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We show that positive solutions of a semilinear elliptic problem in the Sobolev critical
exponent with Newmann conditions, related to conformal deformation of metrics inRn

+,
are asymptotically symmetric in a neighborhood of the origin. As a consequence, we
prove for a related problem of conformal deformation of metrics in Rn

+ that if a solution
satisfies a Kazdan-Warner-type identity, then the conformal metric can be realized as a
smooth metric on Sn+.

1. Introduction

In recent years there has been a huge interest in studying properties of the positive singu-
lar solutions u of the scalar curvature equation

∆u+ k(x)u(n+2)/(n−2) = 0 in B1 \ {0},
u(x) > 0, u∈ C2(B1 \ {0}

)
,

(1.1)

where k(x) is a smooth positive function and B1 is the unit ball of Rn, with n≥ 3.
We observe that the interest for studying singular solutions of (1.1) comes from the

study of asymptotic behavior of positive solutions of the following problem in Rn, n≥ 3:

∆v+ k̃(x)v(n+2)/(n−2) = 0 in Rn. (1.2)

Using the Kelvin transformation, the study of the asymptotic behavior of solutions v of
problem (1.2) at infinity is reduced to the study of the asymptotic behavior at zero of
solutions of problem (1.1).

For k(x) ≡ 1, Caffarelli et al. in [2] proved that if zero is a nonremovable singularity
of a solution u of (1.1), then u is asymptotically symmetric with respect to the origin.
Furthermore, they showed the existence of a radial solution u0 of the problem

∆u0 +u(n+2)/(n−2)
0 (x)= 0, u0 > 0 in Rn \ {0},

u0 ∈ C2(Rn \ {0}), lim
x→0

u0(x)= +∞,
(1.3)
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such that

u(x)= u0(x)
(
1 + o(1)

)
(1.4)

as x→ 0. A consequence of (1.4) is that for any solution u of (1.3), there exist positive
constants c1, c2 such that

c1|x|(2−n)/2 ≤ u(x)≤ c2|x|(2−n)/2. (1.5)

In case k(x) is a nonconstant function, Chen and Lin extended these results in [4] by
assuming that

c1|x|l−1 ≤ ∣∣∇k(x)
∣∣≤ c2|x|l−1, (1.6)

where l, c1, c2 are positive constants. They showed in [3] that if the previous inequalities
hold for some l ≥ (n− 2)/2, then u satisfies the upper bound of (1.5),

u(x)≤ c|x|(2−n)/2, (1.7)

for any solution of (1.1) in a neighborhood of the origin, where c is a positive constant.
They established in [4] that the asymptotic symmetry for solutions of (1.1) follows from
(1.7).

In this paper, we are interested in studying singular solutions of an elliptic problem
related to conformal deformation of metrics in Rn

+. We will use the methods of Chen and
Lin in [4] to study the positive singular solutions u∈ C2(B+

1 )∩C1(∂B+
1 \ {0}) of the scalar

and mean curvature equations

∆u+ k(x)u(n+2)/(n−2) = 0 in B+
1 ,

∂u

∂η
= 0 in ∂′B+

1 \ {0},
(1.8)

where n ≥ 3, B+
1 = B1

⋂
Rn

+, ∂′B+
1 = ∂B+

1 ∩ ∂Rn
+, and η denotes the normal outward unit

vector in the boundary.
We assume that k ∈ C1(B̄+

1 ) is bounded between two positive constants and satisfies,
in a neighborhood of the origin,

c1|x|l−1 ≤ ∣∣∇k(x)
∣∣≤ c2|x|l−1, (1.9)

where l, c1, c2 are positive constants.
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A motivation in studying problem (1.8) arises from the problem of finding a metric,
conformal to the EuclideanRn

+, such that k(x) is the scalar curvature and zero is the mean
curvature of the new metric. Our first observation is that if ∂k/∂η = 0 in ∂′B+

1 , then k can
be extended to a function k̃ ∈ C1(B̄1). Moreover, any solution u of problem (1.8) can be
extended to a solution of problem (1.1) in the punctured ball B1 \ {0}. If (1.9) holds for
some l ≥ (n− 2)/2, then u satisfies (1.7).

According to the previous discussion, we are going to assume condition (1.7) on the
solutions u of problem (1.8). We point out that Chen and Lin in [5] conjectured that if k
is Hölder continuous, then any solution of (1.1) satisfies (1.7).

In order to present the results, we start by defining the numbers P(r,u) and D(u)
associated with a solution u of problem (1.8), as follows:

P(r,u)=
∫
∂′′B+

r

(
n− 2

2
u
∂u

∂η
− 1

2
(x ·η)|∇u|2 +

∂u

∂η
(x ·∇u) +

n− 2
2n

(x ·η)ku2n/(n−2)
)
dsx,

(1.10)

where B+
r is the upper half-ball of radius r, ∂′′B+

r = ∂B+
r ∩Rn

+, and D(u)= limr→0P(r,u).
Under assumptions (1.7) on the growth of u and (1.9) on the growth of k, we have the
following characterization of the singular solutions of (1.1).

Theorem 1.1. If u is a positive solution of (1.8), then D(u)≤ 0. Moreover, D(u)= 0 if and
only if zero is a removable singularity of u.

As a consequence of the characterization obtained in the last theorem, we are able to
establish a result about the nonexistence of singular solutions for an elliptic problem with
Dirichlet and Newmann conditions on the boundary (Theorem 1.2) and a result which
is related to the asymptotic symmetry in a neighborhood of the origin (Theorem 1.3).

Now, under the same assumptions on the growth of u and k as in Theorem 1.1, we
prove the following two results.

