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The Pommiez operator (∆ f )(z)= ( f (z)− f (0))/z is considered in the space �(G) of the
holomorphic functions in an arbitrary finite Runge domain G. A new proof of a repre-
sentation formula of Linchuk of the commutant of ∆ in �(G) is given. The main result
is a representation formula of the commutant of the Pommiez operator in an arbitrary
invariant hyperplane of �(G). It uses an explicit convolution product for an arbitrary
right inverse operator of ∆ or of a perturbation ∆− λI of it. A relation between these two
types of commutants is found.

1. The Pommiez operator and its shift operators

Let G be a finite Runge domain in the complex plane C, that is, a finite domain with
connected complement with the characteristic property that every holomorphic function
can be approximated by polynomials. As usual, by �(G), the space of the holomorphic
functions on G is denoted. Additionally, assume that 0∈G.

Definition 1.1. If f ∈�(G), then the Pommiez operator ∆ is defined by

(∆ f )(z)=

f (z)− f (0)

z
if z �= 0,

f ′(0) if z = 0.
(1.1)

Remark 1.2. The notation of Pommiez in [8] for ∆ is f(1), and f(n) for the nth power ∆n

assuming that the operator ∆ acts on the holomorphic functions in a disc DR = {z : |z| <
R}. The operator ∆ is known also as the backward shift operator (see Douglas et al. [5]).

Definition 1.3. Let ζ be an arbitrary point of G. Then the operator

(
Tζ f

)
(z)=


z f (z)− ζ f (ζ)

z− ζ if z �= ζ ,

f (ζ) + ζ f ′(ζ) if z = ζ ,
(1.2)

determined by ζ , is called a shift operator for the Pommiez operator in �(G).
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Remark 1.4. Such an operator appears in Linchuk’s representation formula of the com-
mutant of ∆ in �(G) (see [7, Theorem 1]). The name of the functional shift operator for
Tζ is given by Binderman [1, 2].

Theorem 1.5. Tζ is a continuous linear operator in �(G) with the compact-open topology,
that is, with respect to the uniform convergence on the compact subsets of G.

Proof. According to Köthe [6, pages 375–378], it is enough to consider a sequence
{Gn}∞n=1 of connected domains such thatGn ⊂Gn ⊂Gn+1, for all n, and which exhaustsG,
that is,G=⋃∞n=1Gn. Then the sequence of norms pn( f )=supz∈Gn

| f (z)|=maxz∈Gn
| f (z)|

generates the topology. Since the continuity of an operator is equivalent to its bounded-
ness, here the latter will be established on Gn for all sufficiently large n.

Let ζ ∈G. Then for some n0, one has ζ ∈Gn for all n≥ n0. Using the definition of Tζ ,
the following estimate holds:

∣∣Tζ f (z)
∣∣≤ ∣∣ f (z)

∣∣+ |ζ|
∣∣∣∣ f (z)− f (ζ)

z− ζ
∣∣∣∣. (1.3)

If z is close to ζ , then the right-hand side of (1.3) could be estimated approximately as
| f (ζ)|+ |ζ|| f ′(ζ)|, but for holomorphic functions, the derivative f ′ can be estimated by
the function f itself, that is, | f ′(ζ)| ≤ Bnmaxz∈Gn

| f (z)|. In general, everywhere in Gn,∣∣Tζ f (z)
∣∣≤ Anmax

η∈Gn

∣∣ f (η)
∣∣. (1.4)

Then (1.4) can be written as the desired boundedness estimate for the operator Tζ ,

pn
(
Tζ f

)≤ Anmax
z∈Gn

∣∣ f (z)
∣∣= Anpn( f ), ∀ f ∈�(G). (1.5)

�

Lemma 1.6. If G is an arbitrary domain in the complex plane C containing the origin, then
Tζ commutes with the Pommiez operator ∆, that is,

[(
Tζ∆

)
f
]
(z)= [(∆Tζ) f ](z) (1.6)

for every f ∈�(G).

The proof of this lemma is a matter of an elementary check.

