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We construct the linear differential equations of third order satisfied by the classical 2-
orthogonal polynomials. We show that these differential equations have the following

form: R4,n(x)P(3)
n+3(x)+R3,n(x)P′′n+3(x)+R2,n(x)P′n+3(x)+R1,n(x)Pn+3(x)=0, where the coeffi-

cients {Rk,n(x)}k=1,4 are polynomials whose degrees are, respectively, less than or equal
to 4, 3, 2, and 1. We also show that the coefficient R4,n(x) can be written as R4,n(x)=
F1,n(x)S3(x), where S3(x) is a polynomial of degree less than or equal to 3 with coefficients
independent of n and deg(F1,n(x))≤ 1. We derive these equations in some cases and we
also quote some classical 2-orthogonal polynomials, which were the subject of a deep
study.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) satisfy a
hypergeometric-type differential equation of second order [5]:

σ(x)y′′(x) + τ(x)y′(x) + λny(x)= 0, where degσ ≤ 2, degτ ≤ 1,

λn =−n(n− 1)
2

σ ′′ −nτ′ �= 0, n≥ 0.
(1.1)

These polynomials are the unique polynomial solutions of a second-order linear dif-
ferential equation of hypergeometric type [14].

The aim of this work is to generalize the results obtained in the standard orthogonality
to 2-orthogonality. We first look for the differential equations whose the solutions are
classical 2-orthogonal polynomials and we explicit them, where it is possible.

First, we recall some basic notions of the d-orthogonality, then we study the nature of
coefficients of recurrence relations satisfied by the classical 2-orthogonal polynomials se-
quences. We show afterwards that these polynomials are solutions of a third-order linear
differential equation with polynomial coefficients of degree less than or equal to 4, 3, 2,
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and 1, depending generally on n. The main result is that the coefficient associated with
highest derivative can be written as the product of 2 polynomials of which one is of degree
≤ 3 and independent of n. The latter, will allow us not only to enumerate some polyno-
mial solutions, but also to explicit some ODEs. Of course, these equations generalize the
Sturm-Liouville equations.

The cases where the polynomial solutions are 2-symmetric orthogonal are completely
derived. Finally, we mention some examples of classical 2-orthogonal polynomials with
some of their properties.

The final goal being naturally to search for the analog theorem of Bochner, that is,
first, to enumerate all sequences of classical 2-orthogonal polynomials and afterwards, to
study their properties, in particular the representation of the pair of linear forms in each
case.

2. Preliminary notions

First, we recall some definitions and properties of the sequences of d-orthogonal polyno-
mials, without forgetting to mention however, that the d-orthogonal polynomials Pn(n≥
0) are a special case of type II multiple orthogonal polynomials R−→s (n), where the sequence−→s (n) (n≥ 0) of multi-indices in Nd, with n=md+α, 0≤ α≤ d− 1, m≥ 0, is defined by

−→s (n)=
⎛
⎜⎝m+ 1,m+ 1, . . . ,m+ 1︸ ︷︷ ︸

α times

,m,m, . . . ,m

⎞
⎟⎠ , (2.1)

and where Pn(x)= R−→s (n) (n≥ 0) [1, 21].
Note that the multiple orthogonal polynomials are narrowly related to simultaneous

vectorial Pade approximation, to be more precise as Hermite-Pade approximation. In
particular, the type II multiple orthogonal polynomials R−→n , −→n = (n1,n2, . . . ,nd), for the
measures {μj}dj=1, that is, the monic polynomial R−→n of degree |−→n | = n1 + n2 + ···+ nd
which satisfies the orthogonal conditions

∫

�k

xmR−→n (x)dμj = 0, k = 0,1, . . . ,nj − 1, j = 1,2, . . . ,d (2.2)

(resp., the d-orthogonal polynomials with respect to the vector linear form �= (�0,�1,
. . . ,�d−1)T) represent the common denominator of rational approximation of the d Stielt-
jes functions [3, 17, 19, 21]

f j(z)=
∫

� j

dμj

z− x
, z �∈ � j , j = 1,2, . . . ,d, (2.3)

that is,

R−→n (z) f j(z)−Q−→n , j(z)=O
(
z−nj−1), |z| −→∞, j = 1,2, . . . ,d. (2.4)

Definition 2.1. Let {Pn}n≥0 be a sequence of monic polynomials (i.e., Pn(x)= xn + ···).
Call the dual sequence of the sequence {Pn}n≥0, the sequence of linear forms {£n}n≥0
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defined by

£n
(
Pm(x)

)= 〈
£n,Pm(x)

〉= δn,m, m,n≥ 0, (2.5)

where 〈·,·〉 denotes the duality bracket between the vector space of polynomials � and
its algebraic dual space �′.

Definition 2.2 [16, 21]. A sequence of polynomials {Pn}n≥0 is d-orthogonal with respect
to £= (£0,£1, . . . ,£d−1)T if it satisfies

£α
(
xmPn(x)

)= 0, n≥md+α+ 1, m≥ 0,

£α
(
xmPmd+α(x)

) �= 0, m≥ 0, 0≤ α≤ d− 1.
(2.6)

Theorem 2.3 [16, 21]. Let {Pn}n≥0 be a monic sequence of polynomials, then the following
statements are equivalent.

(a) The sequence {Pn}n≥0 is d-orthogonal with respect to £= (£0,£1, . . . ,£d−1)T .
(b) The sequence {Pn}n≥0 satisfies a recurrence relation of order d+ 1 (d ≥ 1):

Pm+d+1(x)= (
x−βm+d

)
Pm+d(x)−

d−1∑

ν=0

γd−1−ν
m+d−νPm+d−1−ν(x), m≥ 0, (2.7)

with the initial data

P0(x)= 1, P1(x)= x−β0,

Pm(x)= (
x−βm−1

)
Pm−1(x)−

m−2∑

ν=0

γd−1−ν
m−1−νPm−2−ν(x), 2≤m≤ d,

(2.8)

where γ0
m+1 �= 0, m≥ 0. (Regularity conditions.)

Remark 2.4 [12, 18]. This result generalizes the Shohat-Favard theorem.

Definition 2.5. The sequence {Pn}n≥0 is said to be d-symmetric if it satisfies

Pn
(
ρkx

)= ρnkPn(x), n≥ 0, where ρk = exp
(

2ikπ
d+ 1

)
, k = 1, . . . ,d. (2.9)

Theorem 2.6 [9–11]. For each monic d-orthogonal sequence {Pn}n≥0, the following equiv-
alences hold.
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(a) {Pn}n≥0 is d-symmetric.
(b) {Pn}n≥0 satisfies the recurrence relation

Pn(x)= xn, 0≤ n≤ d,

Pn+d+1(x)= xPn+d(x)− γ0
n+1Pn(x), n≥ 0.

(2.10)

Definition 2.7 [10]. A sequence of polynomials {Pn}n≥0 (d ≥ 1) is said to be “classical” if
the sequence of the derivatives is also d-orthogonal.

Corollary 2.8 [9, 15]. When the sequence {Pn}n≥0 is classical d-orthogonal and d-
symmetric, then the monic sequence of derivatives {Qn}n≥0 (i.e., Qn(x) = P′n+1(x)/(n+ 1))
satisfies the following recurrence relation:

Qn(x)= xn, 0≤ n≤ d,

Qn+d+1(x)= xQn+d(x)− δ0
n+1Qn(x) with δ0

n+1 �= 0, n≥ 0.
(2.11)

3. Classical 2-orthogonal polynomials

Statement of the problem. In this work, we try to answer three main questions.
(i) Which type of differential equations have as solutions classical 2-orthogonal

polynomials?
(ii) Can we exhibit these differential equations?