Theorem 1.2. Assume that k(tx) is nonincreasing in t for any unit vector x ∈Rn, and in a
neighborhood of the origin either k(x)≡ 1 or (1.9) holds for l ≥ (n− 2)/2. Let Ω be a smooth
bounded domain in Rn, such that Λ ≡ Ω∩Rn

+ and ∂′Λ = ∂Λ∩ ∂Rn
+ are nonempty, and

x ·η > 0 for all x ∈ ∂Ω∩Rn
+. Then, there are no positive smooth solutions of

∆u+ k(x)u(n+2)/(n−2) = 0 in Λ,

u= 0 in ∂′′Λ,

∂u

∂η
= 0 in ∂′Λ \ {0},

(1.11)

where ∂′′Λ= ∂Λ∩Rn
+.

Theorem 1.3. If u is a positive solution of problem (1.8), then

u(x)= ū(|x|)(1 + o(1)
)

(1.12)

as x→ 0, where ū(r)=−∫ ∂′′B+
r
u(x)dsx denotes the integral average of u on ∂′′B+

r .
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We want to mention that if v is a positive smooth solution of

∆v+ k̄(x)v(n+2)/(n−2) = 0 in Rn
+,

∂v

∂η
= 0 in ∂Rn

+,
(1.13)

such that v(x) = O(|x|2−n) at infinity, then v satisfies the following Kazdan-Warner-
Escobar-type identity: ∫

Rn+

(
x ·∇k̄)v2n/(n−2)dx = 0. (1.14)

Conversely, Theorem 1.1 implies the following result of conformal geometry.

Theorem 1.4. Suppose that k̄(x) satisfies k̄(∞)= lim|x|→+∞ k̄(x) > 0, and

c1|x|−(l+1) ≤ ∣∣∇k̄(x)
∣∣≤ c2|x|−(l+1) (1.15)

for large |x|, l ≥ (n− 2)/2, and c1, c2 positive constants. Let v be a positive solution of prob-
lem (1.13) satisfying the inequality

v(x)≤ c|x|(2−n)/2, (1.16)

for large |x| and some positive constant c. If the identity (1.14) holds then the conformal
metric ḡ = v4/(n−2)dx2 can be realized as a smooth metric in Sn+. Furthermore, if v is such
that the conformal metric cannot be realized as a smooth metric on Sn+, then there exist
positive constants c1 and c2 such that

c1|x|(2−n)/2 ≤ v(x)≤ c2|x|(2−n)/2 (1.17)

for large |x|, xn > 0.

Observe that Theorem 1.1 says that if k(x) is a positive continuous function which sat-
isfies (1.9) for some l ≥ (n− 2)/2, then, for any positive solution u of (1.8) which satisfies
(1.7), we have D(u)= 0 if and only if 0 is a removable singularity of u. We note that the
hypothesis l ≥ (n− 2)/2 in Theorem 1.1 is optimal.

In fact, assume that k(x)= k(|x|) is radially symmetric, bounded between two positive
constants and satisfies

k(r)= 1−Arl +R(r) (1.18)

in a neighborhood of zero for some A > 0, l > 0, R(r) = o(rl), and R′(r) = o(rl−1) when
r → 0. Let u(r,α) be the unique solution of the initial value problem

u′′(r) +
n− 1
r

u′(r) + k(r)u(n+2)/(n−2) = 0 in [0,1],

u(0)= α, u′(0)= 0.
(1.19)

Then, as a consequence of [4, Theorem 1.6], we obtain the following theorem.
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Theorem 1.5. Assume that (1.18) holds for l < (n− 2)/2 and k(r) is nonincreasing in r for
0≤ r ≤ 1. Then, there exists a sequence αj → +∞ such that u(r,αj) converges in C2

loc(B+
1 ) to

a positive and singular solution u of

∆u+ k(x)u(n+2)/(n−2) = 0 in B+
1 ,

∂u

∂η
= 0 in ∂′B+

1 \ {0},
(1.20)

such that D(u)= 0.

This paper is organized as follows. In Section 2, we will study some properties of the
smooth solutions of problem (1.8) and, when k is a constant, we discuss the behavior of
solutions u of problem (1.8) or (1.13) with a nonremovable singularity at the origin. In
Section 3, we will prove the theorem of characterization of removable singularities of so-
lutions of problem (1.8). In Section 4, we will prove the theorem of asymptotic symmetry
of solutions of problem (1.8) in a neighborhood of the origin and the other applications
of Theorem 1.1.

2. Preliminaries

First we recall without proof a Pohozaev-type identity derived in [6], and two theorems
which follow from the results of Caffarelli et al. in [2].

Theorem 2.1 (Pohozaev identity). Let Ω⊂Rn (n≥ 3) be a bounded domain with smooth
boundary; u : Ω→ R ∈ C2(Ω); f : Ω×R→ R continuous in x, u; F : Ω×R→ R defined
by F(x,u) = ∫ u0 f (x,s)ds. Suppose that u is a solution of the equation −∆u = f (x,u), x ∈
Ω. Then ∫

Ω

(
nF − n− 2

2
u f +

∑
i

xiFxi

)
dx

=
∫
∂Ω

(
n− 2

2
u
∂u

∂η
+
∑
i

xiηi
(
F − 1

2
|∇u|2

)
+
∂u

∂η

∑
i

xiui

)
dsx,

(2.1)

where η denotes the normal outward unit vector in the boundary.
If f (x,u)= k(x)u(n+2)/(n−2), u > 0, then the identity transforms into

n− 2
2n

∫
Ω

(x ·∇k)u2n/(n−2)dx

=
∫
∂Ω

(
n− 2

2
u
∂u

∂η
− 1

2
(x ·η)|∇u|2 +

∂u

∂η
(x ·∇u) +

n− 2
2n

(x ·η)ku2n/(n−2)
)
dsx.

