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This paper studies the asymptotic stability of a repairable system with repair time of failed
system that follows arbitrary distribution. We show that the system operator generates a
positive C0-semigroup of contraction in a Banach space, therefore there exists a unique,
nonnegative, and time-dependant solution. By analyzing the spectrum of system opera-
tor, we deduce that all spectra lie in the left half-plane and 0 is the unique spectral point
on imaginary axis. As a result, the time-dependant solution converges to the eigenvector
of system operator corresponding to eigenvalue 0.

1. Introduction

Reliability of a system can be increased by using redundancy technique without changing
the individual unit that forms the system. One of the common used forms of redundancy
is cold standby system, which often finds application in various industrial or other types
of setup.

In addition to the failure of individual units, some critical errors could cause the whole
system to fail [4, 5, 6, 7, 9]. But, the switching mechanism is all assumed to be good
enough in [4, 5, 6, 7, 9]. In reality, the failure of switching mechanism has to be consid-
ered [1, 6, 8]. The most general system (with repair facilities and multiple critical and
noncritical errors and imperfect switching mechanism) was discussed in [6]. By proba-
bilistic analysis, the author in [6] established the mathematic model of such system and
obtained some desired results. However, all papers mentioned above are limited in ap-
plied field, and the results about reliability and availability which those papers had de-
duced are under the two following assumptions.

Assumption 1.1. The repairable system has unique and nonnegative solution.

Assumption 1.2. The solution of the repairable system is asymptotic stability.

Both assumptions hold obviously when the repair rate is constant (repair time fol-
lowing exponential distribution), however, whether they hold or not when repair rate is
time dependant is still an open question. The purpose of this paper is to strictly provide
mathematical proof for both assumptions.
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The rest of the paper is organized as follows. Section 2 describes the repairable system
and introduces the mathematical model of system. Then, in Section 3, by C0-semigroup
theory, we obtain the unique and nonnegative solution of the system, that is to say that
Assumption 1.1 holds. In Section 4, the asymptotic stability of the system is proved, so
Assumption 1.2 holds. The paper is concluded in Section 5.

2. Model of system

2.1. System description. This paper presents such system consisting of k (≥ 1) active,
N (≥ 1) cold standby units with r (≥ 1) repair facilities, and M (≥ 0) multiple noncrit-
ical and critical errors. The system require k active units to operate and the switching
mechanism is subjected to failure.

The following assumptions are associated with the model:

(1) multiple critical and noncritical errors can only occur in the system with more
than one good unit;

(2) critical error and noncritical error rates are constant;
(3) the units failure rate are constant;
(4) all failures are statistically independent;
(5) the repair rate of noncritical errors is as constant as that of a failed active unit;
(6) the repair time of the failed system is arbitrarily distributed;
(7) the repaired unit is as good as new;
(8) the failure rate when i units have failed is denoted by ai which is the product of

2ik and [(failure rate of an active unit) plus (failure rates of any one of the mul-
tiple noncritical errors) and multiplied by (probability of a successful switching
mechanism)];

(9) the units also fail simultaneously when one of the, say j, M ≥ j ≥ 0, critical errors
hits the system with a failure rate denoted by di, j , i= 0,1, . . . ,N ;

(10) the system is said to be in one of failed states if (N + 1) units have failed or if any
one of the M critical errors has occurred.

So, the transition diagram of the system can be depicted as in Figure 2.1.
The following symbols are associated with the model under study:

(1) 0: initial state (i.e., at t = 0, all k units are in operation with N cold standby units);
(2) i: number of failed units, i= 1, . . . ,N ;
(3) j: failed state of the system, j =N + 1 means failure of the system, j =N + 1 +n,

n = 1, . . . ,M means failure of the system corresponding to the nth critical error,
j =M +N + 2 means failure of switching mechanism from cold standby to active
unit;

(4) pi(t): probability that the system is in state i, i= 0,1, . . . ,N +M + 2, at time t;
(5) µj(x): repair rate when the system is in state j and has elapsed repair time of x,

and 0 <
∫ T

0 µj(x)dx <∞, for any T <∞,
∫∞

0 µj(x)dx =∞;
(6) pj(x, t): probability that the failed system is in state j and has an elapsed repair

time of x;
(7) Xj : random variables representing repair time when the system is in state j;
(8) Gj(·): distributed function of Xj ;
(9) gj(·): probability density function of Xj ;
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Figure 2.1. Transition diagram of the system.