(iii) What are these polynomials solutions?
For this, we consider a monic sequence of classical 2-orthogonal polynomials

{Pn(x)}n≥0, such that the recurrence relations satisfied by the polynomials Pn(x) and
P′n(x) (n≥ 0) are given, respectively, by

P0(x)= 1, P1(x)= x−β0
0, P2(x)= (

x−β0
1

)
P1(x)− γ0

1,

Pn+3(x)= (
x−β0

n+2

)
Pn+2(x)− γ0

n+2Pn+1(x)− δ0
n+1Pn(x), n≥ 0,

(3.1)

with the regularity condition δ0
n �= 0, n≥ 1, and

P′1(x)= 1, P′2(x)= 2
(
x−β1

1

)
, P′3(x)= 3

2

[(
x−β1

2

)
P′2(x)− γ1

2

]
,

n+ 3
n+ 4

P′n+4(x)= (
x−β1

n+3

)
P′n+3(x)− γ1

n+3P
′
n+2(x)− δ1

n+2P
′
n+1(x), n≥ 0,

(3.2)

with the regularity condition δ1
n+1 �= 0, n≥ 1.

Proposition 3.1 [9]. The coefficients β0
n, β1

n, γ0
n, γ1

n, δ0
n, and δ1

n satisfy the following finite
difference system:

(n+ 2)β1
n+1−nβ1

n− (n+ 1)β0
n+1 + (n− 1)β0

n = 0, n≥ 0, (3.3)

(n+ 3)γ1
n+2− (n+ 2)γ0

n+2

n+ 2
− nγ1

n+1− (n− 1)γ0
n+1

n+ 1
= (

β1
n+1−β0

n+1

)2
, n≥ 0, (3.4)
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(n+ 4)δ1
n+2− (n+ 3)δ0

n+2

n+ 3
− nδ1

n+1− (n− 1)δ0
n+1

n+ 1

= γ0
n+2

(
β0
n+2 +β0

n+1− 2β1
n+1

)− γ1
n+2

(
2β0

n+2−β1
n+2−β1

n+1

)
, n≥ 0,

(3.5)

δ0
n+1

(
β0
n−β1

n

)− δ1
n+1

(
β0
n+2−β1

n+2

)
+
(
δ0
n+1− δ1

n+1

)(
β0
n+2−β1

n

)

= γ1
n+1

(
γ0
n+2− γ1

n+2

)− γ0
n+2

(
γ0
n+1− γ1

n+1

)
, n≥ 1,

(3.6)

δ0
n+2

(
γ0
n+1− γ1

n+1

)− δ1
n+1

(
γ0
n+3− γ1

n+3

)

= γ1
n+1

(
δ0
n+2− δ1

n+2

)− γ0
n+3

(
δ0
n+1− δ1

n+1

)
, n≥ 1,

(3.7)

δ0
n+3

(
δ0
n+1− δ1

n+1

)= δ1
n+1

(
δ0
n+3− δ1

n+3

)
, n≥ 1. (3.8)

Proof. From (3.1) and (3.2), we get the relation

Pn+3(x)= 1
n+ 4

P′n+4(x) +
(
β0
n+3−β1

n+3

)
P′n+3 +

(
γ0
n+3− γ1

n+3

)
P′n+2(x)

+
(
δ0
n+2− δ1

n+2

)
P′n+1(x), n≥ 0.

(3.9)

Multiplying by x both hand sides of this relation and using once again (3.2), we get the
precedent system. �

Remark 3.2. We see that the determination of all the 2-orthogonal sequences goes
through the resolution of the system (3.1)–(3.8). Many authors have tried to solve it,
but up to now, its resolution is still giving many problems because it is nonlinear as well
as the number of unknowns is relatively high (six). Nevertheless, we will analyze the cases
where its resolution is complete. In fact, we have the following.

Lemma 3.3. Equation (3.8) admits the following as a unique set of solutions.
(A) δ1

n+1 = δ0
n+1, n≥ 1.

(B) δ1
2n = (n+ ρ2)/(n− 1 + ρ2)δ0

2n and δ1
2n+1 = δ0

2n+1, n≥ 1.
(C) δ1

2n+1 = (n+ ρ3)/(n− 1 + ρ3)δ0
2n+1 and δ1

2n = δ0
2n, n≥ 1.

(D) δ1
2n = (n+ ρ2)/(n− 1 + ρ2)δ0

2n and δ1
2n+1 = (n+ ρ3)/(n− 1 + ρ3)δ0

2n+1, n ≥ 1, where
ρ2 =−δ0

2 /(δ
0
2 − δ1

2), ρ3 =−δ0
3 /(δ

0
3 − δ1

3), and (ρ2 and ρ3 /∈ Z).

Remark 3.4. In the last case if we put ρ = 2ρ2 = 2ρ3 − 1, then we obtain the important
particular case denoted by D1 and where

δ1
n+1 =

n+ 1 + ρ

n− 1 + ρ
δ0
n+1, n≥ 1. (3.10)
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Proof of Lemma 3.3. δ1
n+1 = δ0

n+1, n≥ 1, is a trivial solution of (3.8).
In case, where there exists n0 ≥ 1 such that δ1

n0+1 �= δ0
n0+1, then for n0 = 2k0 (resp., n0 =

2k0 + 1), k0 ∈N, (3.8) becomes

δ0
2k0+3

(
δ0

2k0+1− δ1
2k0+1

)= δ1
2k0+1

(
δ0

2k0+3− δ1
2k0+3

) �= 0 (3.11)

(resp., δ0
2k0+4(δ0

2k0+2− δ1
2k0+2)= δ1

2k0+2(δ0
2k0+4− δ1

2k0+4) �= 0).
Thus δ1

2(k0+1)+1 �= δ0
2(k0+1)+1, k0 ≥ 1 (resp., δ1

2(k0+1)+2 �= δ0
2(k0+1)+2, k0 ≥ 0), and therefore

δ1
2n0+1 �= δ0

2n0+1, n0 ≥ 1 (resp., δ1
2n0+2 �= δ0

2n0+2, n0 ≥ 0). Equation (3.8) can be written as

δ0
2n0+3

δ0
2n0+3− δ1

2n0+3
− δ0

2n0+1

δ0
2n0+1− δ1

2n0+1
=−1

(
resp.,

δ0
2n0+4

δ0
2n0+4− δ1

2n0+4
− δ0

2n0+2

δ0
2n0+2− δ1

2n0+2
=−1

) (3.12)

then

δ0
2n0+3

δ0
2n0+3− δ1

2n0+3
− δ0

3

δ0
3 − δ1

3
=−n0, n0 ≥ 0 or δ1

2n0+1 =
n0 + ρ3

n0− 1 + ρ3
δ0

2n0+1, n0 ≥ 1,

(
resp., δ1

2n0
= n0 + ρ2

n0− 1 + ρ2
δ0

2n0
, n0 ≥ 1

)
.

(3.13)

�

Lemma 3.5. In case (A) (i.e., δ1
n+1 = δ0

n+1, n≥ 1), (3.7) admits the following four solutions.
(A1) γ0

n+1 = γ1
n+1, n≥ 1.

(A2) γ0
2n = γ1

2n and γ0
2n+1− γ1

2n+1 = (γ0
3 − γ1

3)(δ0
1 /δ

0
2)
∏n

ν=1(δ0
2ν/δ

0
2ν−1), n≥ 1.