Lemma 1.7. Let p(z) be a polynomial of degree n. Then,

(
Tζ p

)
(z)=

n∑
k=0

(
∆k p

)
(z) · ζk. (1.7)

Proof. It is sufficient to check (1.7) for an arbitrary power zk. Obviously,

∆szk =
zk−s for 0≤ s≤ k,

0 for s > k.
(1.8)
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If z �= ζ , then

Tζ
(
zk
)= z · zk − ζ · ζk

z− ζ = zk + zk−1ζ + ···+ zζk−1 + ζk

= (∆0zk
)
ζ0 +

(
∆1zk

)
ζ1 + ···+

(
∆k−1zk

)
ζk−1 +

(
∆kzk

)
ζk

=
k∑
s=0

(
∆szk

)
ζs.

(1.9)

Finally, in order to obtain (1.7) for arbitrary polynomial p, it remains to use the linearity
of Tζ .

The check of (1.7) for z = ζ is also easy. �

Theorem 1.8 (see Linchuk [7, Theorem 1]). A continuous linear operator M : �(G)→
�(G) commutes with the Pommiez operator ∆ in �(G) if and only if it has a representation
of the form

(M f )(z)=Φζ
{(
Tζ f

)
(z)
}

(1.10)

with a continuous linear functional Φ : �(G)→ C.

Proof. The sufficiency can be proved by a direct check. Only the necessity needs to be
proved. Lemma 1.7 implies that if M∆= ∆M, then MTζ = TζM for all ζ ∈ G. Indeed, if
p is a polynomial of degree n, then by (1.7),

(
MTζ p

)
(z)=

n∑
k=0

M
(
∆k p

)
(z)=

n∑
k=0

∆k(Mp)(z)= (TζMp
)
(z). (1.11)

Then the identity (MTζ f )(z)= (TζM f )(z) for any f ∈�(G) follows by an approxima-
tion argument. Using it and the obvious property(

Tζ f
)
(z)= (Tz f )(ζ), (1.12)

one has (
MTζ f

)
(z)= (TzM f

)
(ζ). (1.13)

Define the continuous linear functional Φ : �(G)→ C by

Φ{ f } = (M f )(0). (1.14)

Substituting z = 0 in (1.13), one has

Φ
{
Tζ f

}= (T0M f
)
(ζ). (1.15)

But T0 = I , the identity operator. Hence,

(M f )(ζ)=Φ
{
Tζ f

}
. (1.16)
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It remains to write the variable z instead of ζ , denoting the “dumb” variable in the func-
tional Φ by ζ , and to use (1.12). Thus,

(M f )(z)=Φζ
{(
Tz f

)
(ζ)
}=Φζ

{(
Tζ f

)
(z)
}
. (1.17)

�

2. Characterization of linear operators M : �(G)→�(G) with a fixed invariant
hyperplane Φ{ f } = 0 which commute with the Pommiez operator ∆ on it

Let Φ : �(G)→ C be a fixed nonzero linear functional, and consider the hyperplane

�Φ =
{
f ∈�(G) : Φ{ f } = 0

}
. (2.1)

Our aim is to characterize the linear operators M : �(G)→�(G) such that Φ{ f } = 0
implies that Φ{M f } = 0 and M∆ = ∆M in the hyperplane �Φ. In other words, we are
looking for the continuous linear operators M : �(G)→�(G) such that M(�Φ) ⊂�Φ

and which commute with the Pommiez operator ∆ in �Φ.
A similar problem for the differentiation operators is considered in [3].
In order to find the operators commuting with ∆ in �(G), the one-parameter family

{Tζ}ζ∈G of operators commuting with ∆ was used. Now it is possible to use another one-
parameter family of linear operators.

Definition 2.1. Let λ∈ C be such that the elementary boundary value problem

(∆y)(z)− λy(z)= f (z),

Φ{y} = 0
(2.2)

has a solution y = Rλ f . The operator Rλ : �(G)→�(G) is called the resolvent operator of
the Pommiez operator with the boundary value condition Φ{ f } = 0.