(2.2)

Theorem 2.2. Let u be a positive solution of (1.1) with a nonremovable isolated singularity.
If k ≡ 1, then there exists a unique asymptotic constant −(2/n)((n− 2)/n)n ≤D∞ < 0 and a
radial singular solution h(r)= hD(logr)/r(n−2)/2 such that

u(x)= h(|x|)(1 + o(1)
)

as x −→ 0. (2.3)
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Theorem 2.3. Let λ be a constant and let u be a positive C2 solution of

∆u+ λu(n+2)/(n−2) = 0 in Rn \ {0}. (2.4)

If the origin is an isolated nonremovable singularity, then u is radially symmetric with respect
to the origin.

Now, we will prove the results of this section. First observe the following proposition.

Proposition 2.4. If u(x) is a smooth solution of (1.8) in a neighborhood of the origin in
Rn

+, then∫
∂′B+

r

(
n− 2

2
u
∂u

∂η
− 1

2
(x ·η)|∇u|2 +

∂u

∂η
(x ·∇u) +

n− 2
2n

(x ·η)ku2n/(n−2)
)
dsx = 0, (2.5)

where ∂′B+
r = ∂B+

r ∩ ∂Rn
+.

A straightforward calculation shows the following proposition.

Proposition 2.5. If k(x)≡ 1, the function

u0(x)=
(
n− 2

2

)(n−2)/2

|x|(2−n)/2 (2.6)

is a solution of problem (1.8).

Set Ω= B+
r . The Pohozaev identity implies that

n− 2
2n

∫
B+
r

(x ·∇k)u2n/(n−2)dx = P(r,u) +
∫
∂′B+

r

(
n− 2

2
u
∂u

∂η
− 1

2
(x ·η)|∇u|2

+
∂u

∂η
(x ·∇u)+

n− 2
2n

(x ·η)ku2n/(n−2)
)
dsx,

(2.7)

where P(r,u) was defined in (1.10).

Proposition 2.6. If u(x) is a solution of (1.8) with k(x) ≡ 1, then P(r,u) is a constant
independent of r.

Proof. Observe that ∂u/∂η = 0 in ∂′B+
r \ {0}, (x · η) = 0 on ∂′B+

r = ∂B+
r ∩ ∂Rn

+, and
(x ·η)= r on ∂′′B+

r = ∂B+
r ∩Rn

+. Then for 0 < s < r, we have

n− 2
2n

∫
B+
r \B+

s

(x ·∇k)u2n/(n−2)dx = P(r,u)−P(s,u), (2.8)

and therefore P(r,u)= P(s,u). �

Proposition 2.7. Let u(x) be a smooth solution of (1.8) in a neighborhood of the origin in
Rn

+, then
(i) if k(x)≡ 1, P(r,u)= 0;

(ii) if k(x) is smooth and nonconstant, then D(u)= limr→0P(r,u)= 0.
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Proof. Item (i) is a consequence of the Pohozaev identity and Proposition 2.4. From
(1.10), we have

P(r,u)=
∫
∂′′B+

r

(
n− 2

2
u
∂u

∂η
− 1

2
r|∇u|2 +

∂u

∂η
(x ·∇u) +

n− 2
2n

rku2n/(n−2)
)
dsx. (2.9)

By the assumption on u and k, we conclude that D(u)= limr→0P(r,u)= 0. �

Proposition 2.8. Let k(x) ≡ 1. If u(x) is a positive solution of (1.8) and zero is a nonre-
movable singular point of u, then

u(x)= u0(x)
(
1 + o(1)

)
(2.10)

as x→ 0; furthermore P(r,u) < 0.

Proof. Since ∂u/∂η = 0 in ∂′B+
r \ {0}, we can extend u to a function û defined in the ball

Br by

û(y, t)=
u(y, t) if t ≥ 0,

u(y,−t) if t < 0,
(2.11)

where y ∈Rn−1, |(y, t)| < r. It follows from Theorem 2.2 that

û(x)= u0(x)
(
1 + o(1)

)
(2.12)

as x→ 0. Consequently

u(x)= u0(x)
(
1 + o(1)

)
(2.13)

as x→ 0.
Using this equality and Proposition 2.5, we get

P(r,u)=
∫
∂′′B+

r

(
n− 2

2
u
∂u

∂η
− 1

2
r|∇u|2 +

∂u

∂η
(x ·∇u) +

n− 2
2n

ru2n/(n−2)
)
dsx

≤ c
∫
∂′′B+

r

(
− 1

2

(
n− 2

2

)n
|x|1−n +

n− 2
2n

(
n− 2

2

)n
|x|1−n

)
dsx

= c
∫
∂′′B+

r

((
n− 2

2

)n
|x|1−n

(
− 1
n

))
dsx < 0,

(2.14)

where c is a positive constant. �

Proposition 2.9. Let λ be a constant and let u be a positive C2 solution of

∆u+ λu(n+2)/(n−2) = 0 in Rn
+,

∂u

∂η
= 0 in ∂Rn

+ \ {0}.
(2.15)

If the origin is a nonremovable isolated singularity, then u is radially symmetrical with re-
spect to the origin.
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Proof. Using the extension of u, as in the previous proposition, the result is a consequence
of Theorem 2.3. �

3. Removable singularities

In this section, we prove that the quantity D(u) characterizes the positive singular solu-
tions of problem (1.8), which helps us to study the asymptotic behavior of such solutions
and prove a result of nonexistence. An important application of this characterization to
conformal geometry says that if u is a positive solution to problem (1.13) for which the
identity (1.14) holds, then the conformal metric u4/(n−2)|dx|2 is smooth in Sn+.

From now on, assume that k ∈ C1(B+
r ) is bounded between two positive constants and

satisfies inequalities (1.9). Furthermore, we will suppose that if u is a positive solution
of (1.8), then there exists a positive constant c such that u satisfies inequality (1.7) in a
neighborhood of the origin.

Theorem 1.1 is a consequence of the following five lemmas which will be proved later
in this section. We start by establishing a Harnack inequality on the upper half-sphere of
radius r.