(A3) γ0
2n+1 = γ1

2n+1 and γ0
2n− γ1

2n = (γ0
2 − γ1

2)(1/δ0
1)
∏n−1

ν=1 (δ0
2ν+1/δ

0
2ν), (δ0

0 = 1), n≥ 1.
(A4) γ0

2n − γ1
2n = (γ0

2 − γ1
2)(1/δ0

1)
∏n−1

ν=1 (δ0
2ν+1/δ

0
2ν) and γ0

2n+1 − γ1
2n+1 = (γ0

3 − γ1
3)(δ0

1 /δ
0
2)

×∏n
ν=1(δ0

2ν/δ
0
2ν−1), n≥ 1.

Lemma 3.6 [9]. In case (A1) (i.e., γ0
n+1 = γ1

n+1 and δ1
n+1 = δ0

n+1, n≥ 1),

β0
2n = β0

0 +n
(
b1 + 3b2

)
, n≥ 0,

β0
2n+1 = β0

1 +n
(
3b1 + b2

)
, n≥ 0,

(3.14)

γ0
2n+1 = (2n+ 1)

[
γ0

1 +n
(
b2

1 + b2
2

)]
, n≥ 0,

γ0
2n+2 = 2(n+ 1)

[
γ0

1 + (n+ 1)b2
1 +nb2

2

]
, n≥ 0,

(3.15)

δ0
2n+1 = (n+ 1)(2n+ 1)

[
δ0

1 + 2nb2
2

(
b2− b1

)]
, n≥ 0,

δ0
2n+2 = (n+ 1)(2n+ 3)

{
δ0

1 + 2
(
b1− b2

)[
γ0

1 + (n+ 1)b2
1

]}
, n≥ 0,

(3.16)
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Table 3.1

Case β0
n, n≥ 0 γ0

n+1, n≥ 0

(A1.1) β0
n = 0 γ0

n+1 = (n+ 1)γ0
1

(A1.2) β0
n = 2nb1 γ0

n+1 = (n+ 1)
(
γ0

1 +nb2
1

)

(A1.3)

β0
2n+1 = n γ0

2n+1 = (2n+ 1)
(
n+

δ0
1 − k1

2

)

β0
2n = 3n γ0

2n+2 = (n+ 1)
(
2n+ δ0

1 − k1
)

(A1.4)

β0
2n+1 = 3n+ 2 γ0

2n+1 = (2n+ 1)
(
n+

k2− 2− δ0
1

2

)

β0
2n = n γ0

2n+2 = (n+ 1)
(
2n+ k2− δ0

1

)

(A1.5) See (3.14) See (3.15)

where β0
0, β0

1, γ0
1 , and δ0

1 are arbitrary and b1 and b2 are constants defined by

b1 := β0
1−β1

1 =
1
2

(
β0

1−β0
0

)
, b2 := β0

2−β1
2 =

1
6

(
2β0

2−β0
1−β0

0

)
. (3.17)

Proof. From (3.6) we have (β0
n−β1

n)= (β0
n+2−β1

n+2), n≥ 0.
In particular for n= 2k,

(
β0

2k+2−β1
2k+2

)= (
β0

2k −β1
2k

)= ··· = β0
2−β1

2 =
1
6

(
2β0

2−β0
1−β0

0

)= b2, (3.18)

and for n= 2k+ 1,

(
β0

2k+3−β1
2k+3

)= (
β0

2k+1−β1
2k+1)= ··· = β0

1−β1
1 =

1
2

(
β0

1−β0
0

)= b1. (3.19)

Using (3.3), we get

2
[
(k+ 1)b1− kb2

]= β0
2k+1−β0

2k, n≥ 0,

(2k+ 3)b2− (2k+ 1)b1 = β0
2k+2−β0

2k+1, n≥ 0.
(3.20)

By adding up term by term these last 2 relations and summing this last result, we obtain
the first relation of (3.14). The second relation of (3.14) is obtained in the same way.

Equations (3.15) and (3.16) are obtained similarly by using, respectively, (3.4) and
(3.5). �

Proposition 3.7 [9]. The case (A1) is constituted by the following five canonical classical
2-orthogonal polynomials.
(A1.1) b1 = b2 = 0.
(A1.2) b1 = b2 �= 0.
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Table 3.2

Case δ0
n+1, n≥ 0

(
δ0

2 = 2
)

Initials parameters

(A1.1) δ0
n+1 = (n+ 1)(n+ 2)

δ0
2

2
β0

0 = 0; γ0
1 and δ0

1 arbitrary

(A1.2) δ0
n+1(n+ 1)(n+ 2)

δ0
2

2
β0

0 = 0; b1δ
0
1 and γ0

1 arbitrary

(A1.3)
δ0

2n+1 = (n+ 1)(2n+ 1)
(
2n+ δ0

1

)
b2 = 1, β0

0 = 0

δ0
2n+2 = k1(n+ 1)(2n+ 3) δ0

1 and k1 = δ0
1 − 2γ0

1 �= 0 arbitrary

(A1.4)
δ0

2n+1 = (n+ 1)(2n+ 1)δ0
1 b1 = 1, β0

0 = 0

δ0
2n+2 = (n+ 1)(2n+ 3)

(
2n+ k2

)
δ0

1 and k2 = δ0
1 + 2γ0

1 + 2 �= 0 arbitrary

(A1.5) See (3.16) β0
0, b1, γ0

1, and δ0
1 arbitrary

(A1.3) b1 = 0 and b2 �= 0.
(A1.4) b2 = 0 and b1 �= 0.
(A1.5) b1 �= b2 and b1b2 �= 0.

Remark 3.8. In the precedent case (i.e., (A1)) the coefficients β0
n,γ0

n+1, and δ0
n+1 can be

written, respectively, in the simplified forms in Tables 3.1 and 3.2.

Proposition 3.9 [9]. There exist only four sequences of classical 2-symmetric 2-orthogonal
polynomials. The coefficients δ0

n+1 and δ1
n+1 (n≥ 0) are explicit in Table 4.1.

4. Main results

4.1. Differential equations. In this section, we will construct the differential equations,
whose solutions are classical 2-orthogonal polynomials, afterwards, we will give the na-
ture of these equations by the study of the coefficient associated with highest derivative.

Let us note that the polynomials enumerated in Proposition 3.7 and the 2-symmetric
solution polynomials will be completely exhibited (perfectly identified).

An analysis of a particular case (already studied) is done at the end of this section, as
well as the citation of some classical 2-orthogonal polynomials, which were the subject of
a deep study.

First, let us note

dn+2 := δ1
n+2− δ0

n+2, n≥ 0, Bn := (n+ 4)β1
n+3− (n+ 3)β0

n+3, n≥ 0,

hn = δ1
n+2β

0
n+3− δ0

n+2β
1
n+3, n≥ 0, Gn := (n+ 4)γ1

n+3− (n+ 3)γ0
n+3, n≥ 0,

Cn := δ1
n+2γ

0
n+3− δ0

n+2γ
1
n+3, n≥ 0, Dn :=

[
(n+ 4)δ1

n+2− (n+ 3)δ0
n+2

]

n+ 4
, n≥ 0.

