp

′
(dγ) and we have

�
(
Tf
)= T�( f̆ ). (3.4)

Definition 3.1. Let p ∈ [1,∞]. We define �p(R×Rn) to be the set of measurable func-
tions f onR×Rn, even with respect to the first variable, and such that for all k ∈N there
exists gk ∈ Lp(dν) satisfying

LkT f = Tgk . (3.5)

The space �p(R×Rn) is equipped with the topology generated by the family of norms

γm,p( f )= max
0≤k≤m

∥∥gk∥∥p,ν, m∈N, (3.6)
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where gk,k ∈N, is the function given by the relation (3.5). Let

dp : �p
(
R×Rn

)×�p
(
R×Rn

)−→ [0,∞[,

( f ,g) �−→ dp( f ,g)=
∞∑
m=0

1
2m

γm,p( f − g)

1 + γm,p( f − g)
.

(3.7)

Then dp is a distance on �p(R×Rn). Moreover the sequence ( fk)k∈N converges to 0
in (�p(R×Rn),dp) if and only if

∀m∈N, γm,p
(
fk
)−−−→
k→∞

0. (3.8)

In the following, we will give some properties of the space �p(R×Rn).

Proposition 3.2. (�p(R×Rn),dp) is a Frechet space.

Proof. Let ( fm)m∈N be a Cauchy sequence in (�p(R×Rn),dp) and let (gm,k)m∈N ⊂ Lp(dν)
such that

LkT fm = Tgm,k , k ∈N. (3.9)

Then for all k ∈N, (gm,k)m∈N is a Cauchy sequence in Lp(dν). We put

f = g0 = lim
m→∞ fm,

gk = lim
m→∞gm,k, k ∈N∗,

(3.10)

in Lp(dν). Thus

∀k ∈N, Tgm,k −−−→m→∞ Tgk , (3.11)

in S′∗(R×Rn). Since Lk is a continuous operator from S′∗(R×Rn) into itself, we deduce
that

LkT fm −−−→m→∞ LkT f , (3.12)

in S′∗(R×Rn).
From relations (3.9) and (3.11), we deduce that

∀k ∈N, LkT f = Tgk . (3.13)

This proves that f ∈�p(R×Rn) and

fm −−−→
m→∞ f (3.14)

in (�p(R×Rn),dp). �
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Proposition 3.3. Let p ∈ [1,2] and f ∈�p(R×Rn), then

(i) for all k ∈N, the function

(µ,λ)−→ (
1 +µ2 + 2‖λ‖2)k�( f )(µ,λ) (3.15)

belongs to the space Lp
′
(dγ) with p′ = p/(p− 1);

(ii) �p(R×Rn)∩�∗(R×Rn)⊂ �∗(R×Rn), where �∗(R×Rn) is the space of con-
tinuous functions on R×Rn even with respect to the first variable.

Proof. (i) Let f ∈�p(R×Rn), 1≤ p ≤ 2, and gk ∈ Lp(dν) such that

LkT f = Tgk k ∈N. (3.16)

From relation (3.4), we have

�
(
Tgk
)= T�(ğk), (3.17)

which gives

�
(
LkT f

)= T�(ğk). (3.18)

On the other hand

�
(
LkT f

)= (µ2 + 2‖λ‖2)k�(Tf
)= T(µ2+2‖λ‖2)k�( f̆ ), (3.19)

hence (
µ2 + 2‖λ‖2)k�( f )=�

(
gk
)
. (3.20)

This equality, together with the fact that the function �(gk) belongs to the space Lp
′
(dν)

implies (i).
(ii) Let f ∈�p(R×Rn)∩�∗(R×Rn). From the assertion (i) and relations (2.26)

and (2.31), we deduce that for all k ∈N, the function

(r,x)−→ (
r2 +‖x‖2)k�̃( f ) (3.21)

belongs to the space Lp
′
(dν), in particular �̃( f )∈ L1(dν)∩L2(dν).

On the other hand, the transform �̃ is an isometric isomorphism from L2(dν) onto
itself, then from the inversion formula for �̃ and using the continuity of the function f ,
we have for all (r,x)∈R×Rn,

f (r,x)=
∫
Rn

∫∞
0

�̃ f (µ,λ) j(n−1)/2(rµ)ei〈λ/x〉dν(µ,λ). (3.22)

Consequently, (ii) follows from relation (2.7) and the fact that for all k ∈N, α∈Nn, the
function

(µ,λ)−→ µkλα�̃(µ,λ) (3.23)

belongs to the space L1(dν). �
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Proposition 3.4. Let p ∈ [1,2], then, for all r ∈ [2,∞],

�p
(
R×Rn

)∩�∗
(
R×Rn

)⊂�r
(
R×Rn

)
. (3.24)

Proof. Let f ∈ �p(R×Rn)∩�∗(R×Rn), p ∈ [1,2], r ≥ 2, and r′ = r/(r − 1). From
Proposition 3.3, we deduce that f ∈ �∗(R×Rn) and for all k ∈ N, the function (3.21)
belongs to the space Lp

′
(dν). By applying Holder’s inequality, it follows that this last func-

tion belongs to the space Lr
′
(dν). On the other hand, for all (r,x)∈R×Rn,

Lk f (r,x)=
∫
Rn

∫∞
0

(
µ2 +‖λ‖2)k�̃( f )(µ,λ) j(n−1)/2(rµ)ei〈λ/x〉dν(µ,λ)

= �̃
((
µ2 +‖λ‖2)k�̃( f̆ )

)
(r,x).