Lemma 3.1. Let u be a positive solution of problem (1.8). Then there exists a positive constant
C such that there exists the estimates

max
|x|=r

u≤ Cmin
|x|=r

u,
∣∣∇u(x)

∣∣≤ C|x|−1u(x), (3.1)

for |x| ≤ 1/2 with xn ≥ 0.

Using inequalities (3.1), we prove the following estimates.

Lemma 3.2. Let u be a positive solution of (1.8) and let w(t)= ū(r)r(n−2)/2, where t = logr,
r ∈ (0,1] and, ū(r)=−∫ ∂′′B+

r
u is the integral average of u on ∂′′B+

r . Then w satisfies

(
n− 2

2

)2

w− c1w
(n+2)/(n−2) ≤wtt ≤

(
n− 2

2

)2

w− c2w
(n+2)/(n−2), (3.2)

for t ≤ 0, where c1 and c2 are two positive constants.

The following two lemmas are technical; they will be used in the proof of Lemma 3.5,
which is one of the fundamental steps in the proof of Theorem 1.1.

Lemma 3.3. Let u be a positive solution of (1.8). Assume that D(u)≥ 0. Then

lim
x→0

u(x)|x|(n−2)/2 = 0. (3.3)

Lemma 3.4. Let u and w be as in Lemma 3.2. Let ri = eti , where ti is a sequence of nega-
tive numbers such that ti →−∞, and w(ti)→ 0 as i→ +∞, with w′(ti) = 0. Then vi(y) =
r(n−2)/2
i u(ri y) is such that (vi(e))−1vi(y), with e = (1,0, . . . ,0), converges uniformly to the

harmonic function h(y)= (1/2)|y|2−n + 1/2.
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Lemma 3.5. Suppose that k(x) satisfies (1.9) for some l ≥ (n− 2)/2. Let u and w be as
in Lemma 3.2. If D(u) ≥ 0, then limt→−∞w(t) = 0 and there exists T such that w′(t) > 0
for t ≤ T .

Proof of Theorem 1.1. Let u be a positive solution of (1.8). Assuming that D(u)≥ 0,
Lemma 3.5 implies that w(t)→ 0 as t →−∞, and there exists T such that w′(t) > 0 for
t ≤ T . For any ε > 0, |ε| < 1, T can be chosen such that

wtt −
(
n− 2

2
− ε
)2

w ≥ 0 for t ≤ T. (3.4)

Integrating this differential inequality, we have for t ≤ T ,

w(t)≤w(T)exp
[(

n− 2
2

− ε
)

(t−T)
]
. (3.5)

Since ū(r) = w(t)r(2−n)/2, where r = et, applying the Harnack inequality (3.1), we have
that for any ε > 0, |ε| < 1, there exists r0 = eT such that

u(x)≤ Cū|x| = Cw(t)|x|(2−n)/2

≤ Cw(T)exp
[(

n− 2
2

− ε
)

(t−T)
]
|x|(2−n)/2

= Cw(T)r−ε exp
[
−
(
n− 2

2
− ε
)
T
]

≤ c(ε)r−ε,

(3.6)

for r = |x| < r0. Hence u∈ Lp(Br0 ) for p large. By estimates of linear elliptic equations (see
[7]), the function u(x) is smooth at the origin. Therefore, zero is a removable singularity
and so, Theorem 1.1 follows. �

Now, we will prove the lemmas used in the proof of Theorem 1.1.

Proof of Lemma 3.1. Let vr(x) = u(rx) for each r ∈ (0,3/4] and for 1/2 ≤ |x| ≤ 1. A
straightforward calculation shows that vr satisfies

∆vr(x) + br(x)vr(x)= 0 in
1
2
≤ |x| ≤ 1, xn ≥ 0,

∂vr
∂η

= 0,
1
2
≤ |x| ≤ 1, xn = 0,

(3.7)

where br(x) = r2k(rx)(u(rx))4/(n−2). Due to inequality (1.7), br(x) is bounded for 1/2 ≤
|x| ≤ 1.

Set

v̂r =
u
(
r(y, t)

)
if t ≥ 0,

u
(
r(y,−t)) if t < 0,

(3.8)

where y ∈Rn−1, |(y, t)| < 1.
After applying the Harnack inequality and the estimate of the gradient for v̂r , (see [4]),

the conclusion of Lemma 3.1 follows. �
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Proof of Lemma 3.2.

w(t)= 2r(n−2)/2

nαnrn−1

∫
∂′′B+

r

u(x)dsx = 2r−n/2

nαn

∫
∂′′B+

r

u(x)dsx, (3.9)

where αn is the volume of the unit ball B1 in Rn. Hence

wt =
(

2r
nαn

)(
− n

2
r−(n+2)/2

∫
∂′′B+

r

u(x)dsx + r−n/2
d

dr

∫
∂′′B+

1

u(r y)rn−1dsy

)

=−nr
(n−2)/2

2
−
∫
∂′′B+

r

u(x)dsx +
2r(2−n)/2

nαn

[∫
∂′′B+

1

(∇u(r y) · yrn−1)dsy]

+
2(n− 1)r(n−2)/2

nαn

[∫
∂′′B+

1

u(r y)dsy

]
= n− 2

2
w+

2r(2−n)/2

nαn

(∫
B+
r

∆u(x)dx−
∫
∂′B+

r

∇u(x) ·ηdsx
)

= n− 2
2

w+
2r(2−n)/2

nαn

∫
B+
r

∆u(x)dx.

(3.10)

Taking again the derivative with respect to t, we get

wtt = n− 2
2

wt +
(2−n)r(2−n)/2

2nαn

∫
B+
r

∆u(x)dx

+
2r(2−n)/2

nαn

(
d

dr

∫
B+
r

∆u(x)dx
)
dr

dt

=
(
n− 2

2

)2

w− r(n+2)/2−
∫
∂′′B+

r

k(x)u(n+2)/(n−2)dsx.

