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We define and study the spaces Ji,(R X R"), 1 < p < oo, that are of Dy, type. Using the
harmonic analysis associated with the spherical mean operator, we give a new characteri-
zation of the dual space JM},(R x R™) and describe its bounded subsets. Next, we define a
convolution product in A/L},(IR X R") X M,(Rx R"), 1 <r < p< oo, and prove some new
results.

1. Introduction

The spherical mean operator % is defined, for a function f on R"*!, even with respect to
the first variable, by

R(f)(r,x) = Lnf(rr],x-krf)dan(q,f), (r,x) € R x R", (1.1)

where $" is the unit sphere {(,€) € R X R": 7>+ [|€]|?> = 1} in R"*! and o, is the surface
measure on §" normalized to have total measure one.

This operator plays an important role and has many applications, for example, in im-
age processing of so-called synthetic aperture radar (SAR) data (see [7, 8]), or in the
linearized inverse scattering problem in acoustics [6]. In [10], the authors associate to the
operator %R a Fourier transform and a convolution product and have established many
results of harmonic analysis (inversion formula, Paley-Wiener and Plancherel theorems,
etc.).

In [11], the authors define and study Weyl transforms related to the mean operator R
and have proved that these operators are compact. The spaces Dys, 1 < p < co, have been
studied by many authors [1, 2, 4, 5, 12, 13]. In this work, we introduce the function spaces
MpH(R X R"), 1 < p < oo, similar to Dy, but replace the usual derivatives by the operator

L—l+§(a%)z, (1.2)
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where [ is the Bessel operator defined on ]0,+oo[ by

0\’ nd

The main result of this paper gives a new characterization of the dual space l},(R X
R") of the space Jl,(R x R") and a description of its bounded subsets. More precisely,
in Section 2, we recall some harmonic results related to a convolution product and the
Fourier transform connected with the spherical mean operator, that we use in the follow-
ing sections.

In the Section 3, we define the space .il,(R x R"), 1 < p < oo, to be the space of mea-
surable functions f on ]0,+0o[ x R™! such that for all k € N, L* f belongs to the space
LP(dv) (the space of functions of pth power integrable on [0,+c0[ x R™*! with respect to
the measure r"dr ® dx). We give some properties of this space, in particular we prove that
it is a Frechet space.

Section 4 is consecrated to the study of the dual space Jly,(R X R"). We give a nice
description of the elements of this space and we characterize its bounded subsets.

In the last section, we define and study a convolution product in Jy(R x R") X
M, (R xR"), 1 <r < p < oo, where M,(R X R") is the closure of the Schwartz space
S¢(RX R™) in Jl, (R x R"™).

2. Spherical mean operator

In this section, we define and recall some properties of the spherical mean operator. For
more details see [3, 6, 10, 11]. We denote by

(A) €4 (R x R") the space of infinitely differentiable functions on R X R", even with
respect to the first variable,
(B) S” the unit sphere in R x R”,
§"={(n,¢) e RXR" * +||ElI* = 1}, (2.1)

where for & = (&),...,&,), we have ||E]|2 = & + - - - + &2,
(C) do the normalized surface measure on S".

Definition 2.1. The spherical mean operator is defined on €4 (R x R") by

V(rx) € [0, 400 X R, R F(r,x) = Ln Flrmx+rE)don(n,6). (2.2)
For (u,A) € Cx C", we put
V(r,x) € [0,+00[ X R",  @ua(r,x) = Qi(cos(y-)e*iw'))(r,x). (2.3)

We have

Qur(1,%) = jiu 12 (12 +12) e V), (2.4)
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where j(,—1y2 is the normalized Bessel function defined by

+1 Ju
Jin-1y2(x) = pn-npt Tl Jo12(2)

2 z(n—l)/Z
+o00 _ k 2k (2.5)
:rn+lz (-1) (E)
2 kzok!r((2k+1+n)/2) 2

with J;-1)2 the Bessel function of first kind and index (n — 1)/2 [9, 15], and if A =
(Aly...»An) € C" and x = (x1,...,%,) € R”, we put A2 = A3 + - - - + A2 and (M/x) = A1x; +
et A,
The normalized Bessel function j,—1),, has the following Mehler integral representa-
tion:
2T ((n+1)/2)

1
VreR, ju-nnlr)= Al 2) L (1—-£)"" cos(tr)dt, (2.6)

and therefore

VkeN, VreR, [j®, (0] =<1 (2.7)
Moreover, for all A € C, the function
r— jm-12(Ar) (2.8)

is the unique solution of the differential equation

Iu(r) = =22u(r),

2.9
w©) =1, W (0)=0, 29
where [ is the Bessel operator defined on ]0,+oo[ by (1.3).
On the other hand, the function ¢, is the unique solution of the system
Djv(r,x) = —iAjv(r,x), j=1,2,...,n,
(I=A)v(r,x) = —pv(r,x), (2.10)
v(0,0) = 1; %(O,x) =0 VxeR"
or
where D; = d/dxj, and A is the Laplacien operator on R":
n
_ 2
A= lej. (2.11)
i=

Now let I be the set

I'=RxR"U{(it,x); (t,x) € Rx R, |t| < [|x]|}. (2.12)
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We have for all (y,A) €T,

sup | @ua(r,x)| =1. (2.13)