(3.25)

From Proposition 2.4 and the fact that

∥∥�(g)
∥∥
r,γ =

∥∥�̃(g)
∥∥
r,ν, g ∈ Lr′(dν), (3.26)

we deduce that, for all k ∈N, the function Lk f belongs to the space Lr(dν). �

4. The dual space �′
p(R×Rn)

In this section, we will give a new characterization of the dual space �′
p(R×Rn) of

�p(R×Rn). We recall that for every f ∈�p(R×Rn), the family {Vm,p,ε( f ), m∈N, ε>0}
is a basic of neighborhoods of f in (�p(R×Rn),dp), where

Vm,p,ε( f )= {g ∈�p
(
R×Rn

)
, γm,p( f − g) < ε

}
. (4.1)

In addition, T ∈�′
p(R×Rn) if and only if there exist m∈N and c > 0 such that

∀ f ∈�p
(
R×Rn

)
,

∣∣〈T , f 〉∣∣≤ cγm,p( f ). (4.2)

For f ∈ Lp′(dν) and ϕ∈�p(R×Rn), we put

〈
Lk
(
Tf
)
,ϕ
〉= ∫

Rn

∫∞
0
f (r,x)ψk(r,x)dν(r,x) (4.3)

with LkTϕ = Tψk . Then

∣∣〈Lk(Tf
)
,ϕ
〉∣∣≤ ‖ f ‖p′,ν∥∥ψk∥∥p,ν ≤ ‖ f ‖p′,νγk,p(ϕ). (4.4)

This proves that for all f ∈ Lp′(dν) and k ∈N, the functional LkT f defined by the relation
(4.3) belongs to the space �′

p(R×Rn).
In the following, we will prove that every element of �′

p(R×Rn) is also of this type.
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Theorem 4.1. Let T ∈ S′∗(R×Rn). Then T ∈�′
p(R×Rn), 1≤ p <∞, if and only if there

exist m∈N and { f0, . . . , fm} ⊂ Lp′(dν) such that

T =
m∑
k=0

LkT fk , (4.5)

where LkT fk is given by relation (4.3).

Proof. It is clear that if

T =
m∑
k=0

LkT fk ,
{
f0, . . . , fm

}⊂ Lp′(dν), (4.6)

then T belongs to the space �′
p(R×Rn).

Conversely, suppose that T ∈�′
p(R×Rn). From relation (4.2) there exist m∈N and

c > 0 such that

∀ϕ∈�p
(
R×Rn

)
,

∣∣〈T ,ϕ〉∣∣≤ cγm,p(ϕ). (4.7)

Let

(
Lp(dν)

)m+1 = {( f0, . . . , fm
)
, fk ∈ Lp(dν), 0≤ k ≤m} (4.8)

equipped with the norm ∥∥( f0, . . . , fm
)∥∥

(Lp(dν))m+1 = max
0≤k≤m

∥∥ fk∥∥p,ν. (4.9)

We consider the mappings

� : �p
(
R×Rn

)−→ (
Lp(dν)

)m+1
,

ϕ �−→ (
ϕ,g1, . . . ,gm

)
,

(4.10)

where

LkTϕ = Tgk , k ≥ 1,

� : Im(�)−→ C,

�(�ϕ)= 〈T ,ϕ〉.
(4.11)

From relation (4.2) we deduce that∣∣��(ϕ)
∣∣= ∣∣〈T ,ϕ〉∣∣≤ c∥∥�(ϕ)

∥∥
(Lp(dν))m+1 . (4.12)

This means that � is a continuous functional on the subspace Im(�) of the space
(Lp(dν))m+1. From Hahn-Banach theorems, there exists a continuous extension of � to
(Lp(dν))m+1, denoted again by �.
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By Riez’s theorem there exist ( f0, . . . , fm)∈ (Lp
′
(dν))m+1 such that for all (ϕ0, . . . ,ϕm)∈

(Lp(dν))m+1,

�
(
ϕ0, . . . ,ϕm

)= m∑
k=0

∫
Rn

∫∞
0
fk(r,x)ϕk(r,x)dν(r,x). (4.13)

By means of relation (4.3), we deduce that for ϕ∈�p(R×Rn), we have

〈T ,ϕ〉 =
m∑
k=0

∫
Rn

∫∞
0
fk(r,x)ϕk(r,x)dν(r,x)=

m∑
k=0

〈
LkT fk ,ϕ

〉
. (4.14)

This completes the proof of Theorem 4.1. �

Proposition 4.2. Let p ≥ 2. Then for all T ∈�′
p(R×Rn), there exist m ∈ N and F ∈

Lp(dγ) such that

�(T)= T(1+µ2+2‖λ‖2)mF . (4.15)