From the first equation of (2.2) it is easy to obtain the solution

y(z)= z

1− λz f (z) +
y(0)

1− λz (2.3)

with unknown constant y(0). Formally, its value can be determined from the boundary
condition Φ{y} = 0. This is always possible, when 1/(1− λz)∈�(G). Then, for the next
considerations, it is convenient to denote

E(λ)=Φζ

{
1

1− λζ
}
. (2.4)

The function E(λ) is defined and holomorphic at least in a neighborhood of the origin
λ = 0. Let λ ∈ C be such that E(λ) �= 0 and 1/(1− λz) ∈�(G). Such a choice of λ is al-
ways possible since the zeros of E(λ) form a countable set and G is a finite domain. It is
sufficient to choose λ so close to the origin that 1/λ �∈G.

Now the condition Φ{y} = 0 allows to find y(0) and to obtain

(
Rλ f

)
(z)= z

1− λz f (z)− 1
E(λ)(1− λz)

Φζ

{
ζ f (ζ)
1− λζ

}
. (2.5)
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Substituting (∆− λI) f for f in (2.5) gives the following lemma.

Lemma 2.2. If f ∈�(G), then

[
Rλ(∆− λI) f

]
(z)= f (z)− Φ{ f }

E(λ)(1− λz)
. (2.6)

From (2.6), it follows that

[(
∆Rλ

)
f
]
(z)= [(Rλ∆) f ](z) iff Φ{ f } = 0, (2.7)

that is, the resolvent operator Rλ commutes with the Pommiez operator if and only if f
is in the hyperplane �Φ. Hence, the resolvent operators form a one-parameter family of
the class considered above.

An important role in the sequel will play the functions of the form

ϕλ(z)= 1
1− λz , λ∈ C, (2.8)

and also their modifications

ϕ̃λ(z)= ϕλ(z)
E(λ)

= 1
E(λ)(1− λz)

= 1
Φζ
{

1/(1− λζ)
}

(1− λz)
. (2.9)

Theorem 2.3. The operation

( f ∗ g)(z)=Φζ
{

(z− ζ)Tζ f (z)Tζg(z)
}=Φζ

{[
z f (z)− ζ f (ζ)

][
zg(z)− ζg(ζ)

]
z− ζ

}
(2.10)

is a bilinear, commutative, and associative operation in �(G) such that

Φ{ f ∗ g} = 0 for arbitrary f ,g ∈�(G), (2.11)

that is, f ∗ g is in the hyperplane defined by the functional Φ, and

(
Rλ f

)
(z)= (ϕ̃λ∗ f

)
(z)= 1

E(λ)

(
ϕλ∗ f

)
(z). (2.12)

Proof. The bilinearity and the commutativity of the operation ∗ defined by (2.10) are
obvious and only the associativity will be proved.

Since G is a finite domain, then for sufficiently small λ and µ, the functions ϕλ(z) =
1/(1− λz) and ϕµ(z)= 1/(1− µz) are in �(G). It is a matter of a simple algebra to show
that if λ �= µ, then

(
ϕλ∗ϕµ

)
(z)= E(µ)ϕλ(z)−E(λ)ϕµ(z)

λ−µ . (2.13)
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From this representation, it follows immediately that

[(
ϕλ∗ϕµ

)∗ϕν
]
(z)= E(µ)E(ν)

(λ−µ)(λ− ν)
ϕλ(z) +

E(ν)E(λ)
(µ− ν)(µ− λ)

ϕµ(z) +
E(λ)E(µ)

(ν− λ)(ν−µ)
ϕν(z).

(2.14)

Due to the circular symmetry with respect to λ, µ, and ν, one has the same expression for
[ϕλ∗ (ϕµ∗ϕν)](z), and hence(

ϕλ∗ϕµ
)∗ϕν = ϕλ∗

(
ϕµ∗ϕν

)
. (2.15)

Since

∂

∂λ

(
ϕλ∗ϕµ

)= ∂ϕλ
∂λ

∗ϕµ,
∂

∂µ

(
ϕλ∗ϕµ

)= ϕλ∗ ∂ϕµ
∂µ

, (2.16)

then partial differentiations with respect to λ, µ, and ν of (2.15), l, m, and n times, respec-
tively, yield

(
∂lϕλ
∂λl

∗ ∂mϕµ
∂µm

)
∗ ∂nϕν

∂νn
= ∂lϕλ

∂λl
∗
(
∂mϕµ
∂µm

∗ ∂nϕν

∂νn

)
, (2.17)

which is in fact the identity

[
l!zl

(1− λz)l+1
∗ m!zm

(1−µz)m+1

]
∗ n!zn

(1− νz)n+1
= l!zl

(1− λz)l+1
∗
[

m!zm

(1−µz)m+1
∗ n!zn

(1− νz)n+1

]
.