(r,x)ERXR"

In the following, we will define a convolution product and the Fourier transform as-
sociated with the spherical mean operator. For this, we use the product formula for the
functions ¢, . For all (r,x), (s, y) € R x R",

PuA(T,x)Pup (s, y) = M J Pur (\/ r2 4+ s2 + 2rscos 0,x+y> X (sin9)"10.
0

Jrl(n/2)
(2.14)
We denote by (see [11])
(A) dv(r,x) the measure defined on [0,+co[ X R" by
dv(r,x) = k,r"dr ® dx (2.15)
with
k, = ! (2.16)

200 D2T ((n+ 1)/2) (2m)"2’

(B) LP(dv), 1 < p < +00, the space of measurable functions on [0,+0c0[ X R, satisfy-
ing

o= ([ | 100 i) <, 12 petos

(2.17)
| flloy= esssup | f(r,x)] <oo, p=-+oo;
(r,x)€[0,+00[ xXR"
(C) dy(u,A) the measure defined on the set T by
Jf% )dy(u,A) U J FM) @+ IR "y dud)
(2.18)
Al (n-1)/2
+JW L F M) (I = u?) [,tdyd)t};
(D) LP(dy), 1 < p < +oo, the space of measurable functions on T, satisfying
1/p
£y = ([ @D P dy@d) <o, 12 p<on
g (2.19)

[ flleo,y = esssup | f(u,A) | <00, p=+oco.
(pA)ET

Definition 2.2. (i) The translation operator associated with the spherical mean operator
is defined on L!(dv) by for all (r,x), (s, y) € [0,+o[ x R",

T f (S, ¥) = W Joﬂf(\/r2 + 52 +2rscos6,x +y) (sin@)"1d0. (2.20)
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(ii) A convolution product associated with the spherical mean operator of f,g €
L'(dv) is defined by for all (r,x) € [0,+00[ X R",

frgtrn) = | | e nm gy, (2.21)
R" JO
where

g(r,x) = g(r,—x). (2.22)

We have the following properties.

(A) T PuA (S, Y) = @ua (1, X)@ua(s, y).
(B) If f € LP(dv), 1 < p < +oo, then forall (s, y) € [0,+00[ X R", the function 7, ,) f €
LP(dv), and we have

7oy fll i < 1 (2.23)

(C) Let 1 < p,g,r < +oo such that 1/r = 1/p+1/q — 1, then for all f € L?(dv) and all
g € L1(dv), the function f * g € L"(dv), and we have

ILf *gllry < I fllpyligllgy. (2.24)

Definition 2.3. The Fourier transform associated with the spherical mean operator is de-
fined on L!(dv) by

V(A €T, Ff(uh) = jw J: Frx)@ua(rrx)dv(r,x). (2.25)

We have the following properties.
(A) Forall (u,A) €T,

F f(uA) = BoF f (u,A), (2.26)

where for all (4,4) € R x R”,

)= [ [ fejaatme b0,
V(A €T, Bf(wA) = f(\u2 +12,)).

(2.27)

(B) For f € L!(dv) such that & f € L'(dy), we have the inversion formula for %: for
almost every (r,x) € [0,+0co[ X R",

Flrx) = ﬂr F £ (N g () dy (). (2.28)
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(C) Let f be in L!(d). For all (s, y) € [0,+00[ X R", we have
V() €T, F (163 f)(A) = ua(s, ) F f (1) (2.29)
(D) For f,g € L'(dv), we have
V() €L, F(f *g)wA) = F f(u)Fg(u,A). (2.30)
(E) Forall p € [1,+c0] and f € LP(dv),
Bf €LP(dy),  IIBflpy=lfllpn. (2.31)

In particular, the mapping B is an isometric isomorphism from L*(dv) onto L?(dy).

The mapping % is also an isometric isomorphism from L?(dv) onto itself. Consequently,
the Fourier transform % is an isometric isomorphism from L?(dv) onto L?(dy).
Thus,

VfelXdv), Ffel*dy), 1Fflay=Ifl (2.32)

ProposITION 2.4 (see[11]). Let f bein LP(dv), with p € [1,2]. Then F f € L¥ (dy), with
Vp+1/p' =1, and

NFfllpy < I fllpo (2.33)

We denote by

(A) S« (R x R") the space of infinitely differentiable functions on R X R", even with
respect to the first variable, rapidly decreasing together with all their derivatives;

(B) S.« () the space of infinitely differentiable functions on T, even with respect to the
first variable, rapidly decreasing together with all their derivatives; that means for
all k1,k, € N, for all « € N*,

sup{(l + Ll +1IAR)" (%)kzDﬁ‘f(y,A) '; (wA) € r} < +oo, (2.34)
where
E(M) ) %(f(m)) ifu=reR,
op %%(f(it,)t)) if i = it, 1t < A, (2.35)

o (ON"(ON" (9"
DA‘(aM) (éﬂz) (a)tn) ’

(see [10]);
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(C) SL (R x R™) and S, (I) are, respectively, the dual spaces of S4 (R x R") and S, (I).
Each of these spaces is equipped with its usual topology.

