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We study the structure of a class of weighted Toeplitz operators and obtain a description
of the commutant of each operator in this class. We make some progress towards proving
that the only operator in the commutant which is not a scalar multiple of the identity
operator and which commutes with a nonzero compact operator is zero. The proof of the
main statement relies on a conjecture which is left as an open problem.

1. Introduction

Let � be a separable, infinite dimensional, complex Hilbert space and denote by �(�)
the algebra of all bounded linear operators on �. We introduce some notation to easily
state the main consequence of this paper. Define

� := {T ∈�(�) | ∃A∈�′(�),∃K ∈K \ {0}, [TA= AT ∧AK = KA]
}

,

�̃ := {T ∈�(�) | ∃A∈�′(�),∃K ∈K \ {0},∃α∈ C, [TA=AT ∧AK = αKA]
}

,
(1.1)

where �′(�) is the set of all operators in �(�) that are not scalar multiples of the identity

operator andK is the ideal of compact operators in �(�). The sets � and �̃ are suggested
by Lomonosov’s celebrated result concerning the existence of hyperinvariant subspaces,
as well as, some generalization obtained by Brown [2] and Kim et al. [7].

Recently, some progress was made by Biswas et al. [1], on one hand, in describing
the set of values that α can assume, as well as, the associated operators X that satisfy the
equality XA= αAX for some given operator A, and by Conway and Prǎjiturǎ [4], on the
other hand, concerning the structure of such operators.

In [6], it was proved that some weighted shift operator does not meet the hypothesis
of Lomonosov’s theorem, that is, it does not belong to the set �. Although it is expected

that the set �̃ be larger than the set �, it is not clear whether the difference between these
two sets is significant. In Section 3 of this paper, we make some progress towards proving

that there are indeed many operators in the �̃ \�, and therefore it is worth while to study

the question of whether �̃ is the entire �(�).
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The class of operators that we will investigate consists of some weighted Toeplitz oper-
ators. In [9], Shields made a comprehensive study of the class of weighted shift operators.
In order to define our class of weighted Toeplitz operators, we recall some notation from
[9]. Although the definition can be given in a more general setting, we prefer to impose
some restrictions.

Let β = (βn)n∈Z be a sequence of positive numbers with β0 = 1 and such that

∑
n∈Z

1
β2
n
<∞, m≤ βn

βn+1
≤M where 0 <m≤M <∞, n∈N. (1.2)

The space L2(β) is

{
f (z)=

∞∑
n=−∞

anz
n | an ∈ C, ‖ f ‖2

β :=
∞∑

n=−∞

∣∣an∣∣2
β2
n <∞

}
, (1.3)

and let H2(β) be the subspace of L2(β) consisting of

{
f (z)=

∞∑
n=0

anz
n | an ∈ C, ‖ f ‖2

β :=
∞∑
n=0

∣∣an∣∣2
β2
n <∞

}
. (1.4)

Thus (L2(β),‖ · ‖β) is a Hilbert space with an orthonormal basis {en(z)= zn/βn}n∈Z (with
respect to the appropriate scalar product), and (H2(β),‖ · ‖β) is a subspace of L2(β). Let
P : L2(β)→H2(β) be the orthogonal projection of L2(β) onto H2(β). By L∞(β) one de-
notes the set{
φ(z)=

∞∑
n=−∞

anz
n | φL2(β) � L2(β) and ∃c ∈R such that ‖φ f ‖β≤c‖ f ‖β, ∀ f ∈L2(β)

}
,

(1.5)

and by ‖φ‖∞ the norm inf{c | ‖φ f ‖β ≤ c‖ f ‖β, for all f ∈ L2(β)}.
A weighted Toeplitz operator on H2(β) of symbol φ ∈ L∞(β) is defined by Tφ f :=

P(φ f ). In this paper, we study the particular class of weighted Toeplitz operators with
symbol in the set

� :=
{
φ | φ(z)= azk +

b

zk
, k ∈N, |a| > |b|

}
, (1.6)

and prove that such operators are unitarily equivalent to multiplication by the position
operator (to be defined later). As an application of this, we describe the commutant of
such a weighted Toeplitz operator.

For purposes of determining the commutant of weighted Toeplitz operators of sym-
bol φ ∈ �, we can assume that each symbol is of the form φ(z)= φb(z) := z+ (b/z) with
|b| < 1. An easy calculation shows that φb belongs to L∞(β) and ‖φb‖∞ ≤ 1/m+ |b|M.
Since for b = 0 one gets the weighted shift operator, we will assume that 0 < |b| < 1.
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The matrix representation of such a weighted Toeplitz operator with respect to the or-
thonormal basis {en}∞n=0 of H2(β) is

T = T(β)
φ :=



0 b
β0

β1
0 ··· 0 ···

β1

β0
0 b

β1

β2
··· 0 ···

0
β2

β1
0

. . . 0 ···
...