(2.18)

Letting λ, µ, and ν tend separately to 0, and dividing by l!m!n!, it follows that(
zl ∗ zm)∗ zn = zl ∗ (zm∗ zn). (2.19)

The bilinearity of the convolution now ensures that the associativity is valid for arbitrary
polynomials p, q, and r as follows:[

p(z)∗ q(z)
]∗ r(z)= p(z)∗ [q(z)∗ r(z)

]
. (2.20)

The final step is to use Runge’s theorem to approximate arbitrary holomorphic functions
f , g, and h from �(G) by polynomials in order to complete the proof of the associativity,

( f ∗ g)∗h= f ∗ (g ∗h). (2.21)

The proof of the second assertion (2.11) of the theorem follows from the fact that the
function

h(z,ζ)=
[
z f (z)− ζ f (ζ)

][
zg(z)− ζg(ζ)

]
z− ζ (2.22)
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is antisymmetric with respect to z and ζ , that is, h(z,ζ)=−h(ζ ,z), and hence

Φ
{
f ∗ g}=Φz

{
( f ∗ g)(z)

}=ΦzΦζ
{
h(z,ζ)

}=ΦzΦζ
{−h(ζ ,z)

}=−ΦzΦζ
{
h(ζ ,z)

}
=−ΦζΦz

{
h(ζ ,z)

}=−ΦzΦζ
{
h(z,ζ)

}=−Φ{ f ∗ g}.
(2.23)

Here it is used that the functional Φ has the Fubini property, that is, the possibility of
interchanging of Φz and Φζ . At the end, z and ζ are also interchanged, since they are
“dumb” variables in the expression. Thus (2.23) gives 2Φ{ f ∗ g} = 0, and hence (2.11)
holds.

The last assertion in the theorem (2.12) can be proved directly. It is enough to use
(2.10) when expressing the right-hand side of (2.12) and to compare with (2.5).

Further, (2.12) can be expressed in other words saying that the resolvent operator Rλ
is in fact the convolution operator ϕ̃λ∗ and one may write Rλ = ϕ̃λ∗. �

Theorem 2.4. The commutant of ∆ with the invariant hyperplane �Φ coincides with the
commutant of the resolvent operators Rλ in �(G).

Proof. Let M : �(G)→�(G) be a linear operator commuting with Rλ for some λ ∈ C,
that is, MRλ = RλM. First, it will be proved that �Φ is an invariant hyperplane for M.
Indeed, let f and g be functions from �(G) such that Rλg = f . By (2.2), this means that

∆ f − λ f = g. (2.24)

Next MRλg =M f , or

RλMg =MRλg =M f (2.25)

and hence, applying ∆− λI and Definition 2.1,

Mg = (∆− λI)M f . (2.26)

Using (2.24), this can be written as

M(∆− λI) f = (∆− λI)M f , (2.27)

which yields

(M∆) f = (∆M) f . (2.28)

Hence, M commutes with ∆ in �Φ. It remains to show that Φ(M f ) = 0. This follows
using the representation (2.12) of the resolvent as a convolutional operator, and (2.11).

Conversely, let M : �(G)→�(G) have the hyperplane �Φ as an invariant subspace
and let M∆= ∆M in �Φ. One has to prove that MRλ = RλM for λ∈ C with E(λ) �= 0.