(10) Ej(x): the mean time to repair that the system is in state j and has an elapsed
repair time x;

(11) xi: the chance that a system is successful when it is switched from a cold standby
unit to an active unit, when it is at state i, 1≥ xi ≥ 0;

(12) a: constant failure rate of an active unit;
(13) ci: constant failure rate of the ith noncritical error, i= 0,1, . . . ,M;
(14) ai: failure rate of i unit failing, ai = 2ik(a+ c0 + c1 + ···+ cM)xi;
(15) b: constant repair rate of a unit;
(16) bi: min(i,r)b;
(17) di, j : constant critical error rate of the system from state i to state (N + 1 + j),

i= 0,1, . . . ,N ; j + 1,2, . . . ,M;
(18) zi: constant failure rate of the system from state i to state (N +M + 2), zi = aik(a+

c0 + c1 + ···+ cM)(1− xi).

2.2. Mathematical model. The mathematical model associated with Figure 2.1 can be
expressed as follows [6]:

dp0(t)
dt

=−h0p0(t) + b1p1(t) +
M∑
i=0

∫∞
0
pN+1+i(x, t)µN+1+i(x)dx, (2.1)

dpi(t)
dt

= ai−1pi−1(t)−hipi(t) + bi+1pi+1(t) (i= 1, . . . ,N − 1), (2.2)

dpN (t)
dt

= aN−1pN−1(t)−hN pN (t), (2.3)

∂pj(x, t)

∂t
+
∂pj(x, t)

∂x
=−µj(x)pj(x, t) ( j =N + 1, . . . ,N +M + 2), (2.4)

here, h0 = a0 + z0 +
∑M

j=1d0, j ; hn = an + bn + zn +
∑M

j=1dn, j , (n= 1, . . . ,N).
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Boundary conditions: pN+1(0, t)= aN pN (t), pN+M+2(0, t)=∑N
i=0 zi pi(t),

PN+1+n(0, t)=
N∑
i=0

di,npi(t), (n= 1, . . . ,M). (2.5)

Initial value: p0(0)= 1, pi(0)= 0, pj(x,0)= 0, i= 1, . . . ,N ; j =N + 1, . . . ,N +M + 2.
We describe it by abstract Cauchy problem in Banach space. For simplicity, we intro-

duce notations as

A= diag
(
−h0,−h1, . . . ,−hN−1,−hN ,− d

dx
−µN+1(x), . . . ,− d

dx
−µN+M+2(x)

)
. (2.6)

Take state space X as

X=
{
�y ∈ CN+1×L1[0,∞)×···×L1[0,∞) | ‖�y‖ =

N∑
i=0

∣∣yi∣∣+
M+1∑
j=0

∥∥yN+1+ j(x)
∥∥
L1[0,∞)

}
.

(2.7)

It is obvious that (X,‖ · ‖) is a Banach space. The domain of operator A is D(A)=
{�p ∈ X | dpj(x)/dx + µj(x)pj(x) ∈ L1[0,∞), pj(x) are absolutely continuous functions,

j=N+1, . . . ,N+M+2, and satisfy pN+1(0)=aN pN , pN+1+n(0)=∑N
i=0di,npi(n=1, . . . ,M),

pN+M+2(0)=∑N
i=0 zi pi}.

We define operator E as

E�p=



0 b1 0 ··· 0 0
∫∞

0
pN+1(x)µN+1(x)dx ···

∫∞
0
pN+M+2(x)µN+M+2(x)dx

a0 0 b2 ··· 0 0 0 ··· 0
...

...
0 0 0 ··· 0 bN 0 ··· 0
0 0 0 ··· aN−1 0 0 ··· 0
0 0 0 0 0 0 0 0 0

··· ···
0 0 0 0 0 0 0 0 0


.

(2.8)

Then, the above equations (2.1)–(2.5) can be written as an abstract Cauchy problem
in the Banach space X,

d�p(t)
dt

= (A+E)�p(t), t > 0,

�p(0)= (1,0, . . . ,0),

�p(t)= (
p0(t), p1(t), . . . , pN (t), pN+1(x, t), . . . , pN+M+2(x, t)

)
.