(4.1)

Then, we have the following result.
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Table 4.1

Case δ0
n+1, n≥ 0

(A) δ0
n+1 = (n+ 1)(n+ 2)

δ0
1

2

(B)

δ0
2n+1 = (n+ 1)(2n+ 1)

3n+ 1 + ρ2

(
ρ2 + 1

)
δ0

1

δ0
2n+2 =

(n+ 1)(2n+ 3)
(
n+ ρ2

)
(
3n+ 1 + ρ2

)(
3n+ 4 + ρ2

) (ρ2 + 1
)
δ0

1

(C)

δ0
2n+1 =

(n+ 1)(2n+ 1)
(
n− 1 + ρ3

)
(
3n− 1 + ρ3

)(
3n+ 2 + ρ3

) (ρ3 + 2
)
δ0

1

δ0
2n+2 = (n+ 1)(2n+ 3)

3n+ 2 + ρ3

(
ρ3 + 1)δ0

1

(D)

δ0
2n+1 =

(n+ 1)(2n+ 1)
(
n− 1 + ρ3

)
(
3n− 1 + ρ3

)(
3n+ 2 + ρ3

)(
3n+ 1 + ρ2

) (ρ2 + 1
)(
ρ3 + 2

)δ0
1

2

δ0
2n+2 =

(n+ 1)(2n+ 3)
(
n+ ρ2

)
(
3n+ 1 + ρ2

)(
3n+ 4 + ρ2

)(
3n+ 2 + ρ3

) (ρ2 + 1
)(
ρ3 + 2

)δ0
1

2

(D1) δ0
n+1 =

(n+ 1)(n+ 2)(n− 1 + ρ)
(3n− 1 + ρ)(3n+ 2 + ρ)(3n+ 5 + ρ)

(ρ+ 2)(ρ+ 5)
δ0

1

2

Theorem 4.1. When

Cndn+2 �= 0, n≥ 0, (4.2)

the classical 2-orthogonal polynomials Pn+3(x) (n≥ 0) which satisfy a differential equation
are solutions of a third-order linear differential equation with polynomial coefficients of the
form

R4,n(x)P(3)
n+3(x) +R3,n(x)P′′n+3(x) +R2,n(x)P′n+3(x) +R1,n(x)Pn+3(x)= 0, n≥ 0, (4.3)

with

R4,n(x) := F1,n(x)S3,n(x),

R3,n(x) := F1,n(x)V2,n(x)−F′1,n(x)S3,n(x),

R2,n(x) := F1,n(x)W1,n(x)−F′1,n(x)T2,n(x),

R1,n(x) := (n+ 3)
δ1
n+2

dn+2

{[(
x− hn−1

dn+1

)
+

Cn−1Gn

(n+ 4)Dndn+1

]
F′1,n(x)−

(
δ1
n+1

dn+1
+ 2

)
F1,n(x)

}
,

(4.4)
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and where

F1,n(x)
(n+ 4)Dndn+1

:= (n+ 3)Cn

[(
x− hn−1

dn+1

)
+

Cn−1Gn

(n+ 4)Dndn+1

]

+

(
δ1
n+1

dn+1
+ 1

)[
Cn

(
x−Bn+1

)
+ (n+ 5)DnDn+1

]

=
[
δ1
n+1

dn+1
+ (n+ 4)

]
Cnx+ (n+ 3)

Cn

dn+1

[
Cn−1Gn

(n+ 4)Dn
−hn−1

]

+

(
δ1
n+1

dn+1
+ 1

)[
(n+ 5)DnDn+1−CnBn+1

]
:= F(1)

1,nx+F(0)
1,n ,

(4.5)

S3,n(x) :=
[(

x− hn−1

dn+1

)
+

Cn−1Gn

(n+ 4)Dndn+1

][
(
x−Bn+1

)
(
x− hn

dn+2

)
−DnGn+1

dn+2

]

− 1
(n+ 4)dn+1dn+2

[
Cn

Dn

(
x−Bn+1

)
+ (n+ 5)Dn+1

]

×[Cn−1
(
x−Bn

)
+ (n+ 4)DnDn−1

]
,

(4.6)

V2,n(x)=
[(

x− hn−1

dn+1

)
+

Cn−1Gn

(n+4)Dndn+1

][(
δ1
n+2

dn+2
+2

)(
x−Bn+1

)−(n+2)

(
x− hn

dn+2

)]

+

(
δ1
n+1

dn+1
+ 2

)[
(
x−Bn+1

)
(
x− hn

dn+2

)
− DnGn+1

dn+2

]

+
1

(n+ 4)dn+1dn+2

{
(n+ 1)Cn−1

[
Cn

Dn

(
x−Bn+1

)
+ (n+ 5)Dn+1

]

+ (n+ 2)Cn

[
Cn−1

Dn

(
x−Bn

)
+ (n+ 4)Dn−1

]}
,

(4.7)

T2,n(x) :=
[(

x− hn−1

dn+1

)
+

Cn−1Gn

(n+4)Dndn+1

][(
δ1
n+2

dn+2
+1

)
(
x−Bn+1

)

− (n+ 3)

(
x− hn

dn+2

)]

+
1

(n+ 4)dn+1dn+2
(n+ 2)Cn−1

[
Cn

Dn

(
x−Bn+1

)
+ (n+ 5)Dn+1

]
,

(4.8)
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W1,n(x) :=
(
δ1
n+1

dn+1
+ 2

)[(
δ1
n+2

dn+2
+ 1

)(
x−Bn+1

)− (n+ 3)

(
x− hn

dn+2

)]

− (n+ 2)

(
δ1
n+2

dn+2
+ 1

)[(
x− hn−1

dn+1

)
+

Cn−1Gn

(n+ 4)Dndn+1

]

− (n+ 2)2Cn−1Cn

(n+ 4)Dndn+1dn+2
.

(4.9)

Proof. Differentiating (3.1) with n → n + 1 and eliminating successively P′n+1(x) and
P′n+4(x) by substitution in (3.2), we get, respectively,

DnP
′
n+4(x)− (

dn+2x−hn
)
P′n+3(x)− δ1

n+2Pn+3(x) +CnP
′
n+2(x)= 0, (4.10)

(
x−Bn+1

)
P′n+4(x)− (n+ 4)Pn+4(x)−Gn+1P

′
n+3(x)− (n+ 5)Dn+1P

′
n+2(x)= 0. (4.11)

Eliminating successively P′n+2(x) and P′n+4(x) by substitution between (4.10) and (4.11)
(because Cn �= 0 by hypothesis and Dn �= 0), we obtain

[
(n+ 5)Dn+1

(
dn+2x−hn

)
+CnGn+1

]
P′n+3(x) + (n+ 5)δ1

n+2Dn+1Pn+3(x)

− [
Cn

(
x−Bn+1

)
+ (n+ 5)DnDn+1

]
P′n+4(x) + (n+ 4)CnPn+4(x)= 0,

(4.12)

− (n+ 4)DnPn+4(x) +
[(
x−Bn+1

)(
dn+2x−hn

)−DnGn+1
]
P′n+3(x)

+ δ1
n+2

(
x−Bn+1

)
Pn+3(x)− [

Cn
(
x−Bn+1

)
+ (n+ 5)DnDn+1

]
P′n+2(x)= 0.