Let f ∈�(G) be arbitrary and denote h= (MRλ−RλM) f . Then

(∆− λI)h= (∆− λI)MRλ f −M f =M(∆− λI)Rλ f −M f = 0, (2.29)
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and also

Φ{h} =Φ
{
MRλ f

}−Φ
{
RλM f

}= 0, (2.30)

according to our assumptions. Since λ is not an eigenvalue, then h= 0, or

MRλ f = RλM f . (2.31)

�

Definition 2.5. A linear operator M : �(G)→�(G) is said to be a multiplier of the convo-
lution algebra (�(G),∗) when for arbitrary f ,g ∈�(G), it holds that

M( f ∗ g)= (M f )∗ g. (2.32)

Theorem 2.6. A linear operator M : �(G)→�(G) is a multiplier of the convolution alge-
bra (�(G),∗) if and only if it has a representation of the form

M f (z)= µ f (z) + (m∗ f )(z), (2.33)

where µ= const and m∈�(G).

Proof. The sufficiency is obvious.
In order to prove the necessity, let λ∈ C be such that E(λ) �= 0 and ϕλ(z)= 1/(1− λz)∈

�(G). To this end, it is enough to take λ with |λ| so small that 1/λ �∈ G. This is possible
since G is assumed to be finite.

Let M : �(G)→�(G) be an arbitrary multiplier of (�(G),∗). Applying (2.12), one
has

MRλ f =M
(
ϕ̃λ∗ f

)= (Mϕ̃λ
)∗ f = ϕ̃λ∗M f = RλM f , (2.34)

that is, MRλ f = RλM f . Also, denoting rλ =Mϕ̃λ, (2.34) gives

RλM f = rλ∗ f . (2.35)

It remains to apply the operator ∆λ = ∆− λI and the definition of the resolvent operator
to obtain

M f = ∆λ
(
rλ∗ f

)
. (2.36)

The right-hand side can be transformed using the identity

∆λ(u∗ v)= (∆λu)∗ v+Φ(u)v (2.37)

which can be checked directly. Then

(M f )(z)= [(∆λrλ)∗ f
]
(z) +Φ

(
rλ
)
f (z), (2.38)

which is the representation (2.33) with µ = Φ(rλ) = Φ{Mϕ̃λ} and m(z) = (∆λrλ)(z) =
[∆λMϕ̃λ](z). Thus the necessity is proved. �
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In order to prove the next theorem, which is the main result of this paper, the following
auxiliary result is needed.

Lemma 2.7. Let λ∈ C be such that ϕλ(z)∈�(G). Then, ϕλ is a cyclic element of the oper-
ator Rλ in �(G).

Proof. Let f ∈�(G) be arbitrarily chosen. It is needed to prove that there is a sequence
of functions of the form

fn(z)=
n∑
k=0

αnkR
k
λϕλ(z), n= 1,2, . . . (2.39)

converging to f (z) uniformly on the compact subsets of G.
First, it is easy to show by induction that

Rkλϕλ(z)= ϕ∗(k+1)
λ (z)= pk+1

[
ϕλ(z)

]= ak,k+1ϕ
k+1
λ (z) + ak,kϕ

k
λ(z) + ···+ ak,1ϕλ(z).

(2.40)

The calculation for k = 1 will be skipped and only the inductive step will be made. Sup-
pose that Rk−1

λ ϕλ is a polynomial pk of ϕλ(z) of degree k ≥ 2 with pk(0)= 0, that is,

Rk−1
λ ϕλ = ϕ∗kλ (z)= pk

[
ϕλ(z)

]= ak−1,kϕ
k
λ(z) + ak−1,k−1ϕ

k−1
λ (z) + ···+ ak−1,1ϕλ(z).

(2.41)

Then

Rkλϕλ(z)= ϕ∗(k+1)
λ (z)= ϕ∗kλ (z)∗ϕλ(z)

=Φζ

{{
zpk

[
ϕλ(z)

]− ζ pk[ϕλ(ζ)
]}[

zϕλ(z)− ζϕλ(ζ)
]

z− ζ

}

=Φζ

{{
zpk

[
ϕλ(z)

]− ζ pk[ϕλ(ζ)
]}

[z/(1− λz)− ζ/(1− λζ)
]

z− ζ

}

=Φζ

{[
1/λ+ (z− 1/λ)

]
pk
[
ϕλ(z)