Remark 2.5. From [10], the Fourier transform & is a topological isomorphism from
S« (R X R") onto S« (T). The inverse mapping is given by for all (r,x) € R x R",

F 000 = | f A garady(@d) (2.36)
Definition 2.6. The Fourier transform & is defined on S, (R x R") by
VT €S, (RXRY), (F(T),9)=(T,F (), ¢cS.(I). (2.37)

Since the Fourier transform & is an isomorphism from Si(R x R") onto S.(T), we
deduce that & is also an isomorphism from S/, (R x R") onto S, (T').

3. The space .il,(R x R")

We denote by
(A) L the partial differential operator defined by

? no 192
L__<ﬁ rE)r) g_} (3-1)
B) for f € LP(dv), p € [1,0], Ty is the element of S/, (R X R") defined by

(Tf,9) ij(rx (nX)dv(r,x), @€ Se(RxRM; (3.2)

(C) for g € LP(dy), p € [1,0], T, is the element of S, (') defined by

(Tow) = L 2wy N)dywd), v e Sy (D), (3.3)

From Proposition 2.4 and Remark 2.5, we deduce that for all f € LP(dv), 1 < p <2,
F f belongs to the space L?' (dy) and we have

Definition 3.1. Let p € [1,00]. We define Al,(R X R") to be the set of measurable func-
tions f on R X R", even with respect to the first variable, and such that for all k € N there
exists gr € LP(dv) satisfying

I¥Ty = T, (3.5)
The space /i, (R x R") is equipped with the topology generated by the family of norms

ymp(f) = max [lgll,,, meN, (3.6)
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where gi, k € N, is the function given by the relation (3.5). Let

dp: Mp(RXR") X Mp(RXR") — [0,00],

= 1 Ymp(f—8) (3.7)
) —do(fre)= S — rme) 87
(f>8) b(f>8) mE:O 27 Tty (f —2)

Then d, is a distance on Jl,(R x R"). Moreover the sequence ( fy)ren converges to 0
in (M,(R x R"),d,) if and only if

VmeN, ymp(fi) P 0. (3.8)

In the following, we will give some properties of the space /L, (R x R").
ProposITION 3.2. (M, (R x R"),d,) is a Frechet space.

Proof. Let (f)men be a Cauchy sequence in (M,(R X R"),d,) and let (g k) men C LP(dv)
such that

L*Tf, = Tg.n k€N, (3.9)
Then for all k € N, (gmk)men is a Cauchy sequence in LP(dv). We put

f=g = lim fn,

1
g = lim gy, k€ N, (3.10)
in L?(dv). Thus
VEEN, T, —— Ty, (3.11)

in §, (R x R™). Since L¥ is a continuous operator from S, (R x R") into itself, we deduce
that

L¥Ty, —— L*Ty, (3.12)

in S, (R x R™).
From relations (3.9) and (3.11), we deduce that

VkeN, LFTy=T,. (3.13)
This proves that f € Jl,(R x R") and

Jn——1f (3.14)

m-—oo

in (M, (R X R™),d,). 0
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ProrosiTION 3.3. Let p € [1,2] and f € Mp(R X R"), then
(1) for all k € N, the function

(1) — (142 + 20112 F () () (3.15)

belongs to the space L (dy) with p' = p/(p — 1);
(i) Mp(R X R™) NG (R X R") C €4 (R X R"), where €4 (R x R") is the space of con-
tinuous functions on R X R" even with respect to the first variable.

Proof. (i) Let f € M,(R x R"), 1 < p <2, and g € LP(dv) such that

L*Tf =T, keN. (3.16)
From relation (3.4), we have
F(Tg) = T, (3.17)
which gives
F(LFTy) = Tog). (3.18)
On the other hand
F(LATy) = (62 +2IMP) F(Tf) = Ty appys (3.19)
hence
(4 + 21012 F(f) = F(g0). (3.20)

This equality, together with the fact that the function %(gx) belongs to the space L? (dv)
implies (i).

(ii) Let f € M,H(R X R") N 64 (R x R"). From the assertion (i) and relations (2.26)
and (2.31), we deduce that for all k € N, the function

(r,x) — (2 + 1x12)*F(£) (3.21)

belongs to the space L?' (dv), in particular @(f) € LY (dv)nL3(dv).

On the other hand, the transform % is an isometric isomorphism from L?(dv) onto
itself, then from the inversion formula for % and using the continuity of the function f,
we have for all (r,x) € R x R",

Fr = [T F Do), (3.22)

Consequently, (ii) follows from relation (2.7) and the fact that for all k € N, « € N”, the
function

() — AT (4, 1) (3.23)

belongs to the space L' (dv). 0
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ProrosITION 3.4. Let p € [1,2], then, forall r € [2,00],

Mp(RXR") N6y (Rx R") C M, (RXR"). (3.24)
Proof. Let f € My(R X R") N6 (R XxR"), pe[1,2], r=2,and r' = r/(r — 1). From
Proposition 3.3, we deduce that f € €. (R x R") and for all k € N, the function (3.21)

belongs to the space L? (dv). By applying Holder’s inequality, it follows that this last func-
tion belongs to the space L” (dv). On the other hand, for all (r,x) € R x R”",