(4.13)

Differentiating (4.11), (4.12), and (4.13), and eliminating successively P′′n+4(x) and
P′n+4(x) we get, respectively,

(
δ1
n+2 +dn+2

)(
x−Bn+1

)
P′n+3(x) +

[(
x−Bn+1

)(
dn+2x−hn

)−DnGn+1
]
P′′n+3(x)

− [
Cn

(
x−Bn+1

)
+ (n+ 5)DnDn+1

]
P′′n+2(x)− (n+ 3)DnP

′
n+4(x)= 0,

(4.14)

[(
x−Bn+1

)(
dn+2x−hn

)−DnGn+1
]
P′′n+3(x)− (n+ 3)δ1

n+2Pn+3(x)

+
[(
δ1
n+2 +dn+2

)(
x−Bn+1

)− (n+ 3)
(
dn+2x−hn

)]
P′n+3(x)

+ (n+ 3)CnP
′
n+2(x)− [

Cn
(
x−Bn+1

)
+ (n+ 5)DnDn+1

]
P′′n+2(x)= 0.

(4.15)
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We replace n by n− 1 and differentiate (4.12), that is,

[
(n+ 4)Dn

(
dn+1x−hn−1

)
+Cn−1Gn

]
P′′n+2(x) + (n+ 4)Dn

(
dn+1 + δ1

n+1

)
P′n+2(x)

− [
Cn−1

(
x−Bn

)
+ (n+ 4)DnDn−1

]
P′′n+3(x) + (n+ 2)Cn−1P

′
n+3(x)= 0.

(4.16)

Taking into account dn+1 �= 0, then eliminating successively P′n+2(x) and P′′n+2(x) by
substitution between (4.16) and (4.15), we get, respectively,

−F1,n(x)P′′n+2(x) +
{

(n+ 4)Dn
(
δ1
n+1 +dn+1

)[(
x−Bn+1

)(
dn+2x−hn

)−DnGn+1
]

+ (n+ 3)Cn
[
Cn−1

(
x−Bn

)
+ (n+ 4)Dn−1Dn

]}
P′′n+3(x)

+
{

(n+ 4)Dn
(
δ1
n+1 +dn+1

)[(
δ1
n+2 +dn+2

)(
x−Bn+1

)− (n+ 3)
(
dn+2x−hn

)]

− (n+ 2)(n+ 3)Cn−1Cn
}
P′n+3(x)− (n+ 3)(n+ 4)Dnδ

1
n+2

(
δ1
n+1 +dn+1

)
Pn+3(x)= 0,

(4.17)

S3,n(x)P′′n+3(x) +T2,n(x)P′n+3(x) +
F1,n(x)

(n+ 4)Dndn+1dn+2
P′n+2(x)

− (n+ 3)
δ1
n+2

dn+2

[(
x− hn−1

dn+1

)
+

Cn−1Gn

(n+ 4)Dndn+1

]
Pn+3(x)= 0.

(4.18)

Then differentiating (4.18) and eliminating P′′n+2(x) by substitution in (4.17) we get

S3,n(x)P(3)
n+3(x) +V2,n(x)P′′n+3(x) +W1,n(x)P′n+3(x) +

F′1,n(x)

(n+ 4)Dndn+1dn+2
P′n+2(x)

− (n+ 3)
δ1
n+2

dn+2

(
δ1
n+1

dn+1
+ 2

)
Pn+3(x)= 0.

(4.19)

Finally, (4.3) is obtained by eliminating P′n+2(x) by substitution between (4.18) and (4.19).
�

Before giving the main result of this work whose proof contains cumbersome calcula-
tions, we give the following lemmas.

Lemma 4.2. The system (3.3)–(3.8) is equivalent to

Bn−Bn−1 = β0
n+2−β1

n+2, (4.20)
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Gn

n+ 3
= (

Bn−Bn−1
)2

+
(n+ 1)γ0

n+2−nγ1
n+2

n+ 2
, (4.21)

(n+ 6)Dn+2

(n+ 5)dn+3
= Dn−1

dn+1
+

1
dn+3

{
γ0
n+4

(
β0
n+4 +β1

n+3

− 2β1
n+3

)− γ1
n+4

(
2β0

n+4−β1
n+4− 2β1

n+3

)}
,

(4.22)

(
β0
n+2−β1

n

)= δ0
n+1

dn+1

(
Bn−2−Bn−3

)− δ1
n+1

dn+1

(
Bn−Bn−1

)

+
1

dn+1

{
γ0
n+2

(
γ0
n+1− γ1

n+1

)− γ1
n+1

(
γ0
n+2− γ1

n+2

)}
,

(4.23)

Cn−1

dn+1
= δ1

n+2

(
γ0
n+4− γ1

n+4

)
+ γ0

n+4dn+2

dn+3
, (4.24)

δ0
n+3

dn+3
= δ1

n+1

dn+1
. (4.25)

Lemma 4.3. Also, the following relations hold:

Cn−dn+2Gn

(n+ 4)Dn
= γ0

n+3− γ1
n+3, (4.26)

CnBn−hnGn

(n+ 4)Dn
= γ0

n+3β
1
n+3− γ1

n+3β
0
n+3, (4.27)

hn+1

dn+3
−Bn+1 = (n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)
, (4.28)

hn+1

dn+3
− hn−1

dn+1
= γ0

n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)

dn+3
− (

Bn+2−Bn+1
)

= (
β0
n+4−β1

n+4

)
+
δ0
n+3

dn+3

{(
Bn+2−Bn+1

)− (
Bn−Bn−1

)}
.

(4.29)

Theorem 4.4. The polynomial S3,n(x) is of degree 3 and it is independent of n. Henceforth,
it will be denoted by S3(x).
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Proof. We have

S3,n(x)= x3−
[(

γ0
n+3− γ1

n+3

)
Cn−1

dn+2dn+1
+

hn
dn+2

+
hn−1

dn+1
+Bn+1

]
x2

+

[
Bn+1hn−DnGn+1

dn+2
+
hn−1

dn+1

(
hn
dn+2

+Bn+1

)
+

(
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

)
Cn−1

dn+2dn+1

+

(
γ0
n+3− γ1

n+3

)
Bn+1Cn−1

dn+2dn+1
− CnDn−1

dn+2dn+1
+

(n+ 5)Dn+1Cn−1

(n+ 4)dn+2dn+1

]
x

+
1

(n+ 4)Dndn+2dn+1

{[
Bn+1hn−DnGn+1

][
Cn+1Gn− (n+ 4)Dnhn−1

]

− [
(n+ 4)DnDn−1−Cn−1Bn

][
(n+ 5)DnDn+1−CnBn+1

]}

:= x3 + s(2)
3,nx

2 + s(1)
3,nx+ s(0)

3,n.
(4.30)

Let us prove that S3,n+1(x)− S3,n(x)= 0, that is,

s(2)
3,n+1− s(2)

3,n = 0, s(1)
3,n+1− s(1)

3,n = 0, s(0)
3,n+1− s(0)

3,n = 0. (4.31)

Indeed

s(2)
3,n− s(2)

3,n+1 =
(
γ0
n+4− γ1

n+4

)
Cn

dn+2dn+3
−
(
γ0
n+3− γ1

n+3

)
Cn−1

dn+2dn+1

+

(
hn+1

dn+3
− hn−1

dn+1

)
+
(
Bn+2−Bn+1

)
.

(4.32)

ReplacingCn−1/dn+1 and hn+1/dn+3−hn−1/dn+1 by using (4.24) and (4.26), respectively,
we obtain

s(2)
3,n− s(2)

3,n+1 =
1

dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)

+ δ0
n+3

(
β0
n+2−β1

n+2

)− δ1
n+3

(
β0
n+4−β1

n+4

)]

− (n+ 5)
(
Bn+2−Bn+1

)− (
Bn+1−Bn

)− (
n+ 2

)(
Bn−Bn−1

)
.