Proof. Let T ∈ �′
p(R × Rn). From Theorem 4.1 there exist m ∈ N and ( f0, . . . , fm) ∈

(Lp
′
(dν))m+1, p′ = p/(p− 1), such that

T =
m∑
k=0

LkT fk . (4.16)

Consequently

�(T)=
m∑
k=0

�
(
LkT fk

)= m∑
k=0

(
µ2 + 2‖λ‖2)k�(Tfk

)
. (4.17)

By using relation (3.4) we get (4.15), where

F =
m∑
k=0

(
µ2 + 2‖λ‖2

)k(
1 +µ2 + 2‖λ‖2

)m�
(
f̌k
)
, (4.18)

which proves the result. �

Proposition 4.3. Let T ∈ S′∗(R×Rn), then T ∈ �′
2(R×Rn) if and only if there exist

m∈N and F ∈ L2(dγ) such that (4.15) holds.

Proof. From Proposition 4.2, we deduce that if T ∈�′
2(R×Rn), then there exist m∈N

and F ∈ L2(dγ) verifying (4.15). Conversely, suppose that (4.15) holds with F ∈ L2(dγ).
Since � is an isometric isomorphism from L2(dν) onto L2(dγ), then there exists G ∈
L2(dν) such that �(G)= F and from relation (3.4) we have

�
(
TĞ
)= TF. (4.19)
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Consequently

�(T)=�
(
(I +L)mTĞ

)
, (4.20)

thus

T =
m∑
k=0

CkmL
kTĞ, (4.21)

and Theorem 4.1 implies that T ∈�′
2(R×Rn). �

We denote by

(A) �∗(R×Rn) the space of infinitely differentiable functions on R×Rn, even with
respect to the first variable and with compact support, equipped with its usual
topology;

(B) for a > 0, �∗,a(R×Rn) the subspace of �∗(R×Rn) consisting of function f such
that supp f ⊂ B(0,a)= {(r,x)∈R×Rn, r2 +‖x‖2 ≤ a2};

(C) for a > 0, �′∗,a(R×Rn) the dual space of �∗,a(R×Rn);
(D) for a > 0 and m∈N, 	m

a (R×Rn) the space of function f : R×Rn → C of class
C2m onR×Rn, even with respect to the first variable and with support in B(0,a),
normed by

N∞,m( f )= max
0≤k≤m

∥∥Lk( f )
∥∥∞,ν. (4.22)

Proposition 4.4. Let a > 0 andm∈N. Then there exists po ∈N such that for every p ∈N,
p ≥ po, it is possible to find ϕp ∈	m

a (R×Rn) and ψp ∈�∗,a(R×Rn) satisfying

δ = (I +L)pTϕp +Tψp (4.23)

in S′∗(R×Rn).

Proof. Let p ≥ n+ 1 and gp the function defined by

∀(µ,λ)∈R×Rn, gp(µ,λ)= �̃

(
1(

1 + r2 +‖x‖2
)p
)

(µ,λ). (4.24)

Using relation (2.7), we deduce that there exists po ∈N such that for all p ≥ po the func-
tion gp is of class C2m on R×Rn (e.g., we can choose po = 3n+ 1 + 2m).

Now, we prove that the function gp is infinitely differentiable on R×Rn \ {(0, . . . ,0)}.
The function gp can be written as

gp(µ,λ)= 1
2n−1/2Γ(n+ 1/2)

∫∞
0

1(
1 + s2

)p jn−1/2

(
s
√
µ2 +‖λ‖2

)
s2nds. (4.25)
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By relation (2.6) and Fubini’s theorem we get

gp(µ,λ)= 1
2n−1/2

√
πΓ(n)

∫ 1

−1

(
1− t2)n−1

∫∞
0

cos
(
ts
√
µ2 +‖λ‖2

)
(
1 + s2

)p s2nds

dt
= 1

2n−3/2
√
πΓ(n)

∫ 1

0

(
1− t2)n−1

hp
(
t
√
µ2 +‖λ‖2

)
dt,

(4.26)

where

hp(u)=
∫∞

0

cos(su)(
1 + s2

)p s2nds= 1
2

∫∞
−∞

eisu(
1 + s2

)p s2nds. (4.27)

By standard calculus, we have ∫∞
0

cos(su)(
1 + s2

)p s2nds= e−uP(u) (4.28)

with

P(u)= π

22p−1

p−1∑
k=0

C
p−1
2p−2−k
k!

(2u)k. (4.29)

On the other hand, we have

hp(u)= (−1)n
(
d

du

)2n
(

1
2

∫∞
−∞

eisu(
1 + s2

)p ds
)

, (4.30)

then, we get

∀u≥ 0, hp(u)=Qp(u)e−u, (4.31)

where Qp is a real polynomial. Since hp is an even function on R, then we deduce that

∀u∈R, hp(u)= kp
(|u|), (4.32)

where kp is the infinitely differentiable function defined on R by

kp(u)=Qp(u)e−u. (4.33)

Now, the function

u−→ Fp(u)= 1
2n−3/2

√
πΓ(n)

∫ 1

0

(
1− t2)n−1

kp(tu)dt (4.34)

is infinitely differentiable on R and we have

gp(µ,λ)= Fp
(√
µ2 +‖λ‖2

)
. (4.35)
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This shows that the function gp is infinitely differentiable on R×Rn \ {(0, . . . ,0)}, even
with respect to the first variable.