L fr) = [ G I F 20 )

(3.25)
= F((2+ MNP F() (r.x
From Proposition 2.4 and the fact that
1F@l,, = 1F@ll,,, gL (@), (3.26)
we deduce that, for all k € N, the function L* f belongs to the space L"(dv). O

4. The dual space JI/L},([R X R™)

In this section, we will give a new characterization of the dual space A/L;,(R x R™) of
My (R x R™). We recall that for every f € M,(RxR"), the family {V,, , (), meN, £>0}
is a basic of neighborhoods of f in (A, (R x R"),d, ), where

Vm,p,s(f) = {g € MP(R X [Rn)> Ym,p(f —g) < 8}- (4.1)

In addition, T € JI/L;,(IR x R™) if and only if there exist m € N and ¢ > 0 such that
Viey,(RxR"), [(T,f)| <cymp(f). (4.2)

For f € LP'(dv) and ¢ € A, (R X R"), we put
(L*(T¢), ¢ J J f(r,x)yi(r,x)dv(r,x) (4.3)
with L¥T, = Ty,. Then

(LT 00 | = ol [l < 1 F 1L avip (9)- (4.4)

This proves that forall f € L' (dv) and k € N, the functional L¥T; defined by the relation
(4.3) belongs to the space JI/L},([R x R™).
In the following, we will prove that every element of Jl},(R x R") is also of this type.
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TueoreM 4.1. Let T € S\ (RX R"). Then T € M}, (R X R"), 1 < p < oo, if and only if there
existm € N and { fo,..., fm} C LP (dv) such that

T=> LTy, (4.5)
k=0
where L*T§, is given by relation (4.3).
Proof. Ttis clear that if
T=>1Th,  {foroor fu} CLP (dv), (4.6)

k

0

then T belongs to the space L}, (R X R").
Conversely, suppose that T' € Jl/t;,([R X R™). From relation (4.2) there exist m € N and
¢ > 0 such that

VoeMy(RXR"), [(T,9)| < cymp(e). (4.7)
Let
(LP@)™" = {(foroir f), fe € LP(dv), 0 < k < m} (4.8)

equipped with the norm
[ fosevos )l o amyme = Og}iﬁkaHp,y- (4.9)
We consider the mappings

s My (R X R) — (LP(dv))™"", (4.10)
§0’—’ ((P)gl)-“)gm)) ‘

where

L*Ty =Ty, k=1,
B :Im(sd) — C, (4.11)

From relation (4.2) we deduce that
| Bs(p)| = [{T,0) | =l (11 (v (4.12)
This means that % is a continuous functional on the subspace Im(s{) of the space

(L?(dv))™*!. From Hahn-Banach theorems, there exists a continuous extension of % to
(LP(dv))™*!, denoted again by .
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By Riez’s theorem there exist ( f,..., f) € (L¥' (dv))™*! such that for all (¢o,...,¢m) €
(LP(dv))™,

B(@oy---»Pm) = %J{Rn L Ji(r, %) @i (r,x)dv(r,x). (4.13)

By means of relation (4.3), we deduce that for ¢ € ., (R x R"), we have

(T,¢p) = ZJ J fi(r,x) @i (r,x)dv(r,x) = kz L*Ty,9) (4.14)
-0

This completes the proof of Theorem 4.1. O

ProrosiTioN 4.2. Let p = 2. Then for all T € M} (R X R"), there exist m € N and F €
LP(dy) such that

F(T) = T(1+‘,42+2HM|2)MF. (4.15)

Proof. Let T € Jl/t;,([R x R"). From Theorem 4.1 there exist m € N and (f,..., fu) €
(LP (dv))™*Y, p" = p/(p — 1), such that

m
T=> LT}, (4.16)
k=0
Consequently
m m
= S F(IFT) = S (@R +20M3) F(Ty). (4.17)
k=0 k=0

By using relation (3.4) we get (4.15), where

(12 +21I)12)"
(1+p2+21A112)

=F(fi), (4.18)

M=

F=

k=0

which proves the result. O

ProprosiTioN 4.3. Let T € S, (R X R"), then T € M)(R X R") if and only if there exist
m € N and F € L*(dy) such that (4.15) holds.

Proof. From Proposition 4.2, we deduce that if T € JM5(R x R"), then there exist m € N
and F € L?(dy) verifying (4.15). Conversely, suppose that (4.15) holds with F € L?(dy).
Since & is an isometric isomorphism from L*(dv) onto L?(dy), then there exists G €
L*(dv) such that %(G) = F and from relation (3.4) we have

F(T¢) = T (4.19)
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Consequently
F(T)=F(T+L)"Tg), (4.20)
thus
m
T=> ChIFT, (4.21)
k=0
and Theorem 4.1 implies that T € M5 (R x R™). O
We denote by

(A) D4 (R x R") the space of infinitely differentiable functions on R X R”, even with
respect to the first variable and with compact support, equipped with its usual
topology;

(B) fora >0, %, ,(R x R") the subspace of 9 (R x R") consisting of function f such
that supp f C B(0,a) = {(r,x) € RXR", r* + ||x||* < a*};

(C) fora >0, ,(Rx R") the dual space of D 4(R X R");