(4.33)

Now, using (4.23), we get

s(2)
3,n− s(2)

3,n+1 = 0, (4.34)
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that is,

s(2)
3,n = s(2)

3,n+1
Denoted

:= s(2)
3 = constant . (4.35)

In the same way, we have

s(1)
3,n+1− s(1)

3,n =
[
hn+1

dn+3
+

hn
dn+2

+Bn+2 +

(
γ0
n+4− γ1

n+4

)
Cn

dn+2dn+3

]
Bn+2−

(
B2
n+2−B2

n+1

)

−
[

hn
dn+2

+
hn−1

dn+1
+Bn+1 +

(
γ0
n+3− γ1

n+3

)
Cn−1

dn+2dn+1

]
Bn+1

−
[
Dn+1Gn+2

dn+3
+
Dn

(
Cn+1−dn+3Gn+1

)

dn+2dn+3
− (n+ 5)Dn+1Cn−1

(n+ 4)dn+2dn+1

]

− Cn

dn+2

[
(n+ 6)Dn+2

(n+ 5)dn+3
− Dn−1

dn+1
− γ0

n+4β
1
n+4− γ1

n+4β
0
n+4

dn+3

]

+

[
hn
dn+2

(
hn+1

dn+3
− hn−1

dn+1

)
−
(
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

)
Cn−1

dn+2dn+1

]
.

(4.36)

Taking into account

s(2)
3 = hn+1

dn+3
+

hn
dn+2

+Bn+2 +

(
γ0
n+4− γ1

n+4

)
Cn

dn+2dn+3
, (4.37)

and from (4.21), (4.26), and (4.24), we have

Dn+1Gn+2

dn+3
+
Dn

(
Cn+1−dn+3Gn+1

)

dn+2dn+3
− (n+ 5)Dn+1Cn−1

(n+ 4)dn+2dn+3
= (n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)2
.

(4.38)

From (4.22) and (4.25), we have

[
(n+ 6)Dn+2

(n+ 5)dn+3
− Dn−1

dn+1
− γ0

n+4β
1
n+4− γ1

n+4β
0
n+4

dn+3

]

= 1
dn+3

{
γ0
n+4

(
β0
n+3−β1

n+3

)
+
(
γ0
n+4− γ1

n+4

)(
β0
n+4−β1

n+4

)−β1
n+3

(
γ0
n+4− γ1

n+4

)}
,

(4.39)
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and from (4.29) and (4.24), we have

hn
dn+2

(
hn+1

dn+3
− hn−1

dn+1

)
−
(
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

)

dn+2

Cn−1

dn+1

= Cn

dn+2dn+3

[
γ0
n+4

(
β0
n+3−β1

n+3

)−β1
n+3

(
γ0
n+4− γ1

n+4

)]− hn
dn+2

(
Bn+2−Bn+1

)
.

(4.40)

Then

s(1)
3,n+1− s(1)

3,n = s(2)
3

(
Bn+2−Bn+1

)− (n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)2− (
B2
n+2−B2

n+1

)

− Cn

dn+2dn+3

(
γ0
n+4− γ1

n+4

)(
Bn+2−Bn+1

)− hn
dn+2

(
Bn+2−Bn+1

)

= (
Bn+2−Bn+1

){
s(2)

3 − Cn

dn+2dn+3

(
γ0
n+4− γ1

n+4

)− hn
dn+2

−Bn+1

−Bn+2− (n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)}= 0.

(4.41)

That is,

s(1)
3,n+1 = s(1)

3,n
Denoted

:= s(1)
3 = constant . (4.42)

In the same way, using (4.27), we can write

s(0)
3,n+1− s(0)

3,n =
hn
dn+2

[
Dn+1

dn+3
Gn+2− Bn+2

dn+3
hn+1 +

Bn+1

dn+1
hn−1

]

+
CnBn+1

dn+2

[
(n+ 6)Dn+2

(n+ 5)dn+3
− Dn−1

dn+1

]

− Dn+1Dn

dn+2

[
(n+ 6)Dn+2

dn+3
− (n+ 5)Dn−1

dn+1

]

+
Bn+1Cn−1

dn+2dn+1

[
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

]− CnGn+1Gn+2

(n+ 5)dn+2dn+3

− Bn+2Cn

dn+2dn+3

[
γ0
n+4β

1
n+4− γ1

n+4β
0
n+4

]
+
DnCn+1Bn+2

dn+2dn+3

+
Cn−1GnGn+1

(n+ 4)dn+1dn+2
− hn−1DnGn+1

dn+2dn+1
− (n+ 5)Dn+1Cn−1Bn

(n+ 4)dn+1dn+2
.

(4.43)
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By using (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), and (4.29), we get

s(0)
3,n+1− s(0)

3,n =
(
Bn+2−Bn+1

)
hn

dn+2

[
Bn+2− hn−1

dn+1
+

(n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)
]

− hnBn+2

dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]

+
(n+ 5)Dn+1hn

(n+ 4)dn+2dn+3

[
(n+ 3)γ1

n+4− (n+ 2)γ0
n+4

]

+
Bn+1Cn

dn+2dn+3

[
γ0
n+4

(
β0
n+4 +β0

n+3− 2β1
n+3

)− γ1
n+4

(
2β0

n+4−β1
n+4−β1

n+3

)]

− (n+ 5)Dn+1Dn

dn+2dn+3

[
γ0
n+4

(
β0
n+4 +β0

n+3− 2β1
n+3

)− γ1
n+4

(
2β0

n+4−β1
n+4−β1

n+3

)]

+
Bn+1

dn+2dn+3

[
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

][
δ1
n+2

(
γ0
n+4− γ1

n+4

)
+dn+2γ

0
n+4

]

− CnGn+1

(n+ 4)dn+2dn+3

[
(n+ 3)γ1

n+4− (n+ 2)γ0
n+4

]− CnGn+1

dn+2dn+3

(
Bn+2−Bn+1

)2

− Bn+2Cn

dn+2dn+3

[
γ0
n+4β

1
n+4− γ1

n+4β
0
n+4

]
+
DnCn+1Bn+2

dn+2dn+3

+
Gn+1Gn

(n+ 4)dn+2

Cn−1

dn+1
− Gn+1Dn

dn+2

hn−1

dn+1
− (n+ 5)Dn+1Bn

(n+ 4)dn+2

Cn−1

dn+1

:=Qn,1 +Qn,2 +Qn,3 +Qn,4 +Qn,5,
(4.44)

where

Qn,1 :=
(
Bn+2−Bn+1

)
hn

dn+2

[
Bn+2− hn−1

dn+1
+

(n+ 5)Dn+1

dn+3

(
Bn+2−Bn+1

)
]

=
(
Bn+2−Bn+1

)
hn

dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]
,

Qn,2 :=− Bn+2hn
dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]
,

Qn,3 := Bn+1Cn

dn+2dn+3

[
γ0
n+4

(
+β0

n+3− 2β1
n+3

)− γ1
n+4

(
2β0

n+4−β1
n+4−β1

n+3

)]

− Bn+2Cn

dn+2dn+3

[
γ0
n+4β

1
n+4− γ1

n+4β
0
n+4

]− CnGn+1

dn+2dn+3

(
β0
n+4−β1

n+4

)2

+
Bn+1

dn+2dn+3

[
γ0
n+3β

1
n+3− γ1

n+3β
0
n+3

][
δ1
n+2

(
γ0
n+4− γ1

n+4

)
+dn+2γ

0
n+4

]