Let γ ∈�∗,a(R×Rn) such that

∀(r,x)∈R×Rn, r2 + x2 ≤ a2

4
, γ(r,x)= 1. (4.36)

Since (I +L)pTgp = δ, we get

γ(I +L)pTgp = (I +L)pTgp = δ. (4.37)

On the other hand, by using the fact that the function gp is infinitely differentiable on
R×Rn \ {(0, . . . ,0)}, we deduce that the function

ϕp(r,x)= (γ− 1)(I +L)pgp + (I +L)p
(
(1− γ)gp

)
(4.38)

belongs to the space �∗,a(R×Rn).
Moreover, from relation (4.37), we have

T(γ−1)(I+L)pgp = (γ− 1)(I +L)pTgp = 0, (4.39)

and this implies by using relation (4.38) that

Tϕp = T(I+L)p((1−γ)gp) = (I +L)pT((1−γ)gp). (4.40)

Hence,

Tϕp + (I +L)pTγgp = (I +L)pTgp = δ, (4.41)

and this completes the proof of the proposition by taking ψp = γgp. �

To prove the main result of this section, that is, Theorem 4.7, we will define some
new families of norms on the space �∗,a(R×Rn). We use these norms to prove that the
elements of all bounded subset B′ ⊂�′∗,a(R×Rn) can be continuously extended on the
space 	m

a (R×Rn).
For f ∈�∗,a(R×Rn), a > 0,

(A) Pm( f )=maxk+|α|≤m‖(∂/∂r)kDα f ‖∞,ν,
(B) P̃m( f )=maxk+|α|≤m‖lkDα f ‖∞,ν,
(C) Np,m( f )=max0≤k≤m‖Lk( f )‖p,ν, p ∈ [1,∞],

where l is defined by relation (1.3).

Lemma 4.5. (i) For all m∈N, there exists c1 > 0 such that

∀ϕ∈�∗,a
(
R×Rn

)
, Pm(ϕ)≤ c1P̃m(ϕ). (4.42)

(ii) For all m∈N, there exist c2 > 0 and m′ ∈N such that

∀ϕ∈�∗,a
(
R×Rn

)
, P̃m(ϕ)≤ c2Np,m′(ϕ). (4.43)
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Proof. (i) Let m∈N, and ϕ∈�∗,a(R×Rn). By induction on k we have

(
∂

∂r

)k
Dαϕ(r,x)=

k∑
s=0

Ps(r)
(
∂

∂r2

)s
Dαϕ(r,x), (4.44)

where Ps is a real polynomial. On the other hand, and also by induction, we deduce that
for all s≥ 1,(

∂

∂r2

)s
Dαϕ(r,x)=

∫ 1

0
···

∫ 1

0
lsDαϕ

(
rt1, . . . ,ts,x

)
tn+2(s−1)
1 , . . . ,tns dt1, . . . ,dts. (4.45)

From relations (4.44) and (4.45), it follows that there exists ca,m > 0 satisfying

Pm(ϕ)≤ ca,mP̃m(ϕ). (4.46)

(ii) Let p ∈ [1,∞], m∈N, and m1 ∈N such that∥∥∥∥ 1(
1 +µ2 +‖λ‖2

)m1

∥∥∥∥
1,ν
<∞, (4.47)

then, for all (k,α)∈N×Nn, k+ |α| ≤m, we have∥∥lkDαϕ
∥∥∞,ν =

∥∥�̃−1(�̃(lkDαϕ
))∥∥∞,ν

≤ ∥∥�̃
(
lkDαϕ

)∥∥
1,ν

≤ ∥∥µ2kλα�̃(ϕ)
∥∥

1,ν

≤
∥∥∥(1 +µ2 +‖λ‖2)m�̃(ϕ)

∥∥∥
1,ν

=
∥∥∥∥ 1(

1 +µ2 +‖λ‖2
)m1 �̃

(
(I +L)m+m1ϕ

)∥∥∥∥
1,ν

≤
∥∥∥∥ 1(

1 +µ2 +‖λ‖2
)m1

∥∥∥∥
1,ν

∥∥�̃
(
(I +L)m+m1ϕ

)∥∥∞,ν

≤
∥∥∥∥ 1(

1 +µ2 +‖λ‖2
)m1

∥∥∥∥
1,ν

∥∥(I +L)m+m1ϕ
∥∥

1,ν,

(4.48)

and by Holder’s inequality, we get

∥∥lkDαϕ
∥∥∞,ν ≤

∥∥∥∥ 1(
1 +µ2 +‖λ‖2

)m1

∥∥∥∥
1,ν

(
ν
(
B(0,a)

))1/p′∥∥(I +L)m+m1ϕ
∥∥
p,ν

≤
∥∥∥∥ 1(

1 +µ2 +‖λ‖2
)m1

∥∥∥∥
1,ν

(
ν
(
B(0,a)

))1/p′
2m+m1Np,m+m1 (ϕ),

(4.49)

which implies that

P̃m(ϕ)≤ 2m+m1
(
ν
(
B(0,a)

))1/p′
∥∥∥∥ 1(

1 +µ2 +‖λ‖2
)m1

∥∥∥∥
1,ν
Np,m+m1 (ϕ), (4.50)

and the proof of the lemma is complete. �
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Theorem 4.6. Let a > 0 and B′ a weakly∗ bounded set of �′∗,a(R×Rn). Then, there exists
m∈N such that the elements of B′ can be continuously extended to 	m

a (R×Rn). Moreover,
the family of these extensions is equicontinuous.