...
. . .

. . . b
βn−1

βn
···

0 0 0
βn
βn−1

0
. . .

...
...

...
...

. . .
. . .



. (1.7)

In what follows, we consider a weighted Toeplitz operator of symbol φb(z)= z+ (b/z) to
be an operator on l2(N), (the Hilbert space of the square summable sequences) whose
matrix representation with respect to the canonical basis of l2(N) is of the form (1.7).
Next we review some facts about the operator defined above. We begin by describing the
point spectrum of the adjoint operator of T , σp(T∗). A complex number λ̄ belongs to
σp(T∗) if and only if there is a nonzero square summable sequence f = { f0, f1, . . . , fn, . . .}
that satisfies the recurrence equations

b̄
βn−1

βn
fn−1− λ̄ fn +

βn+1

βn
fn+1 = 0, n∈N, (1.8)

with f−1 := 0. If one denotes fnβn by pn, for each n∈N, then the above recurrence equa-
tions become

b̄pn−1− λ̄pn + pn+1 = 0, n∈N, (1.9)

with p−1 := 0. One can easily see by induction after setting p0 := 1 that the formal solution
of (1.9) is of the form pn = pn(λ̄), n≥ 1, where pn(·) is a polynomial of degree n. If the
characteristic equation of recurrence (1.9), b̄− λ̄z+ z2 = 0, has different roots zi = zi(λ̄),
i= 1,2, then pn(λ̄) has the form

pn
(
λ̄
)= Az1

n +Bz2
n, n∈N, (1.10)

where A, B do not depend on n, but only on λ̄. On the other hand, if the characteristic

equation has a double root z0 = z0(λ̄)= λ̄/2=±
√
b̄, where

√
b̄ is the main complex root

of b̄, then

pn
(
λ̄
)= (n+ 1)zn0 , n∈N. (1.11)

The characteristic equation b̄− λ̄z + z2 = 0 is equivalent to φb̄(z) = λ̄, where φb̄(z) = z +
(b̄/z). If one denotes by �ρ the circle {z | |z| = ρ} and by �ρ the image of �ρ under φb̄,
that is, φb̄(�ρ), then one can see that φb̄ maps �ρ and �r/ρ, where r := |b|, onto the same
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ellipse, �ρ =�r/ρ. In particular, �1 = T and �r are mapped onto the same ellipse, denoted
by �T . Moreover, the bounded component ofC \�T , denoted by Int(�T), is swept exactly
twice as the value of ρ varies from |b| to 1.

In what follows, we will impose some restrictions on the sequence {βn}n. The first
such restriction is that {βn}n is such that the series

∑∞
n=0(z2n/β2

n) is absolutely convergent
if and only if |z| ≤ 1. An example of such a sequence is βn = β

√
n, with β > 1.

If λ̄=±2
√
b̄, then |z0| < 1 according to the earlier assumption that |b| < 1, and accord-

ing to (1.11), the sequence { fn(λ̄)}n∈N is square summable. On the other hand, if λ̄ is the
image through φb̄(·) of two different z′s, then taking into consideration equality (1.10),
the fact that fn(λ̄)= pn(λ̄)/βn, and the above assumption about the sequence {βn}n, the
sequence { fn(λ̄)}n∈N is square summable if and only if |z1| ≤ 1 and |z2| ≤ 1. Therefore,
the point spectrum of T∗ includes the set Int(�T)∪�T and dim Ker(T∗ − λ̄) = 1, for
λ̄∈ Int(�T)∪�T . Using similar arguments, one can see that dim Ker(T − λ)= 0, for any
λ∈ C and that any λ̄ off the set Int(�T)∪�T is not in σp(T∗). For each λ̄∈ Int(�T)∪�T ,
we denote by fλ̄ the unique vector{ fn(λ̄)}n∈N in l2(N) that satisfies the recurrence equa-
tions (1.8) above with f0(λ̄)= 1, that is, T∗ fλ̄ = λ̄ fλ̄.