= Bn+1hn
dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]
,

(4.45)
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Qn,4 := (n+ 5)Dn+1hn
(n+ 4)dn+2dn+3

[
(n+ 3)γ1

n+4− (n+ 2)γ0
n+4

]− (n+ 5)Dn+1Bn

(n+ 4)dn+2

Cn−1

dn+1

− (n+ 5)Dn+1Dn

dn+2dn+3

[
γ0
n+4

(
β0
n+4 +β0

n+3− 2β1
n+3

)− γ1
n+4

(
2β0

n+4−β1
n+4−β1

n+3

)]

− DnGn+1

dn+2

hn−1

dn+1
+
DnBn+2Cn+1

dn+2dn+3

= DnGn+1

dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]
,

Qn,5 := Gn+1Cn

(n+ 4)dn+2

Cn−1

dn+1
− Gn+1Gn

(n+ 4)dn+2dn+3

[
(n+ 3)γ1

n+4− (n+ 2)γ0
n+4

]

=− DnGn+1

dn+2dn+3

[
γ0
n+4

(
γ0
n+3− γ1

n+3

)− γ1
n+3

(
γ0
n+4− γ1

n+4

)]
,

(4.46)

then

s(0)
3,n+1− s(0)

3,n =Qn,1 +Qn,2 +Qn,3 +Qn,4 +Qn,5 = 0, (4.47)

that is,

s(0)
3,n

Denoted
:= s(0)

3 . (4.48)
�

Now, we are going to study the case dn+2 = 0.

Theorem 4.5. When

dn+2 = 0
(

i.e., δ0
n+2 = δ1

n+2
Denoted

:= δn+2

)
, Cn �= 0

(
i.e., γ0

n+3− γ1
n+3 �= 0

)
,

En+2 := 1
δn+1

[
Cn−1Gn

(n+ 4)Dn
−hn−1

]
�= 0

(
i.e., β0

n+2−β1
n+2−

γ0
n+3− γ1

n+3

δn+2
Gn �= 0

)
, n≥ 0.

(4.49)

The polynomials Pn+3(x) (n≥ 0) satisfy a third-order linear differential equation with poly-
nomial coefficients of the form

F̂1,n(x)Ŝ2,n(x)P(3)
n+3(x) +

[
F̂1,n(x)V̂1,n(x)− F̂′1,n(x)Ŝ2,n(x)

]
P′′n+3(x)

+
[
F̂1,n(x)Ŵ1,n(x)− F̂′1,n(x)T̂1,n(x)

]
P′n+3(x)

− (n+ 3)
[
F̂1,n(x) +En+2F̂

′
1,n(x)

]
Pn+3(x)= 0, n≥ 0,

(4.50)
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where

F̂1,n(x) := (
γ0
n+3− γ1

n+3

)[(
x−Bn+1

)− (n+ 3)En+2
]

+
δn+3

n+ 4
, (4.51)

Ŝ2,n(x) := En+2

[(
β0
n+3−β1

n+3

)(
x−Bn+1

)
+
Gn+1

n+ 4

]

−
[(
γ0
n+3− γ1

n+3

)(
x−Bn+1

)
+

δn+3

n+ 4

][
γ0
n+2− γ1

n+2

δn+2

(
x−Bn) +

1
n+ 3

]
,

(4.52)

V̂1,n(x) := (n+ 1)
[(
γ0
n+3− γ1

n+3

)(
x−Bn+1

)
+

δn+3

n+ 4

]

+ (n+ 3)
(
γ0
n+3− γ1

n+3

)[γ0
n+2− γ1

n+2

δn+2

(
x−Bn

)
+

1
n+ 3

]

−En+2
[(
x−Bn+1

)
+ (n+ 2)

(
β0
n+3−β1

n+3

)]− Gn+1

n+ 4

− (
β0
n+3−β1

n+3

)(
x−Bn+1

)
,

(4.53)

T̂1,n(x) := (n+ 2)
γ0
n+2− γ1

n+2

δn+2

[(
γ0
n+3− γ1

n+3

)(
x−Bn+1

)
+

δn+3

n+ 4

]

−En+2
[(
x−Bn+1

)
+ (n+ 3)

(
β0
n+3−β1

n+3

)]
,

(4.54)

Ŵ1,n(x) := (
x−Bn+1

)
+ (n+ 3)

(
β0
n+3−β1

n+3

)
+ (n+ 2)En+2

− (n+ 2)2

(
γ0
n+2− γ1

n+2

)(
γ0
n+3− γ1

n+3

)

δn+2
.

(4.55)

Remark 4.6. (i) The proof of this theorem is analogous to Theorem 4.1.
(ii) The condition En+2 �= 0 is natural condition which appears in the construction of

(4.50).

Theorem 4.7. The polynomial Ŝ2,n(x) is of degree 2 and it is independent of n. Henceforth,
it will be denoted by Ŝ2(x).

Proof. From (3.7), note that

(
γ0
n+2− γ1

n+2

)(
γ0
n+3− γ1

n+3

)

δn+2

Denoted
:= γ = constant �= 0, n≥ 0, (4.56)

that is,

1(
γ0
n+3− γ1

n+3

) =
(
γ0
n+2− γ1

n+2

)

γδn+2
, n≥ 0, (4.57)
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then

Ŝ2,n+1(x)− Ŝ2,n(x)

= (
x−Bn+1

){
γ

[
δn+4

(n+ 5)
(
γ0
n+4− γ1

n+4

) − δn+2

(n+ 3)
(
γ0
n+2− γ1

n+2

) −Bn+2 +Bn

]

+
(
Bn+1−Bn+n

)
[
(
Bn−Bn−1

)− (
Bn+2−Bn+1

)−
(
γ0
n+2− γ1

n+2

)
Gn

δn+2

]

+
(
Bn+2−Bn+1

)(γ0
n+3− γ1

n+3

)
Gn+1

δn+3

}

+
Gn+1

n+ 4

[
(
β0
n+2−β1

n+2

)−
(
γ0
n+2− γ1

n+2

)
Gn

δn+2

]

+
Kδn+3

(n+ 3)
(
γ0
n+3− γ1

n+3

)
[

δn+4

(n+ 5)
(
γ0
n+4− γ1

n+4

) − δn+2

(n+ 3)
(
γ0
n+2− γ1

n+2

) +Bn−Bn+2

]

+

[
(
Bn+2−Bn+1

)2− Gn+2

n+ 5

][
(
β0
n+3−β1

n+3

)−
(
γ0
n+3− γ1

n+3

)
Gn+1

δn+3

]

=
(
ŝ(1)

2,n+1− ŝ(1)
2,n

)(
x−Bn+1

)
+
(
ŝ(0)

2,n+1− ŝ(0)
2,n

)
.