Proof. Let p ∈ [1,∞]. Since B′ is weakly∗ bounded in D′∗,a(R×Rn), then from [14] and
Lemma 4.5 there exist a positive constant c and m ∈ N such that for all T ∈ B′, for all
ϕ∈D∗,a(R×Rn), ∣∣〈T ,ϕ〉∣∣≤ cNp,m(ϕ). (4.51)

We consider the mappings

A : 	m
a

(
R×Rn

)−→ (
Lp(dν)

)m+1
,

ϕ �−→ (
Lkϕ

)
0≤k≤m,

(4.52)

and for all T ∈ B′,
LT : A

(
D∗,a

(
R×Rn

))−→ C,〈
LT ,Aϕ

〉= 〈T ,ϕ〉. (4.53)

From relation (4.51), we deduce that for all ϕ∈D∗,a(R×Rn),∣∣〈LT ,Aϕ
〉∣∣≤ c∥∥Aϕ∥∥(Lp(dν))m+1 . (4.54)

This means that LT is a continuous functional on the subspace A(D∗,a(R×Rn)) of the
space (Lp(dν))m+1 and that for all T ∈ B′,∥∥LT∥∥A(D∗,a(R×Rn)) = sup

‖Aϕ‖(Lp (dν))m+1≤1

∣∣〈LT ,Aϕ
〉∣∣≤ c. (4.55)

From the Hahn-Banach theorems, LT can be continuously extended on (Lp(dν))m+1, de-
noted again by LT . Furthermore, for all T ∈ B′,∥∥LT∥∥(Lp(dν))m+1 = sup

‖ψ‖(Lp (dν))m+1≤1

∣∣〈LT ,ψ
〉∣∣= ∥∥LT∥∥A(D∗,a(R×Rn)) ≤ c. (4.56)

Now, from the Riez theorem, there exists ( fT ,k)0≤k≤m ⊂ Lp
′
(dν) such that for all ψ =

(ψ0, . . . ,ψm)∈ (Lp(dν))m+1,

〈
LT ,ψ

〉= m∑
k=0

∫
Rn

∫∞
0
fT ,k(r,x)ψk(r,x)dν (4.57)

with ∥∥LT∥∥(Lp(dν))m+1 = max
0≤k≤m

∥∥ fT ,k
∥∥
p′,ν. (4.58)

Thus, from (4.56) it follows that for all T ∈ B′, for all k ∈N, 0≤ k ≤m,∥∥ fT ,k
∥∥
p′,ν ≤ c. (4.59)
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In particular, for ϕ∈	m
a (R×Rn) we have

〈
LT ,Aϕ

〉= m∑
k=0

∫
R

∫∞
0
fT ,k(r,x)Lk(ϕ)(r,x)dν(r,x). (4.60)

Using Holder’s inequality and relation (4.59), we get for all T ∈ B′, for all ϕ ∈	m
a (R×

Rn),

∣∣〈LT ,Aϕ
〉∣∣≤ (m+ 1)c

[
ν
(
B(0,a)

)]1/p
N∞,m(ϕ). (4.61)

This shows that the mapping LToA is a continuous extension of T on 	m
a (R×Rn) and

that the family {LToA}T∈B′ is equicontinuous, when applied to 	m
a (R×Rn). This com-

pletes the proof of Theorem 4.6. �

In the following, we will give a new characterization of the space �′
p(R×Rn).

Theorem 4.7. Let T ∈ S′∗(R×Rn), p ∈ [1,∞[, p′ = p/(p− 1). Then T ∈�′
p(R×Rn) if

and only if for every ϕ∈�∗(R×Rn), the function T ∗ϕ belongs to the space Lp
′
(dν), where

T ∗ϕ(r,x)= 〈T ,τ(r,−x)ϕ̆
〉
. (4.62)

Proof. LetT ∈�′
p(R×Rn). From Theorem 4.1, there existm∈N and f0, . . . , fm ∈ Lp′(dν)

such that

T =
m∑
k=0

LkT fk , (4.63)

in �′
p(R×Rn). Thus, for every ϕ∈�∗(R×Rn),

T ∗ϕ=
m∑
k=0

Tfk ∗Lkϕ=
m∑
k=0

fk ∗Lkϕ. (4.64)

Since, for all k ∈ N, 0 ≤ k ≤ m, fk ∈ Lp
′
(dν) and Lkϕ ∈ L1(dν), then from inequality

(2.24), we deduce that fk ∗ Lkϕ ∈ Lp
′
(dν). This implies that the function T ∗ϕ belongs

to the space Lp
′
(dν).