Moreover, the series
∑∞

n=0 |pn(λ̄)| (thus
∑∞

n=0 |pn(λ̄)|2) converges uniformly for λ̄ in
any compact subset of Int(�T) and the series

∑∞
n=0 | fn(λ̄)|2 converges uniformly for λ̄∈

Int(�T)∪�T .
Next, we will show that the operator T is unitarily equivalent to multiplication by

position operator, Mλ, defined on some Hilbert space of functions. We denote by f̄n(λ)

the polynomial fn(λ̄) of degree n in variable λ. We define

H2(G) :=
{
k(λ)=

∞∑
n=0

hn f̄n(λ) | hn ∈ C, ‖k‖2
H2

def=
∞∑
n=0

∣∣hn∣∣2
<∞

}
. (1.12)

According to the above observation concerning the uniform convergence of the series∑∞
n=0 | f̄n(λ)|2 for λ∈G := (Int(�T)∪�T)∗, each element of H2(G) is a continuous func-

tion on G and analytic in (Int(�T))∗, where “∗” used in conjunction with a subset of C
represents complex conjugation.

2. The commutant of T

We begin with some notation that is necessary in what follows. Define U : l2(N)→H2(G)
by

(Uh)(λ)= 〈h, fλ̄
〉
l2(N) =

∞∑
n=0

hn f̄n(λ) (2.1)

for h= {hn}∞n=0 ∈ l2(N), and λ∈G.
We recall that the polynomials pn(·), n∈N, have the following orthogonality property

(see, e.g., [5]):

1
2π

∫
�∗ρ
pn(z)pm(z)ω(z)|dz| =


0, m �= n,

ρ2(n+1) +
(
r

ρ

)2(n+1)

, m= n (2.2)
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for each ρ > 0, where ω(z)= |z2− 4b̄|1/2, r = |b|, and |dz| represents arc-length measure.
Since f̄ (λ)= p̄(λ)/βn, we have for λ̄∈�T ,

∫
�T

fn
(
λ̄
)
fm
(
λ̄
)
ω
(
λ̄
)|dλ̄| =


0, m �= n,
2π
β2
n

[
1 + r2(n+1)

]
, m= n. (2.3)

The orthogonality property (2.3) implies that U is one-to-one. Obviously, U is linear,
and by definition, ‖Uh‖H2 = ‖h‖l2(N), andU is an onto isometry. ThereforeU is a unitary
operator and H2(G) is a Hilbert space. We define

H∞(G)= {φ :G−→ C | φH2(G)⊆H2(G) such that the inclusion is continuous
}

,
(2.4)

with ‖φ‖∞ = inf{c | ‖φk‖H2 ≤ c‖k‖H2 , for all k ∈H2(G)}. Since the function 1 (constant
function equal to 1) belongs to H2(G) and ‖1‖H2 = 1, we have ‖φ‖H2 ≤ ‖φ‖∞ and the
inclusion H∞(G) �H2(G) is continuous. (We will see later that equality holds in some
cases.) The recurrence equation (1.8) is equivalent to

λ f̄n(λ)= bβn−1

βn
f̄n−1(λ) +

βn+1

βn
f̄n+1(λ), n∈N. (2.5)

If k ∈H2(G) is written as
∑∞

n=0hn f̄n(λ), then λk(λ)=∑∞
n=0 gn f̄n(λ), where

gn = βn
βn−1

hn−1 + b
βn
βn+1

hn+1, n∈N, (2.6)

with h−1 = 0. Therefore,

∥∥λk(λ)
∥∥2
H2 =

∞∑
n=0

∣∣gn∣∣2 ≤
∞∑
n=0

(
1
m

∣∣hn−1
∣∣+M|b|∣∣hn+1

∣∣)2

≤
(

1
m

+M|b|
)2

‖k‖2
H2 ,

(2.7)

which implies that the function λ �→ λ belongs to H∞(G) and thus, H∞(G) includes all
polynomials of variable λ. LetMλ be the operator defined onH2(G) by (Mλk)(λ)= λk(λ).
The above inequality shows thatMλ ∈�(H2(G)) and ‖Mλ‖ ≤ 1/m+M|b|. The following
proposition asserts the unitary equivalence of T and Mλ.

Proposition 2.1. The operators U , T , and Mλ satisfy the equality UT =MλU .

Proof. Let h be an arbitrary vector in l2(N) and let λ be in G and observe that

U(Th)(λ)= 〈Th, fλ̄
〉= 〈h,T∗ fλ̄

〉= 〈h, λ̄ fλ̄
〉= λ〈h, fλ̄

〉=Mλ(Uh)(λ). (2.8)
�

The operator Mλ admits an H∞(G)-calculus, that is, there exists a continuous homo-
morphism Γ1 : H∞(G)→�(H2(G)) defined by (Γ1(φ)k)(λ) := φ(λ)k(λ). We write Mφ(λ)

(or simply Mφ) for Γ1(φ). One can define an H∞(G)-calculus for T as follows:

Γ2 :H∞(G)−→�
(
l2(N)

)
, Γ2(φ) :=U∗MφU. (2.9)
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Obviously, Γ2 is a continuous homomorphism which extends the polynomial calculus.
We write φ(T) for Γ2(φ) and observe that Tφ(T)= φ(T)T , for any φ∈H∞(G).