(D) for a >0 and m € N, W"(R x R") the space of function f:R x R"” — C of class
C?>" on R x R", even with respect to the first variable and with support in B(0,a),
normed by

Neom(f) = max ||Lk(f)||oo)v. (4.22)

0<k<m

ProprosITION 4.4. Let a >0 and m € N. Then there exists p, € N such that for every p € N,
P = po, it is possible to find ¢, € W'(R X R") and y, € Dy o(R X R") satisfying

§=I+L)T,, + Ty, (4.23)

in S, (R x R").
Proof. Let p>n+1and g, the function defined by

V(d) €RX R,  gp(ud) = #( ! )p>(y,)t). (4.24)

(T+72+ ||x]12

Using relation (2.7), we deduce that there exists p, € N such that for all p > p, the func-
tion g, is of class C*™ on R X R" (e.g., we can choose p, = 3n+1+2m).

Now, we prove that the function g, is infinitely differentiable on R x R" \ {(0,...,0)}.
The function g, can be written as

1 © 1
— . 2 2\ 2n
g1 VA (n+1/2) L (1+$2)p]n—1/2(5\/.u +All )s ds. (4.25)
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By relation (2.6) and Fubini’s theorem we get

ro cos (ts1 |y + ||/\||2> ,

s
0 (1+52)”

1 ! n—1
&) = 212 [T (n) I_l (1-£) [

ﬁf (1=)" iy (1 + A112)

where

® cos(su) ,, L(® e,
hp(u):JO (1+52)p52 dSZEle PSZ ds.

By standard calculus, we have

* cos(su) 2 — ot
L (+s ) ds=e"P(u)

with

p 1

z 2‘1J2k(2 )k

P(u) 22p 1

On the other hand, we have

then, we get

Yu=> 0, hp(u) = Qp(u)eilﬂ

”ds] dt

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

where Q, is a real polynomial. Since h, is an even function on R, then we deduce that

VueR, hy(u)=ky(lul),
where k;, is the infinitely differentiable function defined on R by
kp(u) = Qp(u)e™

Now, the function

U — Fp(u) = (1- )"k (tu)dt

I

is infinitely differentiable on R and we have

() = Fp (yu2 + IA112).

(4.32)

(4.33)

(4.34)

(4.35)
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This shows that the function g, is infinitely differentiable on R x R" \ {(0,...,0)}, even
with respect to the first variable.
Lety € Dy o(R X R") such that

V(r,x) e RXR", r?+x*< y(r,x) = 1. (4.36)

2
4
Since (I+L)PTg, = 6, we get

yI+L)PTy, = (I+L)PT,, = 6. (4.37)

On the other hand, by using the fact that the function g, is infinitely differentiable on
R x R™\ {(0,...,0)}, we deduce that the function

@p(r,x) = (y—1D)I+L)Pg,+(I+L)P((1-y)gp) (4.38)

belongs to the space D4 ,(R X R").
Moreover, from relation (4.37), we have

Ty-na+nrg, = (y = DU +L)PT,, =0, (4.39)

and this implies by using relation (4.38) that

Ty, = Tasnyp(a-pg) = T+ L)PT(a-y)g,)- (4.40)

Hence,
Ty, + (I+L)PTyy, = (I+L)PT,, =6, (4.41)
and this completes the proof of the proposition by taking v, = yg,. O

To prove the main result of this section, that is, Theorem 4.7, we will define some
new families of norms on the space @4 ,(R X R"). We use these norms to prove that the
elements of all bounded subset B" C 4/, ,(R X R") can be continuously extended on the
space W™ (R x R™).

For f € Dy o(R X R"), a >0,

( ) Po(f) = maxey o <m [ (0/07)5 D% f || 0,0,
(B) P (f = MaXk+|a|<m ”lkD(Xf”oo,w
(@) Np,m(f) = MaXo<k<m ”Lk(f)”p,v; pe [1,00],
where [ is defined by relation (1.3).

Lemma 4.5. (i) For all m € N, there exists ¢c; > 0 such that
Vo€ Dya(RXRY), Pu(g)<cPu(e) (4.42)
(ii) For all m € N, there exist c; >0 and m’ € N such that

Vo€ Din(RXRY), Pr(9) < caNpw(p). (4.43)
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Proof. (i) Letm € N, and ¢ € 9 ,(R X R"). By induction on k we have

(%)kD"‘(p(r,x) = SioPs(r) (%)sDafP(T»x%

(4.44)

where P is a real polynomial. On the other hand, and also by induction, we deduce that

foralls>1,

(2 v [

From relations (4.44) and (4.45), it follows that there exists ¢, > 0 satisfying

1
. J l‘D"‘(p(rtl,...,l‘s,x)t?Jrz(sf1
0

Pm((P) = Ca,mﬁm((P)'

(ii) Let p € [1,00], m € N, and m; € N such that

I

1,y

then, for all (k,a) € N X N*, k+ |a| < m, we have

[£D%]).., = |G (#(lkD“q)))Hm,v
<||F (D),
<[[*A<F(9)]],,
< || @+ + 213" F )|

IA

<

1
(1+u2+[IA)2)™
I S
(1+p2+1A112)™

1

1,y

(1+u2+A12)™

1,v

and by Holder’s inequality, we get

o]
1#D%l = | 1

+IA]2)™

<|
(1+p2

which implies that

B,(p) < 2mtm (V(B(o,a)))“f"H

+A12)™

1

1,y
1

1,y

1

and the proof of the lemma is complete.