]− ζ pk[ϕλ(ζ)
]

(1− λz)(1− λζ)

}

= 1
λ
Φζ
{
ϕλ(ζ)

}{
pk
[
ϕλ(z)

]
ϕλ(z)

}− 1
λ
Φζ
{
ϕλ(ζ)

}
pk
[
ϕλ(z)

]
−Φζ

{
pk
[
ϕλ(ζ)

]
ϕλ(ζ)

}
ϕλ(z),

(2.42)

which is a polynomial pk+1 of ϕλ(z) of degree k+ 1 with pk+1(0)= 0, as in (2.40).
Now let f ∈�(G) be arbitrarily chosen. Note that

w = ϕλ(z)= 1
1− λz iff z = ϕ−1

λ (w)= w− 1
λw

(2.43)

and consider the transformation

T f (z)= f
(
w− 1
λw

)
= g(w). (2.44)
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Then,

T
(
Rkλϕλ(z)

)= ak,k+1w
k+1 + ak,kw

k + ak,k−1w
k−1 + ···+ ak,1w. (2.45)

Since w = 0 �∈ T(G), then by Runge’s theorem, there exists a polynomial sequence {qn(w)
=∑n

k=0 bn,kwk}∞n=1 converging to (1/w)g(w) in �(T(G)). Then the sequence {wqn(w)}∞n=1

converges to g(w). But

wqn(w)=
n∑
k=0

cn,kT
(
Rkλϕλ(z)

)
(2.46)

with constants cn,0,cn,1, . . . ,cn,n. Hence, the sequence {rn(z) =∑n
k=0 cn,kR

k
λϕλ(z)}∞n=0 con-

verges to f (z) in �(G). Therefore, ϕλ is a cyclic element of Rλ in �(G). �

Theorem 2.8. A linear operator M : �(G)→�(G) with an invariant hyperplane �Φ =
{ f ∈�(G) : Φ{ f } = 0} commutes with ∆ in �Φ if and only if it has a representation of the
form

(M f )(z)= µ f (z) + (m∗ f )(z) (2.47)

with a constant µ∈ C and m∈�(G).

Proof. Since Φ{ f ∗ g} = 0 for f ,g ∈�(G) (see (2.11)), then each operator of the form
(2.47) has �Φ as an invariant subspace. It commutes with ∆ in �Φ. Indeed, if f ∈�Φ,
then (2.37) gives

∆(m∗ f )=m∗ [∆( f )
]

+Φ{ f }m, (2.48)

and using (2.47),

(∆M) f = µ∆( f ) +m∗ [∆( f )
]

+Φ{ f }m= µ∆( f ) +m∗ [∆( f )
]= (M∆)( f ). (2.49)

The sufficiency is proved.
In order to prove the necessity of (2.47), according to Theorem 2.4, MRλ = RλM for

λ∈ Cwith E(λ) �= 0. As it is shown in the book [4, Theorem 1.3.11, page 33], the commu-
tant of Rλ coincides with the ring of the multipliers of the convolution algebra (�(G),∗)
since Rλ has a cyclic element. By Lemma 2.7 such a cyclic element is the function ϕλ(z)=
1/(1− λz) for which Rλ f = ϕ̃λ∗ f = (1/E(λ))[ϕλ∗ f ]. �

Remark 2.9. The constant µ and the function m ∈�(G) in (2.47) are uniquely deter-
mined. Indeed, assume that µ f +m∗ f = µ1 f +m1 ∗ f . Take f such that Φ( f ) �= 0.
Then, using (2.11), µΦ( f ) = µ1Φ( f ), and hence µ = µ1. From m∗ f =m1 ∗ f for ar-
bitrary f ∈�(G), it follows that (m−m1)∗ f = 0, and hence m=m1.

3. Relation between the two types of commutants

It is natural to ask how the two types of commutants of ∆ described above are connected
to each other. A partial answer is given by the following theorem.
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Theorem 3.1. Let M be an arbitrary operator commuting with ∆ in �(G). Then kerM is
an ideal in the convolution algebra (�(G),∗).