(2.9)

3. Unique and nonnegative solution of (2.1)–(2.5)

In this section, we will prove the existence of the unique and nonnegative solution of the
repairable system. We begin with proving the following propositions.
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Theorem 3.1. (1) γ ∈ ρ(A) and ‖(γI −A)−1‖ < 1/γ when γ > 0;
(2) D(A) is dense in X;
(3) C0-semigroup T(t) generated by A+E is a positive C0-semigroup;
(4) T(t) is a positive C0-semigroup of contraction.

Proof. (1) γ ∈ ρ(A) and ‖(γI −A)−1‖ < 1/γ when γ > 0.
For any �y = (y0, . . . , yN , yN+1(x), . . . , yN+M+2(x))∈X, consider the equation (γI −A)�p=

�y, that is,

(
γ+hi

)
pi = yi

(
i= 0,1, . . . ,N

)
, (3.1)

dpj(x)

dx
=−(

γ+µj(x)
)
pj(x) + yj(x), j =N + 1, . . . ,N +M + 2, (3.2)

pN+1(0)= aN pN , pN+M+2(0)=
N∑
i=0

zi pi, pN+1+n(0)=
N∑
i=0

di,npi (n= 1, . . . ,M).

(3.3)

Solving (3.1)-(3.2) with the help of (3.3), we can obtain that

pi = yi
γ+hi

, i= 0,1, . . . ,N ,

pj(x)= pj(0)e−
∫ x

0 (γ+µj (ξ))dξ +
∫ x

0
e−

∫ x
τ (γ+µj (ξ))dξ y j(τ)dτ, j =N + 1, . . . ,N +M + 2.

(3.4)

Combining the above equations with Fubini theorem, it follows that

‖�p‖ =
N∑
i=0

∣∣pi∣∣+
N+M+2∑
j=N+1

∥∥pj(x)
∥∥
L1[0,∞)

<
N∑
i=0

∣∣pi∣∣+
N+M+2∑
j=N+1

{
pj(0)

∫∞
0
e−γxdx+

∫∞
0

∣∣yj(τ)
∣∣dτ ∫∞

τ
e−γ(x−τ)dx

}

=
N∑
i=0

∣∣pi∣∣+
1
γ

{
aN

∣∣pN∣∣+
N∑
i=0

M∑
n=1

di,npi +
N∑
i=0

zi pi

}
+

1
γ

N+M+2∑
j=N+1

∥∥yj(x)
∥∥

≤ 1
γ

{ N∑
i=0

∣∣yi∣∣+
N+M+2∑
j=N+1

∥∥yj(x)
∥∥
L1[0,∞)

}
= 1

γ
‖�y‖.

(3.5)

Equation (3.5) shows that (γI −A)−1 : X→X exists and ‖(γI −A)−1‖ < 1/γ when γ > 0.
(2) D(A) is dense in X.
If we set L = {(p0, p1, . . . , pN , pN+1(x), . . . , pN+M+2(x)) | pj(x) ∈ C∞0 [0,∞), and there

exist numbers cj such that pj(x) = 0, x ∈ [0,cj], j = N + 1, . . . ,N +M + 2}. It is obvious
that L is dense in X. So it suffices to prove that D(A) is dense in L.

Take �p ∈ L, then there are cj > 0, such that pj(x) = 0, x ∈ [0,cj], j = N + 1, . . . ,N +
M + 2. It follows that pj(x)= 0, x ∈ [0,2s], where 0 < 2s < min{cj}.
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Set

f s(0)= (
p0, p1, . . . , pN , f sN+1(0), . . . , f sN+M+2(0)

)
=

(
p0, p1, . . . , pN ,aN pN ,

N∑
i=0

di,1pi, . . . ,
N∑
i=0

di,Mpi,
N∑
i=0

zi pi

)
,

f s(x)= (
p0, p1, . . . , pN , f sN+1(x), . . . , f sN+M+2(x)

)
,

f sj (x)=


f sj (0)

(
1− x

s

)2

, x ∈ [0,s),

−µj(x− s)2(x− 2s)2, x ∈ [s,2s),

pj(x), x ∈ [2s,∞),

j =N + 1, . . . ,N +M + 2,

(3.6)

where µj = f sj (0)
∫ s

0 µj(x)(1− x/s)2dx/
∫ 2s
s µj(x)(x− s)2(x− 2s)2dx.