F((I+L)mm )

(1+u2+IAl2)™

1,v

1F(T+D)™ ™).,

T+ glf,,,

(v(B(0,@))) "7'[|(T+ L) ™ g]|

Np,m+m1 ((P))
1,y

) othdt,. . dt.

P

(v(B(0,)))"" 2" ™ Ny i, (),

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)
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THEOREM 4.6. Let a >0 and B' a weakly* bounded set of D', ,(R X R"). Then, there exists
m € N such that the elements of B" can be continuously extended to W™ (R x R"). Moreover,
the family of these extensions is equicontinuous.

Proof. Let p € [1,00]. Since B’ is weakly* bounded in D/, ,(R X R"), then from [14] and
Lemma 4.5 there exist a positive constant ¢ and m € N such that for all T € B’, for all
§0 € D*,a(IR X IR"))

(T,9)| < cNpm(9)- (4.51)
We consider the mappings

A W™ (RXR") — (LP(dv))™",

(4.52)
¢ — (qu))Osksm’
and forall T € B,
Ly:A(Dya(RxR")) — C,
(4.53)
(Lt,A@) =(T,9).
From relation (4.51), we deduce that for all ¢ € Dy 4(R x R"),
[{Lr,A¢) | < C||A(P||(Lp(dv))m“' (4.54)

This means that Ly is a continuous functional on the subspace A(D. (R X R™)) of the
space (LP(dv))™*! and that forall T € B,

ILrllap. o mxmry) = sup [(Lr,Ag)| <c. (4.55)
HA(PH(LP(M))mH <1

From the Hahn-Banach theorems, Ly can be continuously extended on (L?(dv))™™!, de-
noted again by Ly. Furthermore, for all T € B’,

||LT||(Lp(dv))m+1 = sup [{Lr,y) | = ||LT||A(D*,a(n&an)) =c (4.56)

HII/H(LP(dV))mH <1

Now, from the Riez theorem, there exists (frx)o<k=m C LP'(dv) such that for all v =
(Y0s...»Ym) € (LP(dv))"*,

m )
aryy =3 || fratrominodr (457)
k=0
with
||LT||(LI7(dv))m” = Ofﬁr}gfnnfT,k”puv- (4.58)

Thus, from (4.56) it follows that forall T € B’, forallk e N, 0 < k < m,

| frill,, = c. (4.59)
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In particular, for ¢ € W(R x R") we have
(L1,Ap)y = > IR L Fri(r,x)L () (r,x)dv(r,x). (4.60)
k=0
Using Holder’s inequality and relation (4.59), we get for all T € B’, for all ¢ € W(R x
R"),
(L1, Ag) | < (m+1)c[v(B(0,2))]"" Nuw(9). (4.61)

This shows that the mapping Lr0A is a continuous extension of T on W™”(R x R") and
that the family {L10A}rep is equicontinuous, when applied to W™ (R x R"). This com-
pletes the proof of Theorem 4.6. O

In the following, we will give a new characterization of the space J(/LI’,([R X R™).

THEOREM 4.7. Let T € S, (R X R"), p € [L,c0[, p" =p/(p—1). Then T € Jl/%([R x R") if
and only if for every ¢ € D4 (R X R™), the function T * ¢ belongs to the space L? (dv), where

T * @(r,x) = (T, T(r,—x)P)- (4.62)

Proof. LetT € Jl/t;,([R x R"). From Theorem 4.1, there exist m € Nand fy,..., fn € L¥ (dv)
such that

T=> LTy, (4.63)
k=0

in Ji/t;,([R x R™). Thus, for every ¢ € D4 (R x R"),
Txe=> TpxLrg=> fi* Lo (4.64)
k=0 k=0
Since, for all ke N, 0 <k <m, f; € LP (dv) and Lk(p € L'(dv), then from inequality
(2.24), we deduce that fi * L*¢ € L?"(dv). This implies that the function T * ¢ belongs
to the space L? (dv).

Conversely, let T € S, (R x R") such that for every ¢ € %, (R x R") the function T * ¢
belongs to the space L? (dv). For ¢, in Dy (R x R™), we have

<TT*¢11//> = (T,(P*1/7> = <T;1//*¢> = <TT*W’¢>' (465)
From Holder’s inequality and using the hypothesis, we obtain

| (Trsp¥) | < IT* yllpyyll@llps (4.66)
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from which we deduce that the set
is bounded in @7, (R x R™).