(3.11)

By the assumption k(x) is bounded between two positive constants; furthermore (3.1)
implies the existence of two positive constants c3 and c4 such that

c3
(
ū(r)

)(n+2)/(n−2) ≤ u(x)(n+2)/(n−2)
|x|=r ≤ c4

(
ū(r)

)(n+2)/(n−2)
. (3.12)

Applying these estimates in (3.11), the conclusion of Lemma 3.2 follows. �

Proof of Lemma 3.3. Suppose that there exists a positive constant c0 such that

c0 ≤ u(x)|x|(n−2)/2 ≤ c (3.13)

for 0 < |x| ≤ 1/2, xn > 0. Let r j be a sequence of positive numbers such that r j → 0 as

j → +∞. Set vj(x)= u(r jx)r(n−2)/2
j . By (3.13), we have

c0 ≤ vj(x)|x|(n−2)/2 ≤ c, (3.14)
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and vj satisfies

∆vj + k
(
r jx
)
v(n+2)/(n−2)
j = 0 in Rn

+,

∂vj
∂η

= 0 in ∂Rn
+ \ {0}.

(3.15)

Since vj is uniformly bounded in any compact subset of Rn
+, by elliptic estimates there

exists a subsequence of vj (still denoted by vj) such that vj converges in C2
loc(Rn

+) to a
solution v of

∆v+ k(0)v(n+2)/(n−2) = 0 in Rn
+,

∂v

∂η
= 0 in ∂Rn

+ \ {0},

v(x)≥ c1|x|−(n−2)/2.

(3.16)

Proposition 2.8 implies that P(1,v) < 0; furthermore, by (1.10), we get

P
(
r j ,u

)= ∫
∂′′B+

r j

(
n− 2

2
u(x)

∂u

∂η
− 1

2
r j|∇u|2 + r j

∣∣∣∣∂u∂η
∣∣∣∣2

+
n− 2

2n
rjk(x)u2n/(n−2)

)
dsx

=
∫
∂′′B+

1

(
n− 2

2
u
(
r j y
)∂u
∂η
rn−1
j − 1

2
rnj |∇u|2

+ rnj

∣∣∣∣∂u∂η
∣∣∣∣2

+
n− 2

2n
rnj k
(
r j y
)
u2n/(n−2)

)
dsy

= P(1,vj
)
.

(3.17)

Then

0≤D(u)= lim
r j→0

P
(
r j ,u

)= lim
j→+∞

P
(
1,vj

)= P(1,v) < 0 (3.18)

yields a contradiction. This finishes the proof of Lemma 3.3. �

Proof of Lemma 3.4. Let x = ri y. The Harnack inequality on any compact set of Rn
+ im-

plies that

vi(y)= r(n−2)/2
i u(x)≤ r(n−2)/2

i maxu(x)≤ Cr(n−2)/2
i minu(x)

≤ Cr(n−2)/2
i min

|x|=ri
u(x)≤ Cr(n−2)/2

i ū
(
ri
)= Cw(ti). (3.19)

Therefore, vi(y) uniformly converges to 0 in any compact subset ofRn
+. Therefore, zi(y)=

(vi(e))−1vi(y), with e = (1,0, . . . ,0), uniformly converges to a harmonic function h(y)
with a possible singularity at 0. By Liouville’s theorem (see [1]), h(y)= a|y|2−n + b. Since
h(e)= 1, we have a+ b = 1.
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Set ḡi(r) = r(n−2)/2z̄i(y) = c(rri)(n−2)/2ū(rir), where c = (vi(e))−1 and r = |y|. Then
ḡi(r)= cw(t) and ḡi′(r)= cw′(t)(1/r), with t = log(rri). Then ḡi′(1)= cw′(ti)= 0. Hence,
(d/dr)(h(r)r(n−2)/2) = 0 in r = 1, where g(r) = h(r)r(n−2)/2 = limi→+∞ ḡi(r). Calculating
g′(1), we obtain that a= b, which completes the proof of Lemma 3.4. �

Proof of Lemma 3.5. We will prove by contradiction that limt→−∞w(t)= 0. Otherwise, by
Lemma 3.3, there exists a sequence {ti} of local minima of w with limi→+∞ ti = −∞ and
limi→+∞w(ti) = 0. The first inequality of (3.2) implies that there exists ε0 > 0 such that
wtt > 0 if w ≤ ε0. Then there exists t∗i < ti < t̄i such that w(t∗i ) = w(t̄i) = ε0; wt < 0 in
[t∗i , ti) and wt > 0 in (ti, t̄i]. Since t̄i < ti−1, then limi→+∞ t̄i =−∞. Under these conditions,
we will prove the following inequalities:

2
n− 2

log
w(t)
w
(
ti
) − c1 ≤ ti− t ≤ 2

n− 2
log

w(t)
w
(
ti
) + c2 (3.20)

for t ∈ [t∗i , ti], and

2
n− 2

log
w(t)
w
(
ti
) − c1 ≤ t− ti ≤ 2

n− 2
log

w(t)
w
(
ti
) + c2 (3.21)

for t ∈ [ti, t̄i].
First, consider the function

h(t)=w2
t −

(
n− 2

2

)2

w2 + cw2n/(n−2) (3.22)

for t ∈ [t∗i , ti], where c = ((n− 2)/n)c1 and c1 is the same constant of inequalities (3.2).
Then

h′(t)= 2wt

[
wtt −

(
n− 2

2

)2

w+ c1w
(n+2)/(n−2)

]
≤ 0 (3.23)

and h(t)≥ h(ti), that is,

w2
t − g(w)≥−g(w(ti)), (3.24)

where g(w) = [((n− 2)/2)2w2− cw2n/(n−2)] and we use wt(ti) = 0. Integrating the previ-
ous inequality, we find that

ti− t ≤
∫ w(t)

w(ti)

dw√
g(w)− g(w(ti)) . (3.25)