Conversely, let T ∈ S′∗(R×Rn) such that for every ϕ∈�∗(R×Rn) the function T ∗ϕ
belongs to the space Lp

′
(dν). For ϕ,ψ in �∗(R×Rn), we have

〈
TT∗ϕ,ψ

〉= 〈T ,ϕ∗ ψ̆〉 = 〈T ,ψ ∗ ϕ̆〉 = 〈TT∗ψ ,ϕ
〉
. (4.65)

From Holder’s inequality and using the hypothesis, we obtain

∣∣〈TT∗ϕ,ψ
〉∣∣≤ ‖T ∗ψ‖p′,ν‖ϕ‖p,ν, (4.66)
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from which we deduce that the set

B′ = {TT∗ϕ, ϕ∈�∗
(
R×Rn

)
; ‖ϕ‖p,ν ≤ 1

}
(4.67)

is bounded in �′∗(R×Rn).
Now, using Theorem 4.6, it follows that for all a > 0 there exists m ∈N such that for

all ϕ∈�∗(R×Rn), ‖ϕ‖p,ν ≤ 1, the mapping TT∗ϕ can be continuously extended on the
space 	m

a (R×Rn) and the family of these extensions is equicontinuous, which means
that there exists c > 0 such that for all ϕ∈�∗(R×Rn), ‖ϕ‖p,ν ≤ 1, for all ψ ∈	m

a (R×
Rn),

∣∣〈TT∗ϕ,ψ
〉∣∣≤ cN∞,m(ψ). (4.68)

This involves that for all ϕ∈�∗(R×Rn), for all ψ ∈	m
a (R×Rn),

∣∣〈TT∗ϕ,ψ
〉∣∣≤ cN∞,m(ψ)‖ϕ‖p,ν. (4.69)

On the other hand, we have for all ϕ∈�∗(R×Rn), for all ψ ∈	m
a (R×Rn),

〈
TT∗ϕ,ψ

〉= 〈T ∗Tψ , ϕ̆
〉

, (4.70)

where for all ϕ∈ S∗(R×Rn),

〈
T ∗Tψ ,ϕ

〉= 〈T ,Tψ ∗ϕ
〉= 〈T ,ψ ∗ϕ〉. (4.71)

Relations (4.69) and (4.70) lead to for all ϕ∈�∗(R×Rn),

∣∣〈T ∗Tψ ,ϕ
〉∣∣≤ cN∞,m(ψ)‖ϕ‖p,ν. (4.72)

This last inequality shows that the functional T ∗Tψ can be continuously extended on
the space Lp(dν) and from Riez’s theorem, there exists g ∈ Lp′(dν) such that

T ∗Tψ = Tg. (4.73)

Furthermore, from Proposition 4.4, there exist s ∈ N, ψs ∈ 	m
a (R × Rn), and ϕs ∈

�∗,a(R×Rn) satisfying

δ = (I +L)sTψs +Tϕs , (4.74)

then

T = (I +L)s
(
T ∗Tψs

)
+T ∗Tϕs = (I +L)s

(
T ∗Tψs

)
+TT∗ϕs . (4.75)

We complete the proof by using the hypothesis, relation (4.73), and Theorem 4.1. �

In the following, we will give a characterization of the bounded sets in �′
p(R×Rn).
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Theorem 4.8. Let p ∈ [1,∞[ and let B′ be a subset of �′
p(R×Rn). The following assertions

are equivalent:

(i) B′ is weakly bounded in �′
p(R×Rn),

(ii) there exist c > 0 and m ∈ N such that for every T ∈ B′, it is possible to find
f0,T , . . . , fm,T ⊂ Lp′(dν) satisfying

T =
m∑
k=0

LkT fk with max
0≤k≤m

∥∥ fk∥∥p′,ν ≤ c, (4.76)

(iii) for every ϕ∈�∗(R×Rn), the set {T ∗ϕ}T∈B′ is bounded in Lp
′
(dν).

Proof. (1) Suppose that B′ is weakly∗ bounded in �′
p(R×Rn), then from [14] B′ is

equicontinuous. There exist c > 0 and m∈N such that

∀T ∈ B′, ∀ f ∈�p
(
R×Rn

)
, |〈T , f 〉| ≤ cγm,p( f ). (4.77)

As in the proof of Theorem 4.6, we consider the mappings

A : �p
(
R×Rn

)−→ (
Lp(dν)

)m+1
,

f �−→ (
f ,g1, . . . ,gm

) (4.78)

with

LkT f = Tgk , 0≤ k ≤m, (4.79)

and for all T ∈ B′,

LT :A
(
�p

(
R×Rn

))−→ C,〈
LT ,A( f )

〉= 〈T , f 〉. (4.80)

Then, relation (4.77) implies that for all ϕ∈�p(R×Rn),

∣∣LT(Aϕ)
∣∣≤ c‖Aϕ‖(Lp(dν))m+1 . (4.81)

Using Hahn-Banach’s theorem and Riez’s theorem, we deduce that LT can be continu-
ously extended on (Lp(dν))m+1, denoted again by LT , and that there exists ( fT ,k)0≤k≤m ⊂
Lp