To describe the commutant of T , {T}′, it is enough to find the commutant of Mλ,
{Mλ}′. The description of {Mλ}′ is similar to that of the commutant of the Bergman (or
Hardy) operator, but it requires some details.

Theorem 2.2. {Mλ}′ = {Mφ | φ ∈H∞(G)}.
Since A∈ {T}′ if and only if UAU∗ ∈ {Mλ}′, we have the following.

Corollary 2.3. {T}′ = {φ(T) | φ ∈H∞(G)}.
Since fλ̄ ∈ l2(N), we can set U fλ̄ =: kλ̄ for λ∈G, and thus kλ̄ belongs to H2(G). More-

over, since the set of all fλ̄ has the spanning property (an easy consequence of orthog-
onality property (2.3)), so does the set of all kλ̄, that is, the closed linear span of all kλ̄,
∨{kλ̄ | λ∈G}, is equal to H2(G).

The following lemma is needed in what follows.

Lemma 2.4. If k ∈H2(G) and λ∈G, then 〈k,kλ̄〉H2(G) = k(λ).

Proof. We first observe that

kλ̄(w)= (U fλ̄
)
(w)= 〈 fλ̄, fw̄〉l2(N) =

∑
n∈N

fn
(
λ̄
)
f̄n(w) for w ∈G. (2.10)

If k ∈H2(G) is written as k(λ)=∑∞
n=0hn f̄n(λ), then by definition, 〈k,kλ̄〉H2(G) is equal to∑∞

n=0hn f̄n(λ), which is equal to k(λ). �

Proof of Theorem 2.2. Obviously, an operator A in �(H2(G)) belongs to {Mλ}′ if and
only if A∗M∗

λ =M∗
λ A

∗. Applying this equality to kλ̄, we obtain

A∗M∗
λ kλ̄ =M∗

λ A
∗kλ̄ ∀λ∈G. (2.11)

SinceUT∗ =M∗
λ U , we get thatUT∗ fλ̄ =M∗

λ U fλ̄ for λ∈G, and thusUλ̄ fλ̄ =M∗
λ U fλ̄ for

λ∈G, that is,

λ̄kλ̄ =M∗
λ kλ̄ ∀λ∈G. (2.12)

Combining equalities (2.11) and (2.12), we have that A∗kλ̄ ∈ Ker(M∗
λ − λ̄) for λ ∈ G.

Since dimKer(M∗
λ − λ̄)= 1, A∗kλ̄ = φ(λ̄)kλ̄, where φ(λ̄)∈ C for λ∈G. We will show that

φ(·)∈H∞(G). Indeed, for an arbitrary k in H2(G),

φ
(
λ̄
)
k(λ)= φ(λ̄)〈k,kλ̄

〉
H2 =

〈
k,φ

(
λ̄
)
kλ̄
〉
H2 =

〈
k,A∗kλ̄

〉
H2 =

〈
Ak,kλ̄

〉
H2 = (Ak)(λ).

(2.13)

Since Ak ∈ H2(G) for every k ∈ H2(G), we have φ̄(λ) := φ(λ̄) ∈ H∞(G). Moreover, the
above equalities show that A =Mφ̄. Therefore {Mλ}′ � {Mφ | φ ∈H∞(G)}. The reverse
inclusion is obvious since Γ1 is an H∞(G)-calculus for Mλ. �
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3. Application and remarks

In [8], it was proved that every Toeplitz operator or weighted Toeplitz operator, say T ,
with symbol in the set � has a neighborhood � in C such that for each α ∈ � there ex-
ists a nonzero compact operator K such that TK = αKT . Obviously then, each weighted
Toeplitz operator T with symbol in the set � commutes with itself, and thus with an oper-
ator which is not a scalar multiple of the identity operator, which, in turns, α-commutes
with a nonzero compact operator. Therefore weighted Toeplitz operators with symbol in
� satisfy the hypothesis of the following theorem obtained by S. Brown and H. W. Kim,

R. Moore, and C. M. Pearcy, that is, such operators belong to �̃.

Theorem 3.1 [2, 7]. If A∈�(�) is not a scalar multiplication of the identity operator and
there exists a nonzero compact operator K such that AK = αKA for some complex number
α, then A has a nontrivial hyperinvariant subspace.

The purpose of this section is to set up the steps for showing that the weighted Toeplitz
operators with symbol in the set � do not satisfy the hypothesis of Lomonosov’s result
and to prove some of these steps. Nevertheless, one of these steps cannot be established
and is left as an open problem (see Conjecture 3.6 below).