By scaling w(t)≡w = ηw(ti), η ∈ [1,w(t)/w(ti)], we get

∫ w(t)

w(ti)

dw√
g(w)− g(w(ti)) =

∫ w(t)/w(ti)

1

dη√
ḡ(η)− ḡ(1)

, (3.26)
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where ḡ(η) = ((n− 2)/2)2η2 − cw(ti)4/(n−2)η2n/(n−2). Hence, for ε0 sufficiently small, we
have

ḡ(η)− ḡ(1)= (η2− 1
)[(n− 2

2

)2

− cw(ti)4/(n−2)
(
η2n/(n−2)− 1
η2− 1

)]

≥ (η2− 1
)[(n− 2

2

)2

− c3w
4/(n−2)

]
> 0

(3.27)

for w ≤ ε0. Therefore

∫ w(t)/w(ti)

1

dη√
ḡ(η)− ḡ(1)

≤
∫ w(t)/w(ti)

1

dη{(
η2− 1

)[(
(n− 2)/2

)2− c3w4/n−2
]}1/2

=
∫ w(t)/w(ti)

1

dη(
(n− 2)/2

){(
η2− 1

)[
1− c4w4/n−2

]}1/2

≤ 2
n− 2

∫ w(t)/w(ti)

1

dη√
η2− 1

+ c5w
(
ti
)4/(n−2)

∫ w(t)/w(ti)

1

η4/(n−2)√
η2− 1

dη,

(3.28)

where we used

α= c4w
4/(n−2) < 1

(
ε0 sufficiently small

)
,

√
1

1−α ≤ 1 +α

(
lim
n→∞

n∑
q=1

αq
)
. (3.29)

By the last integral in the previous inequality, we get η4/n−2 ≤ (w(t)/w(ti))4/(n−2)−1η in
[1,w(t)/w(ti)]. Hence

w
(
ti
)4/(n−2)

∫ w(t)/w(ti)

1

η4/(n−2)√
η2− 1

dη ≤w(ti)4/(n−2)
(
w(t)
w
(
ti
))4/(n−2)−1∫ w(t)/w(ti)

1

η√
η2− 1

dη

=w(ti)4/(n−2)
(
w(t)
w
(
ti
))4/(n−2)−1

√√√√( w(t)
w
(
ti
))2

− 1≤ ε0,

(3.30)

and therefore ∫ w(t)/w(ti)

1

dη√
ḡ(η)− ḡ(1)

≤ 2
n− 2

log
w(t)
w
(
ti
) + c6 (3.31)

for some positive constant c6; this proves the first part of (3.20). To prove the second part,
we consider the function

ψ(t)=w2
t −

(
n− 2

2

)2

w2(t) (3.32)
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for t ∈ [t∗i , ti]. By inequalities (3.2), we have

ψ′(t)= 2wt

[
wtt −

(
n− 2

2

)2

w(t)
]
≥ 0, (3.33)

and therefore

w2
t −

(
n− 2

2

)2

w2(t)≤−
(
n− 2

2

)2

w2(ti), (3.34)

where we used wt(ti)= 0. Integrating the previous inequality, we get

n− 2
2

(
ti− t

)≥ ∫ w(t)

w(ti)

dw√
w2(t)−w2

(
ti
) . (3.35)

By scaling w = ηw(ti), η ∈ [1,w(t)/w(ti)], we have

∫ w(t)

w(ti)

dw√
w2(t)−w2

(
ti
)

=
∫ w(t)/w(ti)

1

dη√
η2− 1

= log


√√√√( w(t)

w
(
ti
))2

− 1 +
w(t)
w
(
ti
)
≥ log

w(t)
w
(
ti
) ,

(3.36)

which completes the proof of inequalities (3.20). The proof of inequalities (3.21) is anal-
ogous and we skipped it. Evaluating these two expressions for t∗i and t̄i, respectively, we
have

2
n− 2

log
w
(
t∗i
)

w
(
ti
) − c1 ≤ ti− t∗i ≤

2
n− 2

log
w
(
t∗i
)

w
(
ti
) + c2,

2
n− 2

log
w
(
t̄i
)

w
(
ti
) − c1 ≤ t̄i− ti ≤ 2

n− 2
log

w
(
t̄i
)

w
(
ti
) + c2.

(3.37)

Hence,

4
n− 2

log
(
ε0

w
(
ti
))− c ≤ t̄i− t∗i . (3.38)

Let ri = eti and vi(y)= r(n−2)/2
i u(ri y). By Lemma 3.4, we have that if |y| = 1 then vi(y)=

vi(e)(1 + o(1)). Consequently,

u(x)= ū(r)
(
1 + o(1)

)
,∣∣∇u(x)

∣∣=−ū′(r)(1 + o(1)
) (3.39)
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in x = ri y, |x| = r = ri. Using this result together with (3.17), we get

P(r,u)=
∫
∂′′B+

1

(
n− 2

2
u(r y)

∂u

∂η
rn−1− 1

2
rn|∇u|2 + rn

∣∣∣∣∂u∂η
∣∣∣∣2

+
n− 2

2n
rnk(r y)u2n/(n−2)

)
dsy

=
∫
∂′′B+

1

(
n− 2

2
ū(r)ū′(r)rn−1(1 + o(1)

)2
+

1
2
rn
(
ū′(r)

)2(
1 + o(1)

)2
)
dsy

+
∫
∂′′B+

1

(
n− 2

2n
k(r y)

(
r(n−2)/2ū(r)

(
1 + o(1)

))2n/(n−2)
)
dsy

=
∫
∂′′B+

1

[(
1
2
w′2
(
ti
)− 1

2

(
n− 2

2

)2

w2(ti)
)(

1 + o(1)
)]
dsy

+
∫
∂′′B+

1

[(
n− 2

2n
k
(
ri y
)
w2n/(n−2)(ti))(1 + o(1)