′
(dν) verifying for all ψ = (ψ0, . . . ,ψm)∈ (Lp(dν))m+1,

〈
LT ,ψ

〉= m∑
k=0

∫
Rn

∫∞
0
fT ,k(r,x)ψk(r,x)dν(r,x) (4.82)

with

∥∥LT∥∥(Lp(dν))m+1 = max
0≤k≤m

∥∥ fT ,k
∥∥
p′,ν ≤ c. (4.83)
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In particular, if ψ =A( f ), f ∈�p(R×Rn),

〈
LT ,A( f )

〉= 〈T , f 〉 =
m∑
k=0

〈
LkT fT ,k , f

〉
. (4.84)

This proves that (i)⇒(ii).
(2) Suppose that there exist c > 0 and m ∈ N such that for every T ∈ B′ we can find

f0,T , . . . , fm,T ⊂ Lp′(dν) satisfying

T =
m∑
k=0

LkT fT ,k , max
0≤k≤m

∥∥ fT ,k
∥∥
p′,ν ≤ c. (4.85)

Then for all f ∈�p(R×Rn), for all T ∈ B′,

〈T , f 〉 =
m∑
k=0

∫
Rn

∫∞
0
fT ,k(r,x)gk(r,x)dν(r,x), (4.86)

consequently, for all T ∈ B′, for all f ∈�p(R×Rn),∣∣〈T , f 〉∣∣≤ (m+ 1)cγm,p( f ), (4.87)

which means that the set B′ is weakly∗ bounded in �′
p(R×Rn) and proves that (ii)⇒(i).

(3) Suppose that (ii) holds. Let ϕ∈�∗(R×Rn), then from Theorem 4.7 we know that
for all T ∈ B′, the function T ∗ϕ belongs to the space Lp

′
(dν). But

T ∗ϕ=
m∑
k=0

Tfk ∗Lkϕ, (4.88)

consequently, for all T ∈ B′,

‖T ∗ϕ‖p′,ν ≤ (m+ 1)cγm,p(ϕ). (4.89)

This shows that the set {T ∗ϕ}T∈B′ is bounded in Lp
′
(dν) and therefore (ii) involves (iii).

(4) Suppose that (iii) holds. Let T ∈ B′; for all ϕ,ψ ∈�∗(R×Rn), we have∣∣〈TT∗ϕ,ψ
〉∣∣= ∣∣〈TT∗ψ ,ϕ

〉∣∣≤ ‖T ∗ψ‖p′,ν‖ϕ‖p,ν, (4.90)

from which we deduce that the set

B′ = {TT∗ϕ, T ∈ B′, ϕ∈�∗
(
R×Rn

)
; ‖ϕ‖p,ν ≤ 1

}
(4.91)

is bounded in �′∗(R×Rn).
Now, using Theorem 4.6, it follows that for all a > 0, there exists m ∈ N such that

for all ϕ∈�∗(R×Rn), ‖ϕ‖p,ν ≤ 1, and T ∈ B′, the mapping TT∗ϕ can be continuously
extended on the space 	m

a (R×Rn) and the family of these extensions is equicontinuous,
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which means that there exists c > 0 satisfying for all T ∈ B′, for all ϕ ∈�∗(R×Rn); for
all ψ ∈	m

a (R×Rn), (4.69) holds. On the other hand, for every T ∈ B′, we have for all
ϕ∈�∗(R×Rn), for all ψ ∈	m

a (R×Rn), (4.70) holds. From relations (4.69) and (4.70),
we deduce that the functional T ∗Tψ can be continuously extended on the space Lp(dν)
and from Riez’s theorem, there exist gT ,ψ ∈ Lp′(dν) such that

T ∗Tψ = TgT ,ψ . (4.92)

However, relations (4.69) and (4.70) involve that for all T ∈ B′,
∥∥gT ,ψ

∥∥
p′,ν ≤ cN∞,m(ψ). (4.93)

Again by Proposition 4.4, it follows that there exist s ∈ N, ψs ∈	m
a (R×Rn), and ϕs ∈

�∗,a(R×Rn) verifying for all T ∈ B′,

T = T ∗ δ = (I +L)s
(
T ∗Tψs

)
+TT∗ϕs , (4.94)

and by relation (4.92) we get

T = (I +L)sTgT ,s +TT∗ϕs . (4.95)

Thus, from the hypothesis we obtain,

∀T ∈ B′, ∥∥T ∗ϕs∥∥p′,ν ≤ cs, (4.96)

and using relation (4.93), we have

∀T ∈ B′, ∥∥gT ,s
∥∥
p′,ν ≤ cN∞,m

(
ϕs
)
. (4.97)

This completes the proof. �

5. Convolution product on the space �′
p(R×Rn)×Mr(R×Rn)

In this section, we define and study a convolution product on the space �′
p(R×Rn)×

Mr(R×Rn), 1≤ r ≤ p <∞, where Mr(R×Rn) is the closure of the space S∗(R×Rn) in
�r(R×Rn).

Proposition 5.1. Let p ∈ [1,∞[. For every (r,x)∈ [0,∞[×Rn, the operator τ(r,x) given by
Definition 2.2(i), is a continuous mapping from �p(R×Rn) into itself.