Now, using Theorem 4.6, it follows that for all a > 0 there exists m € N such that for
all p € D (R X R"), ll@ll,» < 1, the mapping T, can be continuously extended on the
space W™ (R x R") and the family of these extensions is equicontinuous, which means
that there exists ¢ > 0 such that for all ¢ € D, (R X R"), [[¢ll,,, < 1, for all y € W' (R x
R"),

| <TT*(pa w> | < CNoo,m(W)- (468)
This involves that for all ¢ € 9, (R x R"), for all y € W™ (R x R"),
| <TT*(p) 1{/> | < CNoo,m(V/)”¢”p,v- (4.69)
On the other hand, we have for all p € 9 (R x R"), for all y € W™ (R x R"),
where for all ¢ € S, (R X R"),
(T * Ty,p) = (T, Ty * @) = (T, y * ¢). (4.71)
Relations (4.69) and (4.70) lead to for all ¢ € @, (R x R"),

(T % Tys9) | < cNeon(@)l19llp,- (4.72)

This last inequality shows that the functional T * Ty, can be continuously extended on
the space L?(dv) and from Riez’s theorem, there exists ¢ € L' (dv) such that

T+ T, =T, (4.73)

Furthermore, from Proposition 4.4, there exist s € N, y, € W7 (R X R"), and ¢, €
Dya(R X R™) satisfying

0=I+L) Ty +T,, (4.74)
then
T=I+L)}(T*Ty)+Tx* Ty =I+L)(T % Ty,) + Trsg,. (4.75)

We complete the proof by using the hypothesis, relation (4.73), and Theorem 4.1. O

In the following, we will give a characterization of the bounded sets in Jl;,(R x R").
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THEOREM 4.8. Let p € [1,00[ and let B’ be a subset of M,(R X R"). The following assertions
are equivalent:

(i) B’ is weakly bounded in Jl/L;,([Rl X R™),
(ii) there exist ¢ >0 and m € N such that for every T € B', it is possible to find
fo.15+ > fmr C LP (dv) satisfying

m
T=> LTy  with max fell o =, (4.76)
k=0 O<k<m ’

(iii) for every ¢ € D,.(R X R"), the set {T * ¢} rep is bounded in LY (dv).

Proof. (1) Suppose that B" is weakly* bounded in M, (R x R"), then from [14] B’ is
equicontinuous. There exist ¢ >0 and m € N such that

VT eB,Vfel,(RxR"), KT, ) <cymp(f) (4.77)
As in the proof of Theorem 4.6, we consider the mappings

A, (R X R") — (LP(dv))"",

(4.78)
fr—=(f80-->8m)
with
LTy =T, 0<k=<m, (4.79)
and forall T € B/,
Lr:A(M,(RxR")) — G,
(4.80)
<LT)A(f)> = (T)f>
Then, relation (4.77) implies that for all ¢ € Ji,(R x R"),
|LT(A(p) | < C||A(p||(Lp(d1,))m+1. (4.81)

Using Hahn-Banach’s theorem and Riez’s theorem, we deduce that Lt can be continu-
ously extended on (L?(dv))™*!, denoted again by Lr, and that there exists ( frx)o<k<m C
L?' (dv) verifying for all v = (yq,...,¥m) € (LP(dv))™,

(Lr,y) = ;ZOJR [ st (4.82)

with

||LT||(Lp(dv))m+1 = Orsr}(a;anfT)k”p’,v =c (4.83)
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In particular, if y = A(f), f € M,(R X R"),

(Lt,A(f)) = (T, f) = Z (¥ T f) (4.84)

This proves that (i)=(ii).
(2) Suppose that there exist ¢ >0 and m € N such that for every T € B" we can find
for>- s fmr C LP (dv) satisfying

T=

M§

Tka’ Og}caé)anfT’ka y=C (4.85)

k=0

Then forall f € M,(R x R"), forall T € B/,

(T ) = kiojw [ fratrogtrdnir), (486)

consequently, for all T € B’, for all f € JAl,(R x R"),

(T, )| < (m+1Dcymp(f), (4.87)

which means that the set B” is weakly* bounded in Jl/L}’,(IR X R™) and proves that (ii)=(i).
(3) Suppose that (ii) holds. Let ¢ € @, (R x R"), then from Theorem 4.7 we know that
for all T € B', the function T * ¢ belongs to the space L” (dv). But

Txg=> Tp*Lrg, (4.88)
k=0
consequently, forall T € B',
1T % @llpy < (M+1)cYmp(). (4.89)

This shows that the set {T * ¢} r<p is bounded in L?' (dv) and therefore (ii) involves (iii).
(4) Suppose that (iii) holds. Let T' € B’; for all ¢,y € D« (R x R"), we have

{Trspy) | = [{Tray, ) | < IT 5l ll@llpr (4.90)
from which we deduce that the set
B = {Tr4¢, TEB, 9 €Dy (RXR"); ll@llpy <1} (4.91)

is bounded in @7, (R x R™).