)]
dsy

= σn−1

2

[
1
2
w′2
(
ti
)− 1

2

(
n− 2

2

)2

w2(ti)+
n− 2

2n
k̄
(
ti
)
w2n/(n−2)(ti)

](
1 + o(1)

)
,

(3.40)

where σn−1 ≡ nαn is the volume of ∂B1 in Rn and k̄(t)=−∫ ∂′′B+
r
k with r = et. By the above

equation, we obtain the following conclusions.
(1) Since w′(ti)= 0 and w(ti)→ 0 as i→ +∞, then

D(u)= lim
i→+∞

P
(
ri,u

)= 0. (3.41)

(2) P(ri,u)≤ c1(n)w2(ti) < 0 for ε0 sufficiently small.
Hence,

w2(ti)≤ cn∣∣P(ri,u)∣∣
≤ cn

[∫
B+
ri
\B+

r∗i

∣∣x ·∇k(x)
∣∣u2n/n−2dx+

∫
B+
r∗i

∣∣x ·∇k(x)
∣∣u2n/n−2dx

]
≡ I1 + I2,

(3.42)

where r∗i = et
∗
i . By the assumption, we have |x · ∇k(x)| ≤ c0|x|(n−2)/2. Since u satisfies

inequality (1.7), we obtain the following estimate:

∣∣I2∣∣=
∣∣∣∣∣cn

∫
B+
r∗i

∣∣x ·∇k(x)
∣∣u2n/(n−2)dx

∣∣∣∣∣≤ cr∗i (n−2)/2 = cexp
(
n− 2

2
t∗i
)
. (3.43)

To calculate I1, by the first inequality of (3.20),

w(t)≤ cw(ti)exp
[
n− 2

2

(
ti− t

)]
. (3.44)
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Setting Λ≡ B+
ri \B+

r∗i
, we have

∣∣I1∣∣= ∣∣∣∣cn∫
Λ

∣∣∣∣x ·∇k(x)
∣∣u2n/(n−2)dx

∣∣
≤ c0

∫
Λ
|x|(n−2)/2u2n/(n−2)dx

= c0

∫ ri
r∗i

(∫
∂′′B+

r

r(n−2)/2u(x)2n/(n−2)dsx

)
dr

≤ c̃0

∫ r∗i
ri
w(t)2n/(n−2)r(n−4)/2dr

≤ c̃w2n/(n−2)(ti)exp
(
nti
)∫ ti

t∗i
exp

(
− n+ 2

2
t
)
dt

≤ ĉw2n/(n−2)(ti)exp
(
nti
)

exp
(
− n+ 2

2
t∗i
)
.

(3.45)

By the second inequality of (3.20), we get

w
(
ti
)≤ c̄w(t∗i )exp

[
n− 2

2

(
t∗i − ti

)]
. (3.46)

Putting these two inequalities together, we have

∣∣I1∣∣≤ ζε2n/(n−2)
0 exp

(
n− 2

2
t∗i
)
. (3.47)

Then, by (3.42), we get

w2(ti)≤ C exp
(
n− 2

2
t∗i
)

, (3.48)

which implies − logw(ti)≥−C2 + ((n− 2)/4)(−t∗i ); applying (3.38),

t̄i− t∗i ≥
4

n− 2
logε0− 4

n− 2
logw

(
ti
)− c

≥ 4
n− 2

[
−C2 +

n− 2
4

(− t∗i )]− 4
n− 2

log
(

1
ε0

)
− c

= 4
n− 2

n− 2
4

(− t∗i )− c3 log
(

1
ε0

)
,

(3.49)

that is,

t̄i ≥−c3 log
(

1
ε0

)
, (3.50)

which yields a contradiction with the fact that limi→+∞ t̄i = −∞. Lemma 3.5 has been
proved. �
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4. Applications

The theorems in this section are consequences of Theorem 1.1. Recall that Theorem 1.2 is
a result of nonexistence of singular solutions, Theorem 1.3 is a result of asymptotic sym-
metry in a neighborhood of the origin, and Theorem 1.4 is a result of conformal geome-
try.

Proof of Theorem 1.2. Suppose that u > 0 is a solution of (1.11). Let s > 0; for (2.8) and
the assumption u= 0 in ∂′′Λ, we have

n− 2
2n

∫
Λ\B+

s

(x ·∇k)u2n/(n−2)dx =
∫
∂′′Λ

1
2

(x ·η)|∇u|2dsx −P(s,u); (4.1)

taking the limit when s→ 0, we obtain

1
2

∫
∂′′Λ

(x ·η)|∇u|2dsx = n− 2
2n

∫
Λ

(x ·∇k)u2n/(n−2)dx+D(u)≤ 0 (4.2)

by the assumption for k and Theorem 1.1. Since x ·η > o in ∂′′Λ, we conclude that |∇u| ≡
0 and ∂u/∂η = 0 in ∂′′Λ. This implies u≡ 0 in Λ, which yields a contradiction. �

Proof of Theorem 1.3. Suppose that 0 is a nonremovable singularity of u, otherwise the
result is obvious. By Theorem 1.1, D(u)= limr→0P(r,u) < 0. We claim that there exists a
constant c0 such that

u(x)≥ c0|x|(2−n)/2 (4.3)

for 0 < |x| ≤ 1/2. In fact, let w(t) = ū(r)r(n−2)/2, t = logr. If the claim is false then
limt→−∞w(t)= 0. Therefore, limt→−∞w(t) > 0, otherwise, limt→−∞w(t)= 0 and 0 must be
a removable singularity of u. Then there exists a sequence of ti→−∞ such thatw′(ti)= 0.
Using the same argument as in Lemma 3.5, we have

P
(
ri,u

)= σn−1

2

[
1
2
w′2
(
ti
)− 1

2

(
n− 2

2

)2

w2(ti)+
n− 2

2n
k̄
(
ti
)
w2n/(n−2)(ti)](1 + o(1)

)
.