Then, it is easy to verify that f s(x)∈D(A), moreover,

∥∥�p− f s(x)
∥∥= N+M+2∑

j=N+1

∫∞
0

∣∣pj(x)− f sj (x)
∣∣dx = N+M+2∑

j=N+1

∫ 2s

0

∣∣pj(x)− f sj (x)
∣∣dx

=
N+M+2∑
j=N+1

(∫ s

0

∣∣ f sj (0)
∣∣(1− x

s

)2
dx+

∫ 2s

s

∣∣µj

∣∣(x− s)2(x− 2s)2dx
)

=
N+M+2∑
j=N+1

(∣∣ f sj (0)
∣∣ s

3
+
∣∣µj

∣∣ s5

30

)
−→ 0, when s−→ 0.

(3.7)

This shows that D(A) is dense in L. In other words, D(A) is dense in X. From (1), (2),
and Hille Yosida theory [11], we know that A generates a C0-semigroup. It is easy to check
that

E : X−→X, ‖E‖ ≤max
{
a0,ai + bi,bN ,W

}
(i= 1, . . . ,N − 1) (3.8)

is a bounded linear operator (here, W = supx∈R+ µj(x), j = N + 1, . . . ,N +M + 2). Thus,
by the Perturbation theory of C0-semigroup [11] we deduce that A+ E generates a C0-
semigroup T(t).

(3) T(t), generated by A+E, is a positive C0-semigroup.
By the solution of (3.1)–(3.3), we know that �p is a nonnegative vector if �y is a nonnega-

tive vector (yi ≥ 0, i= 0,1, . . . ,N , and yj(x)≥ 0 j =N + 1, . . . ,N +M + 2). In other words,
(γI −A)−1 is a positive operator [2]. By the expression of E, it can be easily verified that
E is a positive operator. We note that(

γI −A−E
)−1 = [

I − (γI −A)−1E
]−1

(γI −A)−1. (3.9)

When γ > max{a0,ai + bi,bN ,W}, by (3.5), it is easy to see that ‖(γI −A)−1E‖ < 1, that is
to say [I − (γI −A)−1E]−1 exists and is bounded, and

[
I − (γI −A)−1E

]−1 =
∞∑
k=0

[
(γI −A)−1E

]k
. (3.10)
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Therefore, [I − (γI −A)−1E]−1 is a positive operator. By (3.9) and (3.10), we get that
(γI −A− E)−1 is a positive operator. By [2], we know that A + E generates a positive
C0-semigroup.

(4) T(t) is a positive C0-semigroup of contraction.
For any �p ∈D(A), we take

Qp =
([

p0
]+

p0
,

[
p1

]+

p1
, . . . ,

[
pN

]+

pN
,

[
pN+1(x)

]+

pN+1(x)
, . . . ,

[
pN+M+2(x)

]+

pN+M+2(x)

)
; (3.11)

here,

[
pi
]+ =

pi, pi > 0,

0, pi ≤ 0,
i= 0,1, . . . ,N ,

[
pj(x)

]+ =
pj(x), pj(x) > 0,

0, pj(x)≤ 0,
j =N + 1, . . . ,N +M + 2.

(3.12)

For any �p ∈D(A) and Qp, we have

〈
(A+E)�p,Qp

〉={
−h0p0 + b1p1 +

N+M+2∑
j=N+1

∫∞
0
pj(x)µj(x)dx

}[
p0

]+

p0

+
N−1∑
i=1

{
ai−1pi−1−hipi + bi+1pi+1

}[pi]+

pi
+
{
aN−1pN−1−hN pN

}[pN]+

pN

−
N+M+2∑
j=N+1

∫∞
0

{
dpj(x)

dx
+µj(x)pj(x)

}[
pj(x)

]+

pj(x)
dx

≤−h0
[
p0

]+
+ b1

[
p1

]+
+

N+M+2∑
j=N+1

∫∞
0
µj(x)

[
pj(x)

]+
dx

+
N−1∑
i=1

{
ai−1

[
pi−1

]+−hi
[
pi
]+

+ bi+1
[
pi+1

]+
}

+ aN−1
[
pN−1

]+−hN
[
pN

]+

−
N+M+2∑
j=N+1

∫∞
0

dpj(x)

dx

[
pj(x)

]+

pj(x)
dx−

N+M+2∑
j=N+1

∫∞
0
µj(x)

[
pj(x)

]+
dx

≤−h0
[
p0

]+
+ b1

[
p1

]+
+

N−1∑
i=1

{
ai−1

[
pi−1

]+−hi
[
pi
]+

+ bi+1
[
pi+1

]+
}

+ aN−1
[
pN−1

]+−hN
[
pN

]+−aN
[
pN

]+−
N∑
i=0

M∑
n=1

di,n
[
pi
]+−

N∑
i=0

zi
[
pi
]+ = 0.