Proof. Let f ∈�p(R×Rn) and gk ∈ Lp(dν) such that

Tgk = LkT f , k ∈N. (5.1)
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Then for all ϕ∈ S∗(R×Rn), 〈
LkTτ(r,x) f ,ϕ

〉= 〈Tτ(r,−x) ğk,ϕ
〉
. (5.2)

Since the operator τ(r,x) is continuous from Lp(dν) into itself, we deduce that for all f ∈
�p(R×Rn) and (r,x) ∈ [0,∞[×Rn, the function τ(r,x) f belongs to the space �p(R×
Rn). Moreover,

γm,p
(
τ(r,x) f

)= max
0≤k≤m

∥∥τ(r,−x)ğk
∥∥
p,ν ≤ max

0≤k≤m
∥∥gk∥∥p,ν = γm,p( f ), (5.3)

which shows that the operator τ(r,x) is continuous from �p(R×Rn) into itself. �

Definition 5.2. A convolution product of T ∈�′
p(R×Rn) and f ∈�p(R×Rn) is de-

fined by for all (r,x)∈ [0,∞[×Rn,

T ∗ f (r,x)= 〈T ,τ(r,−x) f̆
〉
. (5.4)

Let T ∈�′
p(R×Rn); T =∑m

k=0L
kT fk with { fk}0≤k≤m ⊂ Lp′(dν) and φ ∈Mr(R×Rn),

1 ≤ r ≤ p, then for all k ∈ N, there exists φk ∈ Lr(dν) such that Tφk = LkTφ. From in-
equality (2.24), it follows that for 0 ≤ k ≤m, the function fk ∗ φk belongs to the space
Lq(dν) with 1/q = 1/r + 1/p′ − 1 = 1/r − 1/p and by using the density of S∗(R×Rn) in
Mr(R×Rn), we deduce that the expression

∑m
k=0 fk ∗φk is independent of the sequence

{ fk}0≤k≤m. Then, we put

T ∗φ =
m∑
k=0

fk ∗φk. (5.5)

This allows us to say that

�′
p

(
R×Rn

)∗Mr
(
R×Rn

)⊂ Lq(dν). (5.6)

Lemma 5.3. Let 1≤ r ≤ p <∞, T ∈�′
p(R×Rn), and φ ∈Mr(R×Rn). Then, for all k ∈N

LkTT∗φ = TT∗φk (5.7)

with Tφk = LkTφ.

Proof. If φ∈ S∗(R×Rn), then the function T ∗φ is infinitely differentiable and we have

Lk
(
TT∗φ

)= TLk(T∗φ) = TT∗Lkφ. (5.8)

Therefore, the result follows from the density of S∗(R×Rn) in Mr(R×Rn). �

Proposition 5.4. Let 1≤ r ≤ p <∞ and q ∈ [1,∞] such that

1
q
= 1
r
− 1
p
. (5.9)
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Then for every T ∈�′
p(R×Rn), the mapping

φ−→ T ∗φ (5.10)

is continuous from Mr(R×Rn) into �q(R×Rn).

Proof. Let T ∈ �′
p(R × Rn); T = ∑m

k=0L
kT fk with { fk}0≤k≤m ⊂ Lp

′
(dν), then for φ ∈

Mr(R×Rn), 1 ≤ r ≤ p, and by using relation (5.5), we get T ∗ φ =∑m
k=0 fk ∗ φk, where

φk ∈ Lr(dν) and

Tφk = LkTφ. (5.11)

From Lemma 5.3, we have for all s∈N, for all φ ∈Mr(R×Rn),

LsTT∗φ = TT∗φs . (5.12)

Using relation (5.6), we deduce that the function T ∗φ belongs to the space �q(R×Rn).
On the other hand, from relation (5.12), we obtain

γl,q(T ∗φ)=max
0≤s≤l

∥∥T ∗φs∥∥q,ν. (5.13)

According to relation (5.12), we have

T ∗φs =
m∑
k=0

fk ∗φk+s, (5.14)

consequently,

∥∥T ∗φs∥∥q,ν ≤
m∑
k=0

∥∥ fk∥∥p′,ν∥∥φk+s
∥∥
r,ν ≤

( m∑
k=0

∥∥ fk∥∥p′,ν
)
γm+l,r(φ). (5.15)

Hence

γl,q(T ∗φ)≤
( m∑
k=0

∥∥ fk∥∥p′,ν
)
γm+l,r(φ), (5.16)

which proves the result. �

Definition 5.5. Let 1 ≤ p,q,r <∞ such that (5.9) holds. A convolution product of T ∈
�′

p(R×Rn) and S∈�′
q(R×Rn) is defined by for all φ ∈Mr(R×Rn),

〈S∗T ,φ〉 = 〈S,T ∗φ〉. (5.17)

From this definition and Proposition 5.4 we deduce the following result.

Proposition 5.6. Let 1≤ p,q,r < f∞ such that (5.9) holds. Then, for all T ∈�′
p(R×Rn)

and S∈�′
q(R×Rn), the functional S∗T is continuous on Mr(R×Rn).
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