We prepare the ground for applying the main result of [6]. From now on, we will work
under the assumption that βn = β

√
n, although the results might be proved under more

general hypothesis.

Lemma 3.2. Let w ∈ (Int(�T))∗ and βn = β
√
n with β > 1. If φ(w)= 0 for some φ∈H∞(G)

(or H2(G)), then φ(λ)= (λ−w)ψ(λ) with ψ ∈H∞(G) (or H2(G)), respectively.

Proof. Let φ be in H∞(G) with φ(w)= 0. Since H∞(G) �H2(G), we can write φ(λ) as

∞∑
n=0

φn f̄n(λ) or
∞∑
n=0

φn
βn
p̄n(λ), (3.1)

where p̄n(λ) := pn(λ̄). Therefore,

φ(λ)
λ−w =

∞∑
n=0

φn
βn

p̄n(λ)− p̄n(w)
λ−w . (3.2)

Using (1.9) and an induction argument, one can deduce that

p̄s(λ)− p̄s(w)
λ−w =

s−1∑
r=0

p̄r(w) · p̄s−r−1(λ) ∀s∈N. (3.3)

Therefore, according to (3.3), we obtain that

ψ(λ) := φ(λ)
λ−w =

∞∑
n=0

ψn p̄n(λ), (3.4)
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where

ψn =
∞∑
s=0

φn+s+1

βn+s+1
p̄s(w). (3.5)

We will first prove that
∑∞

n=0 |ψn|2β2
n is finite, that is, ψ ∈H2(G). Indeed, we have

∣∣ψn∣∣2 ≤ P(w)

( ∞∑
s=0

∣∣φn+s+1
∣∣2

β2
n+s+1

·∣∣ p̄s(w)
∣∣), (3.6)

where P(w)=∑∞
n=0 | p̄s(w)|, which is finite since w ∈ (Int(�T))∗. Thus

‖ψ‖2
H2 ≤ P(w)

∞∑
n=0

( ∞∑
s=0

∣∣φn+s+1
∣∣2

β2
n+s+1

·∣∣ p̄s(w)
∣∣)β2

n

= P(w)
(∣∣φ1

∣∣2
ξ1 +

∣∣φ2
∣∣2
ξ2 + ···+

∣∣φn+1
∣∣2
ξn+1 + ···),

(3.7)

where

ξn+1 =
∑n

r=0β
2
r

∣∣ p̄r(w)
∣∣

β2
n+1

∀n∈N. (3.8)

Since w ∈ (Int(�T))∗, we have |z1(w)| < 1 and |z2(w)| < 1. Using the hypothesis that
βn = β

√
n with β > 1, the sequence {ξn} is bounded by the constant P(w). Thus, the

above computations show that ψ(λ) = φ(λ)/(λ−w) belongs to H2(G) whenever φ be-
longs to H2(G) with φ(w)= 0, and ‖ψ‖2

H2 ≤ P(w)2‖φ‖2
H2 . Next, we show that ψ belongs

to H∞(G). Since φ belongs to H∞(G), we have that φk is in H2(G) with (φk)(w)= 0, and
therefore

‖ψk‖2
H2 ≤ P(w)2‖φk‖2

H2 ≤ ‖φ‖2
∞P(w)2‖k‖2

H2 ∀k ∈H2(G). (3.9)

This proves that ψ is in H∞(G). �

Lemma 3.3. If βn = β
√
n with β > 1, then H∞(G) = H2(G) and the norms ‖ · ‖H2 , ‖ · ‖∞

are equivalent.

Proof. The inclusion H∞(G) � H2(G) and the inequality ‖φ‖H2 ≤ ‖φ‖∞ were immedi-
ate consequences of the definition of H∞(G). For the reverse inclusion, it is sufficient
to show that ‖ f g‖H2 ≤ C‖ f ‖H2 · ‖g‖H2 , for some constant C which is independent of
f , g ∈ H2(G). Indeed, let f (λ) =∑∞

n=0 ( fn/βn) p̄n(λ) and g(λ) =∑∞
n=0 (gn/βn) p̄n(λ) with∑∞

n=0 | fn|2 and
∑∞

n=0 |gn|2 finite. Using an induction argument, one can deduce from for-
mula (1.9) the following:

p̄r(λ) p̄s(λ)= p̄r+s(λ) + bp̄r−1(λ) p̄s−1(λ) ∀r,s∈N∗, (3.10)

which implies that

p̄s(λ) p̄n−s(λ)= p̄n(λ) + bp̄n−2(λ) + ···+ bs p̄n−2s(λ) ∀n,s∈N, 2s≤ n. (3.11)
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Applying formula (3.11) and an induction argument, one can deduce that ( f g)(λ) =∑∞
s=0 ( f g)s p̄s(λ), where ( f g)s =