(3.13)

From the definition of dispersive operator and (3.13), we know that A+E is a disper-
sive operator. Combining (1), (2), (3) with the Philips theory [11], we derive that A+E
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generates a positive C0-semigroup of contraction. Because C0-semigroup is unique [2],
this positive C0-semigroup of contraction is just T(t). Thus, we complete the proof of
Theorem 3.1. �

Theorem 3.2. The repairable system (2.1)–(2.5) has a unique, nonnegative, and time-
dependant solution �p(x, t), which satisfies ‖�p(·, t)‖ = 1, t ∈ [0,∞).

Proof. From Theorem 3.1 and [11], we know that the system (2.1)–(2.5) has a unique
nonnegative solution �p(x, t) and it can be expressed as

�p(x, t)= T(t)(1,0, . . . ,0). (3.14)

By Theorem 3.1 and (3.14), we obtain that

∥∥�p(·, t)∥∥= ∥∥T(t)(1,0, . . . ,0)
∥∥≤ ∥∥(1,0, . . . ,0)

∥∥= 1, t ∈ [0,∞). (3.15)

On the other hand, since (1,0, . . . ,0)∈D(A+E), so �p(x, t)∈D(A+E), and pj(x, t), j =
N + 1, . . . ,N +M + 2 satisfy system (2.1)–(2.5). Then, we have

d

dt

∥∥�p(·, t)∥∥= N∑
i=0

dpi(t)
dt

+
N+M+2∑
j=N+1

d

dt

∫∞
0
pj(x, t)dx = 0. (3.16)

Hence, ‖�p(·, t)‖ = ‖�p(0)‖ = 1. This just reflects the physical meaning of �p(x, t). �

4. Asymptotic stability of system (2.1)–(2.5)

In this section, we will study the asymptotic stability of the repairable system. We will
prove that there exists a nonnegative steady solution of the system, and the dynamic solu-
tion converges to the steady solution when time t tends to infinity. Therefore, the system
is asymptotic stability.

Lemma 4.1.
∫∞

0 e−
∫ x

0 µj (ξ)dξdx = ∫∞
0 xgj(x)dx, for j =N + 1, . . . ,N +M + 2.

Proof. From [3, pages 11 and 8], we know that

∫∞
0
e−

∫ x
0 µj (ξ)dξdx =

∫∞
0

[
1−Gj(x)

]
dx,

(
G(0)= 0

)
,∫∞

0
xgj(x)dx =

∫∞
0

[
1−Gj(x)

]
dx,

(
G(∞)= 1

)
.

(4.1)

So,
∫∞

0 e−
∫ x

0 µj (ξ)dξdx = ∫∞
0 xgj(x)dx, we complete the proof of Lemma 4.1. �

Lemma 4.2. There exists K ∈R, such that
∫∞
t e−

∫ x
t µj (ξ)dξdx ≤ K for any t ≥ 0.
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Proof. Let Gt
j(x)= Pr{Xj − t ≤ x | Xj > t} = (Gj(x+ t)−Gj(t))/(1−Gj(t)), x ≥ 0.

So, 1−Gt
j(x)= (1−Gj(x+ t))/(1−Gj(t)), then

Ej(t)= E
{
Xj − t | Xj > t

}= ∫∞
0
xdGt

j(x)=
∫∞

0

[
1−Gt

j(x)
]
dx

=
∫∞

0

1−Gj(x+ t)

1−Gj(t)
dx =

∫∞
t

1−Gj(x)

1−Gj(t)
dx

=
∫∞
t
e−

∫ x
0 µj (ξ)dξ · e

∫ t
0 µj (ξ)dξdx

=
∫∞
t
e−

∫ x
t µj (ξ)dξdx.

(4.2)

Because the failed unit is repairable, and the expectation of repair time of any failed
unit is less than ∞, then, there exist Kj ∈ R, such that Ej(t) ≤ Kj . Let K =max{Kj , j =
1,2, . . . ,N +M + 2}, then for any t ≥ 0, Ej(t)≤ K , that is,

∫∞
t e−

∫ x
t µj (ξ)dξdx ≤ K .

As a special case, let t = 0; we have
∫∞

0 e−
∫ x

0 µj (ξ)dξdx ≤ K . �

Theorem 4.3. 0 is the simple eigenvalue of A+E.