(4.4)

Then D(u)= limi→+∞P(ri,u)= 0, which is a contradiction. Consequently (4.3) has been
proved. Next, we prove that

u(x)= ū(|x|)(1 + o(1)
)
, (4.5)∣∣∇u(x)

∣∣=−∂ū
∂r

(|x|)(1 + o(1)
)

(4.6)

as x→ 0.
Suppose that there exists ε0 > 0 such that

u
(
xi
)≥ ū(ri)(1 + ε0

)
(4.7)
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for a sequence of points xi, where ri = |xi| → 0 as i→ +∞. Let vi(x)= u(rix)r(n−2)/2
i . Then,

as in the proof of Lemma 3.3, there exists a subsequence (still denoted by vi) that con-
verges in C2

loc(Rn
+) to a solution v of

∆v+ k(0)v(n+2)/(n−2) = 0 in Rn
+,

∂v

∂η
= 0 in ∂Rn

+ \ {0}.
(4.8)

Now, by (4.3), v(x)≥ c0|x|(2−n)/2, then v(x)= v(|x|) (see Proposition 2.9). But,

v̄ j(1)=−
∫
∂′′B+

1

vj(x)dsx = r(n−2)/2
j ū

(
r j
)
. (4.9)

Hence, by (4.7), if |x| = 1,

vj(x)= u(r jx)r(n−2)/2
j ≥ ū(r j)r(n−2)/2

j

(
1 + ε0

)= v̄ j(1)
(
1 + ε0

)
. (4.10)

Therefore, if |x| = 1,

v(x)= lim
j→+∞

vj(x)≥ lim
j→+∞

v̄ j(1)
(
1 + ε0

)= v(x)
(
1 + ε0

)
(4.11)

yields a contradiction. This proves the asymptotic symmetry of u. Arguing similarly, sup-
pose that there exists ε0 > 0 such that∣∣∇u(xi)∣∣≥−ū′(ri)(1 + ε0

)
(4.12)

for a sequence of points xi, where ri = |xi| → 0 as i→ +∞, we arrive at∣∣∇v(x)
∣∣= lim

j→+∞
∣∣∇vj(x)

∣∣
≥− lim

j→+∞
rn/2j ū′

(
r j
)(

1 + ε0
)

=− lim
j→+∞

r(n−2)/2
j −

∫
∂B+

r j

(∇u(x) · x)dsx(1 + ε0
)

= lim
j→+∞

−
∫
∂B+

1

∣∣∇vj(y)
∣∣dsy(1 + ε0

)
= ∣∣∇v(x)

∣∣(1 + ε0
)
,

(4.13)

where |x| = 1. From this contradiction, (4.6) follows. �

Proof of Theorem 1.4. Suppose that v is a solution of (1.13) such that (1.14) holds. We
want to prove that v(x)=O(|x|2−n) at infinity, which implies that the conformal metric
ḡ can be realized as a smooth metric in Sn+. Let

u(y)= |y|2−nv
(

y

|y|2
)

(4.14)
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be the Kelvin transformation of v. Since (1.13) is invariant under the Kelvin transforma-
tion, u(y) satisfies

∆u(y) + k(y)u(n+2)/(n−2) = 0 in Rn
+,

∂u

∂η
= 0 in ∂Rn

+ \ {0},

u(y)=O(|y|2−n) at infinity,

(4.15)

where k(y)= k̄(y/|y|2).
Taking x = y/|y|2, we have |∇k(y)| = |∇k̄(x)||y|−2. By (1.15), we see that

c1|y|l−1 ≤ ∣∣∇k(y)
∣∣≤ c2|y|l−1 (4.16)

in a neighborhood of zero. Due to inequality (1.16), u(y) is bounded by c|y|(2−n)/2 in a
neighborhood of the origin, where c is a positive constant. Hence, D(u)= limr→0P(r,u)
exists and D(u)≤ 0.

To apply the Pohozaev identity in Rn
+ \B+

r , observe that∫
Rn+\B+

r

(
y ·∇k̄)u2n/(n−2)dy = lim

γ→+∞

∫
B+
γ \B+

r

(
y ·∇k̄)u2n/(n−2)dy = lim

γ→+∞P(γ,u)−P(r,u).

(4.17)

Now, since u(y)=O(|y|2−n) at infinity, a straightforward calculation shows that P(γ,u)
→ 0 as γ→ +∞. Therefore∫

Rn+\B+
r

(y ·∇k)u2n/(n−2)dy =−P(r,u). (4.18)

Making the change of variables x = (y/|y|2), with Jacobian determinant −|x|−2n, we ob-
serve that∇k(y) · y =−∇k̄(x) · x; therefore∫

Rn+\B+
r

(
y ·∇k(y)

)
u2n/(n−2)dy =−

∫
|x|≤1/r

(
x ·∇k̄(x)

)
v2n/(n−2)(x)dx, (4.19)

which implies, by (1.14) and (4.18), that

D(u)=
∫
Rn+

(
x ·∇k̄(x)

)
v2n/(n−2)(x)dx = 0. (4.20)

Then, by Theorem 1.1, u has a removable singularity at zero; since v(x)= u(x/|x|2)|x|2−n,
we conclude that v(x)=O(|x|2−n) at infinity. Now suppose that v is such that the confor-
mal metric cannot be realized as a smooth metric in Sn+. Let u be the Kelvin transforma-
tion of v. Then D(u) < 0 and u has a nonremovable singularity at zero. Therefore there
exists two positive constants c1 and c2 such that

c1|y|2−n ≤ u(y)≤ c2|y|2−n (4.21)
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in a neighborhood of zero. Consequently,

c1|x|(2−n)/2 ≤ v(x)≤ c2|x|(2−n)/2 (4.22)

for large |x|, xn > 0. This finishes the proof of Theorem 1.4. �
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