∑∞
n=0( f g)ns b

n with

( f g)ns =
s∑

t=0

fn+t

βn+t
· gn+s−t
βn+s−t

. (3.12)

Applying Cauchy’s inequality we obtain

∣∣( f g)ns
∣∣2 ≤

( s∑
t=0

∣∣ fn+t gn+s−t
∣∣2
)
·
( s∑
t=0

1
β2
n+tβ

2
n+s−t

)
. (3.13)

Once again, by Cauchy’s inequality we deduce

∣∣( f g)s
∣∣2 ≤

( ∞∑
n=0

∣∣( f g)ns
∣∣2
rn
)
·
( ∞∑
n=0

rn
)
= 1

1− r

( ∞∑
n=0

∣∣( f g)ns
∣∣2
rn
)

, (3.14)

where r = |b|. Using the hypothesis that βn = β
√
n with β > 1, we have that (see [9, page

103])

C := sup
n∈N

( n∑
k=0

β2
n

β2
k β

2
n−k

)
<∞. (3.15)

Therefore,

‖ f g‖2
H2 =

∞∑
s=0

∣∣( f g)s
∣∣2
β2
s

≤ 1
1− r

∞∑
s=0

( ∞∑
n=0

[ s∑
t=0

∣∣ fn+t gn+s−t
∣∣2
]
·
[ s∑
t=0

1
β2
n+tβ

2
n+s−t

]
· rn

)
β2
s

= 1
1− r

∞∑
s=0

( ∞∑
n=0

[ s∑
t=0

∣∣ fn+t gn+s−t
∣∣2
]
·
[ s∑
t=0

β2
s+2n

β2
n+tβ

2
n+s−t

]
· rn β2

s

β2
s+2n

)

≤ C

1− r
∞∑
s=0

∞∑
n=0

s∑
t=0

∣∣ fn+t gn+s−t
∣∣2 · rn β2

s

β2
s+2n

= C

1− r
∞∑
n=0

rn
∞∑
s=0

β2
s

β2
s+2n

s∑
t=0

∣∣ fn+t gn+s−t
∣∣2

≤ C

1− r
∞∑
n=0

rn
∥∥ f −Pn−1 f

∥∥2
H2 ·

∥∥g −Pn−1g
∥∥2
H2

≤ C

1− r
∞∑
n=0

rn‖ f ‖2
H2 · ‖g‖2

H2

= C

(1− r)2 ‖ f ‖2
H2 · ‖g‖2

H2 ,

(3.16)

where Pn−1 is the orthogonal projection onto the subspace span{ f̄i(λ) | i = 0, . . . ,n− 1}.
Thus H2(G) �H∞(G) and ‖k‖∞ ≤ (C/(1− r2))‖k‖H2 , for k ∈H2(G). �
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Lemma 3.4. If βn = β
√
n, β > 1, then the maximal ideal space of H∞(G) is G, and thus the

spectrum of each element φ in H∞(G) is φ(G).

Proof. According to Lemma 2.4, each λ ∈ G is a bounded point evaluation, that is, the
mapping φ �→ φ(λ) from H2(G) to C is a continuous functional in the H2(G)-norm,
and according to Lemma 3.3, the functional is continuous in the H∞(G)-norm. Con-
versely, let w = Λ(p1), where p1(λ) = λ and Λ is a character of H∞(G). Thus Λ(p) =
p(w), for any polynomial p(λ). If φ(λ) =∑∞

n=0(φn/βn) p̄n(λ) is an arbitrary element of
H∞(G), let φn(λ) =∑n

j=0(φj/βj) p̄ j(λ). Thus, φn → φ in the H2(G) norm, and according
to Lemma 3.3, φn→ φ in the H∞(G) norm. Therefore, Λ(φn)→Λ(φ). On the other hand
Λ(φn)= φn(w)= 〈φn,kw̄〉 → 〈φ,kw̄〉 = φ(w). Thus Λ(φ)= φ(w). Furthermore, the series∑∞

n=0(φn/βn) p̄n(w) converges to a complex number (φ(w)) if and only if w ∈G. �

When H∞(G)=H2(G), the function 1 is a strictly cyclic vector for the algebra H∞(G)
and therefore H∞(G) is a maximal abelian algebra in �(H2(G)). Thus, (cf. [9, page 92]),
an element φ∈H∞(G) is invertible inH∞(G) if and only ifMφ is invertible in �(H2(G)).
In combination with Lemma 3.4, we have the following.