Proof. Consider (A+E)�p = 0 as the following equations:

−h0p0 + b1p1 +
N+M+2∑
j=N+1

∫∞
0
µj(x)pj(x)dx = 0, (4.3)

ai−1pi−1−hipi + bi+1pi+1 = 0 (i= 1, . . . ,N − 1), (4.4)

aN−1pN−1−hN pN = 0, (4.5)

−dpj(x)

dx
−µj(x)pj(x)= 0 ( j =N + 1, . . . ,N +M + 2), (4.6)

pN+1(0)= aN pN , pN+M+2(0)=
N∑
i=0

zi pi, PN+1+n(0)=
N∑
i=0

di,npi (n= 1, . . . ,M).

(4.7)

Solving (4.6) with the help of (4.7), we obtain that

pj(x)= pj(0)e−
∫ x

0 µj (ξ)dξ ( j =N + 1, . . . ,N +M + 2). (4.8)

Substitution of (4.8) into (4.3) with the help of (4.4)–(4.7) yields that(
−h0 + z0 +

M∑
n=1

d0,n

)
p0 +

(
b1 + z0 +

M∑
n=1

d1,n

)
p1

+
N−1∑
i=2

{
zi +

M∑
n=1

di,n

}
pi +

(
aN + zN +

M∑
n=1

dN ,n

)
pN = 0,

ai−1pi−1−hipi + bi+1pi+1 = 0 (i= 1, . . . ,N − 1),

aN−1pN−1−hN pN = 0.

(4.9)
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It is easy to check that the determinant coefficient matrix of the above equations equals 0.
Moreover, if p0 > 0, then pi > 0, (i= 1, . . . ,N), and

pj(x)= pj(0)e−
∫ x

0 µj (ξ)dξ > 0 ( j =N + 1, . . . ,N +M + 2). (4.10)

Using Lemma 4.2, we can deduce that pj(x)∈ L1[0,+∞). So, the vector

�p = (
p0, p1, . . . , pN , pN+1(x), . . . , pN+M+2(x)

)
(4.11)

is the eigenvector corresponding to 0 of A+E. Taking Q = (1,1, . . . ,1), we have

〈
�p,Q

〉= N∑
i=0

pi +
N+M+2∑
j=N+1

∫∞
0
pj(x)dx > 0. (4.12)

For any �q = (q0,q1, . . . ,qN ,qN+1(x), . . . ,qN+M+2(x))∈D(A+E),

(A+E)�q =



−h0q0 + b1q1 +
N+M+2∑
j=N+1

∫∞
0
µj(x)qj(x)dx

a0q0−h1q1 + b2q2
...

aN−2qN−2−hN−1qN−1 + bNqN
aN−1qN−1−hNqN

−dpN+1(x)
dx

−µN+1(x)pN+1(x)

...

−dpN+M+2(x)
dx

−µN+M+2(x)pN+M+2(x)



. (4.13)

By (2.5), it is easy to deduce that 〈(A + E)�q,Q〉 = 0. So, 0 is the simple eigenvalue of
A+E. �

Theorem 4.4. {r ∈ C | Rer > 0, or r = ia, a∈R, a 	= 0} belong to the resolvent set ofA+E.

Proof. For any r ∈ C, Rer > 0, or r = ia, a ∈ R, a 	= 0, and for any �y ∈ X, solve
(rI − (A+E))�p = �y:

(
r +h0

)
p0− b1p1−

N+M+2∑
j=N+1

∫∞
0
µj(x)pj(x)dx = y0, (4.14)

−ai−1pi−1 +
(
r +hi

)
pi− bi+1pi+1 = yi (i= 1, . . . ,N − 1), (4.15)

−aN−1pN−1 +
(
r +hN

)
pN = yN , (4.16)

dpj(x)

dx
+
(
r +µj(x)

)
pj(x)= yj(x) ( j =N + 1, . . . ,N +M + 2), (4.17)

pN+1(0)= aN pN , pN+M+2(0)=
N∑
i=0

zi pi, PN+1+n(0)=
N∑
i=0

di,npi (n= 1, . . . ,M).