Now, using Theorem 4.6, it follows that for all a > 0, there exists m € N such that
for all p € D4 (R X R"), llgll,» < 1,and T € B’, the mapping Tr4, can be continuously
extended on the space W (R x R") and the family of these extensions is equicontinuous,
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which means that there exists ¢ > 0 satisfying for all T € B’, for all ¢ € @, (R x R"); for
all y € W™ (R x R"), (4.69) holds. On the other hand, for every T € B’, we have for all
9@ € Dy (RxR"), for all y € W?(R x R"), (4.70) holds. From relations (4.69) and (4.70),
we deduce that the functional T % T, can be continuously extended on the space L?(dv)
and from Riez’s theorem, there exist g7, € LP (dv) such that

T*xTy=Tg,. (4.92)
However, relations (4.69) and (4.70) involve that for all T € B’,
llgrull .y < Neom(y). (4.93)

Again by Proposition 4.4, it follows that there exist s € N, y; € W"(R x R"), and ¢, €
Dea(R X R") verifying for all T € B',

T=Tx8=I+L)(T*Ty,) + Trxg, (4.94)
and by relation (4.92) we get
T = (I+L) Ty, + Traq.. (4.95)

Thus, from the hypothesis we obtain,

VTeB, [[T*xodl,,=<c (4.96)

and using relation (4.93), we have
VYT eEB, ||gT'5HP’,v < cNeom (¢s)- (4.97)
This completes the proof. O

5. Convolution product on the space Jl}, (R X R") x M, (R x R")

In this section, we define and study a convolution product on the space AL, (R X R") X
M, (RxR"),1<r < p< oo, where M,(R x R") is the closure of the space Sy (R X R") in
M (R X R™).

ProposITION 5.1. Let p € [1,00[. For every (r,x) € [0,00[ X R", the operator 7(, x) given by
Definition 2.2(i), is a continuous mapping from M,(R x R") into itself.

Proof. Let f € M,(R X R") and gx € LP(dv) such that

Ty = LTy, keN. (5.1)
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Then for all ¢ € S« (R X R"),
(LTr59) = (Tr, o §09)- (5.2)
Since the operator 7(, ) is continuous from L? (dv) into itself, we deduce that forall f

My(R x R") and (r,x) € [0,00[ X R", the function 7(, ) f belongs to the space M,(R x
R™). Moreover,

T = T(r—x)0] < = , 5.3
Yp (T f) = max {7, -0gill, < max [lgell,, = ymp(f) (5.3)
which shows that the operator 7, x) is continuous from i, (R X R") into itself. O

Definition 5.2. A convolution product of T € JI/L},(R X R") and f € J,(R x R") is de-
fined by for all (r,x) € [0,0[ X R",

Tx f(r,x) = (T,T(r,,x)f). (5.4)

Let T € My, (R x R"); T = 3Ly LTy, with { fi}o<k=m C L? (dv) and ¢ € M,(R x R"),
1 <r < p, then for all k € N, there exists ¢ € L"(dv) such that Ty, = LkT¢. From in-
equality (2.24), it follows that for 0 < k < m, the function f; * ¢x belongs to the space
Li(dv) with 1/q = 1/r +1/p" — 1 = 1/r — 1/p and by using the density of Sy (R x R") in
M, (R x R"), we deduce that the expression >.;_, fk * ¢ is independent of the sequence
{ f}o<k<m-. Then, we put

Tx¢=> fi*dr (5.5)
k=0
This allows us to say that
M (R x R") % M, (R X R") € L9(d). (5.6)

LEMMAS5.3. Letl <r <p<oo, T € JI/L;,([R X R"), and ¢ € M, (R X R"). Then, forallk € N
L*Trsg = Trsg, (5.7)

with Ty, = Lk Ty.

Proof. If ¢ € S« (R x R"), then the function T * ¢ is infinitely differentiable and we have
L¥(Trsg) = Tir(rseg) = Tratig. (5.8)

Therefore, the result follows from the density of Sy (R X R") in M, (R x R"). O

PropoSITION 5.4. Let 1 <7 < p < oo and g € [1,00] such that

1

q

(5.9)

N =
S| -
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Then for every T € M}, (R X R"), the mapping
¢— Tk (5.10)

is continuous from M, (R x R") into M4(R x R").
Proof. Let T € JI/L;,(R X R"); T = ZZLOLkak with { fi}o<k<m C L¥ (dv), then for ¢ €
M, (R x R"), 1 <r < p, and by using relation (5.5), we get T * ¢ = >.[" fk * ¢k, where
¢r € L"(dv) and

Ty, = L¥T,. (5.11)
From Lemma 5.3, we have for all s € N, for all ¢ € M, (R x R"),

LSTT*(p = TT*¢S. (5.12)

Using relation (5.6), we deduce that the function T * ¢ belongs to the space /4 (R x R").
On the other hand, from relation (5.12), we obtain

yl,q(T*gb)=(r)nax||T*¢s||q’v. (5.13)

<s<l

According to relation (5.12), we have

Tx¢s= > fi* Grrs (5.14)
k=0

consequently,

750l = 3 1l Ngwdl = (3 ||fk||,,,,y) pwste@). (5.15)
k=0 k=0

Hence

Yiq(T * ¢) < < > ||fk||pr,v> Ymrir (§)s (5.16)
k=0

which proves the result. O

Definition 5.5. Let 1 < p,q,r < co such that (5.9) holds. A convolution product of T €
MH(R X R") and S € M7 (R X R") is defined by for all € M,(R X R"),

(S*T,9) = (ST * ¢). (5.17)

From this definition and Proposition 5.4 we deduce the following result.

PROPOSITION 5.6. Let 1 < p,q,r < f oo such that (5.9) holds. Then, forall T € Jl/t;,([R x R™)
and S € J(/L;([R X R™), the functional S x T is continuous on M,(R X R™).
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