Corollary 3.5. If φ∈H∞(G) and φ(λ) �= 0 for all λ∈G, then M1/φ ∈�(H2(G)).

For a nonconstant function φ ∈H∞(G), let Eφ be the set

{
λ∈ (Int

(
�T
))∗ | [φ(λ) /∈ φ((�T

)∗)]
and

[
φ′(w) �= 0 when φ(w)= φ(λ)

]}
. (3.17)

The set Eφ is uncountable. To see this, observe first that the set

Ω1 := {λ∈ (Int
(
�T
))∗ | φ(λ) /∈ φ((�T

)∗)}
(3.18)

is a nonempty open set. On the other hand, if one denotes

Ω2 := {λ∈ (Int
(
�T
))∗ | φ′(w)= 0 when φ(w)= φ(λ)

}
, (3.19)

then Ωn
1 ∩Ω2 is a finite set, where ∪n∈NΩn

1 is an open increasing exhaustion (with Ωn
1 ⊂

Ω1) of Ω1. Thus, Ω1∩Ω2 is a countable set and therefore Ω1∩Ωc
2, that is, Eφ is uncount-

able and thus nonempty.
We need the following statement which we leave as an open problem.

Conjecture 3.6. If φ ∈H∞(G) has infinitely many different zeros in G, then φ = 0.

The above statement was obtained by Carleson [3] for functions in H2(β). We only
point here that there are functions in the disc algebra which vanish on a Cantor set of
the unit circle and which are not entirely zero. In spite of the fact that Conjecture 3.6 has



Vasile Lauric 833

an elementary statement, its proof seems not to be elementary and the circle of ideas used
in [3] are not applicable in this case.

For φ ∈H∞(G) and λ∈ Eφ, let �λ,φ be the nullspace of [φ(T)−φ(λ)]∗. The following
lemma is the equivalent of [6, Lemma 2] and this is the first place in which Conjecture 3.6
is used.

Lemma 3.7. If φ ∈ H∞(G) is a nonconstant function and λ ∈ Eφ, then �λ,φ = span{ fw̄ |
w ∈ (Int(�T))∗ such that φ(w)= φ(λ)}.
Proof. For an arbitrary h∈ l2(N) we have

〈
h,
[
φ(T)−φ(λ)

]∗
fw̄
〉
l2(N) =

〈[
φ(T)−φ(λ)

]
h, fw̄

〉
l2(N) =

(
U
[
φ(T)−φ(λ)

]
h
)
(w)

= (Mφ−φ(λ)
)
Uh(w)= (φ(w)−φ(λ)

)
Uh(·). (3.20)

Thus, for φ ∈H∞(G), λ∈ Eφ, and w ∈G such that φ(w)= φ(λ), we have

〈
h,
[
φ(T)−φ(λ)

]∗
fw̄
〉
l2(N) = 0. (3.21)

This establishes that

�λ,φ �∨{ fw̄ |w ∈ (Int
(
�T
))∗

such that φ(w)= φ(λ)
}
. (3.22)

For the inverse inclusion it is enough to show

[
h∈ l2(N) such that Uh(w)= 0 for w ∈ (Int

(
�T
))∗

with φ(w)= φ(λ)

=⇒ h∈ Ran
(
φ(T)−φ(λ)

)]
,

(3.23)

or equivalently,

[
k ∈H2(G) such that k(w)= 0 for w ∈ (Int

(
�T
))∗

with φ(w)= φ(λ)

=⇒ there exists some k′ in H2(G) such that k = (φ−φ(λ)
)
k′
]
.

(3.24)

Let λ ∈ Eφ and k ∈H2(G) be such that k(w) = 0 for w ∈ (Int(�T))∗ with φ(w) = φ(λ).
Since according to Conjecture 3.6, the set {w | φ(w)= φ(λ)} is finite, we can define p(z)=
Π{(z−w) | φ(w) = φ(λ)}. Applying Lemma 3.2, we can write k = pk1 with k1 ∈H2(G)
and φ−φ(λ)= pφ1 with φ1 ∈H∞(G). Since φ−φ(λ) has only simple zeros, φ1 does not
vanish on G, and thus, according to Corollary 3.5, 1/φ1 belongs to H∞(G). Therefore
k′ := k1/φ1 belongs to H2(G) and [Mφ−φ(λ)]k′ = k. �

The proof of the main theorem of [6] can be repeated for the class of operators dis-
cussed in this paper, and for the sake of completeness, we include it here.