(4.18)
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Solving (4.14)–(4.17), with the help of (4.18), we can obtain that

pj(x)= pj(0)e−
∫ x

0 (r+µj (ξ))dξ +
∫ x

0
e−

∫ x
τ (r+µj (ξ))dξ y j(τ)dτ. (4.19)

For yj(x)∈ L1[0,∞), combining Lemma 4.2, we can derive that

∫∞
0

∣∣∣∣∫ x

0
e−

∫ x
τ (r+µj (ξ))dξ y j(τ)dτ

∣∣∣∣dx ≤ ∫∞
0
dx

∫ x

0
e−

∫ x
τ µj (ξ)dξ

∣∣yj(τ)
∣∣dτ

=
∫∞

0

∣∣yj(τ)
∣∣d(τ)

∫∞
τ
e−

∫ x
τ µj (ξ)dξdx

≤ ∥∥yj∥∥L1[0,∞) ·K.

(4.20)

So, pj(x)∈ L1[0,∞), j =N + 1, . . . ,N +M + 2. Substituting them into (4.14) with the help
of (4.15)–(4.16) yields that

(
r +h0− z0−

M∑
n=1

d0,ngN+1+n

)
p0−

(
b1 + z1 +

M∑
n=1

d1,ngN+1+n

)
p1

−
N−1∑
i=2

{
zi +

M∑
n=1

di,ngN+1+n

}
pi−

(
aNgN+1 + zN +

M∑
n=1

dN ,ngN+1+n

)
pN = y0 +

N+M+2∑
j=N+1

Gj ,

(4.21)

−ai−1pi−1 +
(
r +hi

)
pi− bi+1pi+1 = yi (i= 1, . . . ,N − 1), (4.22)

−aN−1pN−1 +
(
r +hN

)
pN = yN , (4.23)

where

gj =
∫∞

0
µj(x)e−

∫ x
0 (r+µj (ξ))dξdx,

Gj =
∫∞

0
µj(x)dx

∫ x

0
e−

∫ x
τ (r+µj (ξ))dξ y j(τ)dτ.

(4.24)

When Rer > 0, or r = ia, a∈R, a 	= 0, we have |gj| ≤ 1, then it follows that the coefficient
matrix of (4.21)–(4.23) is a strictly diagonally dominant matrix. So, (4.21)–(4.23) has
unique solution. Assuming that { p̂0, p̂1, . . . , p̂N} is the unique solution of (4.21)–(4.23),
then { p̂0, p̂1, . . . , p̂N} and

p̂ j(x)= p̂ j(0)e−
∫ x

0 (r+µj (ξ))dξ +
∫ x

0
e−

∫ x
τ (r+µj (ξ))dξ y j(τ)dτ j =N + 1, . . . ,N +M + 2

(4.25)
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is the unique solution of (4.14)–(4.18). So, R(rI −A−E)= X, and because (rI −A−E)
is a closed operator, we can deduce that (rI −A− E)−1 exists and is bounded. In other
words, {r ∈ C | Rer > 0, or r = ia, a ∈ R, a 	= 0} belongs to the resolvent set of A+ E.
This completes the proof of Theorem 4.4. �

Corollary 4.5. The system (2.1)–(2.5) has a nonnegative stable solution.

In Theorem 4.4, we proved that all spectra of A+E lie in the left half-plane and there is
no spectra on the imaginary axis except 0. Noticing that �p in (4.11) is the eigenvector cor-
responding to 0 of A+E. It is obvious that �p is nonnegative. Hence, �p is the nonnegative
stable solution of the system.

Theorem 4.6. Let p̂ be the nonnegative eigenvector corresponding to 0 and satisfy ‖ p̂‖ = 1,
let Q = (1,1, . . . ,1), then the time-dependant solution p̂(·, t) of the system tends to the stable
solution p̂, that is, limt→∞ p̂(·, t)= 〈�p0,Q〉 p̂ = p̂. Here, �p0 is the initial value of the system.

From [12], and [10, Theorem 14], we know that Theorem 4.6 is the direct result of
the stability of the semigroup. Thus, we proved that p̂, the eigenvector corresponding to
0 of A+ E, is the unique and nonnegative stable solution of the repairable system, and
limt→∞ p̂(·, t)= p̂.

5. Conclusion

The problem of asymptotic stability of a general redundant repairable system with im-
perfect switching mechanism is studied in the paper from a theoretical standpoint. By
C0-semigroup theory, we firstly prove the existence of unique solution of a system; sec-
ondly, we prove the solution is asymptotic stability. Thus, we provide strictly mathemat-
ical proof for such general system. This is the main contribution of the paper.
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