Proof. By Theorem 1.8,

(M f )(z)=Φζ

{
z f (z)− ζ f (ζ)

z− ζ

}
, (3.1)

with Φ : �(G)→ C being a linear functional. From the representation

z f (z)− ζ f (ζ)
z− ζ = f (z) + ζ

f (z)− f (ζ)
z− ζ , (3.2)

it follows that

Φζ

{
z f (z)− ζ f (ζ)

z− ζ

}
= 0⇐⇒


Φζ

{
f (z)− f (ζ)

z− ζ

}
= 0,

Φζ
{
f (ζ)

}= 0.

(3.3)

The lower condition in (3.3) is easier to check:

Φζ
{

( f ∗ g)(ζ)
}=Φζ

{
Φη

{[
ζ f (ζ)−η f (η)

][
ζg(ζ)−ηg(η)

]
ζ −η

}}

=Φη

{
Φζ

{
−
[
η f (η)− ζ f (ζ)

][
ηg(η)− ζg(ζ)

]
η− ζ

}}
=−Φη

{
( f ∗ g)(η)

}=−Φζ
{

( f ∗ g)(ζ)
}
.

(3.4)

Here the Fubini property of the functional Φ is used. The function in the braces is an-
tisymmetric with respect to ζ and η, which gives the minus sign in the braces. Thus,
2Φζ{( f ∗ g)(ζ)} = 0, and hence

Φζ
{

( f ∗ g)(ζ)
}= 0. (3.5)

More algebra is needed to check the upper condition in (3.3). Let f ∈ kerM and con-
sider

Φζ

{
( f ∗ g)(z)− ( f ∗ g)(ζ)

z− ζ

}

=ΦζΦη

{[
z f (z)−η f (η)

][
zg(z)−ηg(η)

]
(z− ζ)(z−η)

−
[
ζ f (ζ)−η f (η)

][
ζg(ζ)−ηg(η)

]
(z− ζ)(ζ −η)

}
=ΦζΦη

{
ϕz(ζ ,η)

}
.

(3.6)

Here the function in the braces is denoted by ϕz(ζ ,η). The proof of ΦζΦη{ϕz(ζ ,η)} = 0
goes easier by splitting ϕz(ζ ,η) into symmetric and antisymmetric parts as follows:

ϕz(ζ ,η)= ϕz(ζ ,η) +ϕz(η,ζ)
2

+
ϕz(ζ ,η)−ϕz(η,ζ)

2
. (3.7)
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The antisymmetric part can be treated as in the proof of (3.5) and in fact, one has

ΦζΦη

{
ϕz(ζ ,η)−ϕz(η,ζ)

2

}
= 0. (3.8)

It remains to prove that the symmetric part also satisfies

ΦζΦη

{
ϕz(ζ ,η) +ϕz(η,ζ)

2

}
= 0. (3.9)

After some usual algebraic calculations and suitable grouping, the expression (ζ −η) can
be canceled from the numerator and the denominator of ψz(ζ ,η)= ϕz(ζ ,η) +ϕz(η,ζ) and
it can be written as

ψz(ζ ,η)=
[
z f (z)− ζ f (ζ)

][
zg(z)−ηg(η)

]
+
[
z f (z)−η f (η)

][
zg(z)− ζg(ζ)

]
(z− ζ)(z−η)

. (3.10)

Now the left-hand side of (3.9) can be represented as

ΦζΦη

{
ψz(ζ ,η)

2

}
= 1

2
Φζ

{
z f (z)− ζ f (ζ)

z− ζ

}
Φη

{
zg(z)−ηg(η)

z−η

}

− 1
2
Φη

{
z f (z)−η f (η)

z−η

}
Φζ

{
zg(z)− ζg(ζ)

z− ζ

}
= 0.

(3.11)

In (3.11), it was used that

Φζ

{
z f (z)− ζ f (ζ)

z− ζ

}
=Φη

{
z f (z)−η f (η)

z−η

}
= 0, (3.12)

which expresses the fact that f ∈ kerM. Thus (3.9) is also shown. �

Remark 3.2. Theorem 3.1 expresses a new property of kerM. Other properties of kerM
are studied in details by Linchuk [7].
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