First, the following lemma (whose proof is omitted) about Schur product is needed.
The Schur product of two matrices A= (ai j) and B = (bi j) denoted by A ·B is the matrix
(ai jbi j).
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Lemma 3.8 [6]. If A is an n× n matrix such that A ·B is a nilpotent matrix for any n× n
matrix B, then at least one of the columns of A has all entries equal to 0.

The proof of Theorem 3.9 makes use of Conjecture 3.6 and Lemma 3.7, and implicitly,
the content of subsequent statements, Theorem 3.10 and Corollary 3.11, are dependent
on the same conjecture.

Theorem 3.9 [6]. Let φ(T) be an operator in the commutant of T such that φ is a noncon-
stant function of H∞(G). Then the only compact operator that commutes with φ(T) is equal
to zero.

Proof. First, it is shown that there exists an integer n0 such that Kn0 = 0 for any com-
pact operator K commuting with φ(T). Indeed, for a compact operator K that commutes
with φ(T) with φ as in the hypothesis of theorem, K∗ commutes with φ(T)∗, and thus by
Lemma 3.7, the subspace �λ,φ is invariant for K∗. Since the set Eφ is uncountable and the
subspace �λ,φ is finite-dimensional for λ∈ Eφ, there exists an integer n0 such that the di-
mension of �λ,φ is n0 for uncountably many λ’s in Eφ. The restriction operator K∗ |�λ,φ

has an eigenvalue. For λ, λ′ such that φ(λ) �= φ(λ′), by Lemma 3.7, �λ,φ ∩�λ′,φ = {0}.
Recalling the spectral properties of a compact operator and using the above observations,
one can conclude that σ(K∗ |�λ,φ) = {0} for uncountably many λ’s for which the di-
mension of �λ,φ is equal to n0. Thus, for such λ’s, we have (K∗ |�λ,φ)n0 = 0; in particular,
(K∗)n0 fλ̄ = 0 for infinitely many λ’s. Since the span of infinitely many fλ̄’s corresponding
to different λ’s is the entire H2(G) (easy consequence of Lemma 2.4 and Conjecture 3.6),
one concludes that (K∗)n0 = 0, and thus Kn0 = 0.

Now, one can prove the actual statement of the theorem. Let K0 be a compact operator
in the commutant of φ(T). For any polynomials p and q, the operator p(T)∗K∗0 q(T)∗

commutes with φ(T)∗ and is compact. Let λ ∈ Eφ and { fw̄1 , . . . , fw̄n0
} be a basis of �λ,φ.

Since T∗ fw̄ = w̄ fw̄, the restriction T∗ |�λ,φ has diagonal matrix representation with re-
spect to the above basis. One can choose the polynomials pi, for each i∈ {1, . . . ,n0} such
that pi(T∗) |�λ,φ is the orthogonal projection Pi ontoC fw̄i along span{ fw̄ j | j �= i}. Thus,
for any n0 × n0 matrix (bi j), the operator

∑n0
i, j=1 bi jPiK0Pj on �λ,φ is the restriction to

�λ,φ of
∑n0

i, j=1 bi j pi(T
∗)K0pj(T∗), which, by the first part of this proof, must be a nilpo-

tent operator of order n0. Since this operator is the Schur product of the matrices (bi j)
and K∗0 |�λ,φ, according to Lemma 3.8, at least one of the columns of K∗0 |�λ,φ with
respect to { fw̄1 , . . . , fw̄n0

} is zero, that is, there exists fw̄ j ∈�λ,φ such that K∗0 fw̄ j = 0. Thus
K∗0 fw̄ = 0 for infinitely many w’s, and therefore K∗0 = 0 and K0 = 0. �

Theorem 3.10. The class of weighted Toeplitz operators of symbol in � is included in S̃ \ S.

The fact that φ(T) belongs to S̃ is a consequence of main theorem of [8] and that φ(T)
does not belong to set S results from Theorem 3.9.

Corollary 3.11. Each weighted Toeplitz operator of symbol ψ(z)= azk + (b/zk), k ∈N∗,
|a| > |b|, belongs to S̃ \ S.

Proof. If k > 1 and ψ(z)= azk + b/zk, then T
(β)
ψ is unitarily equivalent to

T
(β0)
φ ⊕T(β1)

φ ⊕···⊕T(βk−1)
φ , (3.25)
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where β0 = (βnk)n∈N, β1 = (β1+nk)n∈N, . . . ,βk−1 = (βk−1+nk)n∈N, and φ(z)= az+ b/z. Thus,
Corollary 3.11 is a straightforward consequence of Theorem 3.10. �

The shift operator provided in [6] α-commutes with a nonzero compact operator, and
consequently, the set of operators that satisfy the hypothesis of Theorem 3.1 is signifi-
cantly larger than the set of operators that satisfy Lomonosov’s result.
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