(4.58)

Since (from (3.5))

δn+4

(n+ 5)
(
γ0
n+4− γ1

n+4

) = δn+3

(n+ 3)
(
γ0
n+4− γ1

n+4

) +
(
Bn+2−Bn+1

)

+ 3
(
Bn+1−Bn

)
+

(
Bn+2− 2Bn+1 +Bn

)
Gn+1(

γ0
n+4− γ1

n+4

) ,

(4.59)

and from (3.6)

(
Bn−Bn−1

)− (
Bn+2−Bn+1

)−
(
γ0
n+2− γ1

n+2

)
Gn

δn+2
=−2γ−

(
γ0
n+3− γ1

n+3

)
Gn+1

δn+3
, (4.60)

then by using (3.7) (i.e., δn+2/(γ0
n+2− γ1

n+2)= δn+3/(γ0
n+4− γ1

n+4)) we get

ŝ (1)
2,n+1− ŝ (1)

2,n = 0
(

i.e., ŝ (1)
2,n

Denoted
:= ŝ (1)

2

)
. (4.61)

In the same way, by using (4.59), (4.60), and the following relation:

Gn+2

n+ 5
− (

Bn+2−Bn+1
)2 = Gn+1

n+ 4
+ 2

(
γ0
n+4− γ1

n+4

)

n+ 4
, (4.62)

we obtain

ŝ (0)
2,n+1− ŝ (0)

2,n = 0, (4.63)
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that is,

ŝ (0)
2,n

Denoted
:= ŝ (0)

2 . (4.64)

�

Now, we are going to study the case dn+2 = 0 and En+2 = 0. We start with the following
lemma.

Lemma 4.8. When dn+2 = 0, En+2 = 0 and Cn �= 0, n≥ 0, that is,

δ0
n+2 = δ1

n+2
Denoted

:= δn+2, γ0
n+2− γ1

n+2 �= 0,

(
β0
n+2−β1

n+2

)−
(
γ0
n+2− γ1

n+2

)

δ0
n+2

[
(n+ 4)γ1

n+3− (n+ 3)γ0
n+3

]= 0, n≥ 0,
(4.65)

then

β0
n+3 = n

[
(3n+ 7)γ+ 2b3

]
+β0

3, n≥ 0, (4.66)

γ0
n+3 = (n+ 3)

[
(3n+ 2)γ+ b3

][
n
[
(n− 1)γ+ b3

]
+

γ0
3

3
(
2γ+ b3

)
]

, n≥ 0, (4.67)

δn+3 = (n+ 3)(n+ 4)γ
[
n
[
(n− 1)γ+ b3

]

+
γ0

3

3
(
2γ+ b3

)
][

(n+ 1)
[
nγ+ b3

]
+

γ0
3

3
(
2γ+ b3

)
]

, n≥ 0,

(4.68)

where

γ =
(
γ0

2 − γ1
2

)(
γ0

3 − γ1
3

)

δ0
2

�= 0, b3 =
(
β0

3−β1
3

)
. (4.69)

Assume also that [(3n+ 1)γ + b3][(3n+ 2)γ + b3] �= 0, n ≥ 0, as well as that the initial
conditions are given by

β1
1 =

1
2

(
β0

1 +β0
0

)
, γ1

2 =
2
3

(
γ0

2 + γ2
1 + b2

1

)
,

β2
1 =

1
6

(
4β1

2 +β0
1 +β0

0

)
, γ1

3 =
1
4

(
3γ0

3 + γ0
2 + γ2

1 + 3b2
2 + b2

1

)
,

β3
1 =

1
12

(
9β0

3 + 7β1
2 +β0

1 +β0
0

)
, δ2 = 3

[
δ1 + γ0

2

(
β0

1−β1
0

)− 2
3
γ1

2

(
2β0

2−β0
1−β0

0

)]
,

(4.70)

where β0
0, β0

1, β0
2, β0

3, γ0
2 , γ1

2 , γ0
3 , and δ1 are arbitrary.

Proof. From (3.7), we get

(
γ0
n+1− γ1

n+1

)(
γ0
n+2− γ1

n+2

)= γδn+1 �= 0, n≥ 1. (4.71)
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Knowing that (4.65) can be written in the following form:

(n+ 3)
(
γ0
n+2− γ1

n+2

)(
γ1
n+3− γ0

n+3

)
+ γ1

n+3

(
γ0
n+2− γ1

n+2

)= δn+2
(
β0
n+2−β1

n+2

)
, n≥ 0,

(4.72)

then, from (4.71) we obtain

γ0
n+3

(
γ0
n+2− γ1

n+2

)= δn+2
[(
β0
n+2−β1

n+2

)
+ (n+ 4)γ

]
, n≥ 0,

γ1
n+3

(
γ0
n+2− γ1

n+2

)= δ0
n+2

[(
β0
n+2−β1

n+2

)
+ (n+ 3)γ

]
, n≥ 0,

(4.73)

that is,

γ0
n+3

[(
β0
n+2−β1

n+2

)
+ (n+ 3)γ

]= γ1
n+3

[(
β0
n+2−β1

n+2

)
+ (n+ 4)γ

]
, n≥ 0. (4.74)

Then (3.6) is written as

δn+2
[(
β0
n+1−β1

n+1

)− (
β0
n+3−β1

n+3

)]= γ1
n+2

(
γ0
n+3− γ1

n+3

)− γ0
n+3

(
γ0
n+2− γ1

n+2

)
, n≥ 0.

(4.75)

Thus, from (3.6), (3.7), and (4.73) we have

δn+2
[(
β0
n+1−β1

n+1

)− (
β0
n+3−β1

n+3

)]

= γ1
n+2

δn+2

δn+1

(
γ0
n+1− γ1

n+1

)− γ0
n+3

(
γ0
n+2− γ1

n+2

)

= δn+2
{[(

β0
n+1−β1

n+1

)
+ (n+ 2)γ

]− [(
β0
n+2−β1

n+2

)
+ (n+ 4)γ

]}
, n≥ 1,

(4.76)

then

(
β0
n+3−β1

n+3

)− (
β0
n+2−β1

n+2

)= 2γ, (4.77)

that is,

β0
n+2−β1

n+2 = 2(n− 1)γ+ b3, n≥ 1. (4.78)

Equation (3.3) is written as

β0
n+2−β0

n+1 = 2(3n− 1)γ+ 2b3, n≥ 2, (4.79)

then

β0
n+3 = n

[
(3n+ 7)γ+ 2b3

]
+β0

3, n≥ 0. (4.80)

In this case (4.74) is written as

[
(3n+ 1)γ+ b3

]
γ0
n+3 =

[
(3n+ 2)γ+ b3

]
γ1
n+3, n≥ 0. (4.81)
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Taking into account [(3n+ 1)γ+ b3][(3n+ 2)γ+ b3] �= 0, (3.4) gives

γ0
n+3

(n+ 3)
[
(3n+ 2)γ+ b3

] − γ0
n+2

(n+ 2)
[
(3n− 1)γ+ b3

] = 2(n− 1)γ+ b3, (4.82)

then we get (4.67), and from (4.71) we obtain (4.68). �

Remark 4.9. According to the lemma above, it easy to see that the coefficients β0
n+3, γ0

n+3,
and δn+2 are, respectively, polynomials in n with degrees exactly 2, 4, and 6. So, we con-
clude that the case of dn+2 = 0, En+2 = 0, and Cn �= 0, (n ≥ 0) is constituted by one se-
quence of polynomials, which we can consider as the canonical sequence.

Theorem 4.10. When dn+2=0, En+2=0, andCn �=0, n≥ 0, the polynomials Pn+3(x)(n≥ 0)
are solutions of the following third-order linear differential equation:

γA2(x)P(3)
n+3(x) +

(
b3− 4γ

)
A(x)P′′n+3(x)

− [
x−β0

3 + 6
(
b3− γ

)]
P′n+3(x) + (n+ 3)Pn+3(x)= 0, n≥ 0,

(4.83)

where A(x) := x−β1
2 + b2 + γ0

3/(3(2γ+ b3)), (2γ+ b3 �= 0).

Proof. In this case (4.16) and (4.17) are, respectively, written as

[(
γ0
n+2− γ1

n+2

)(
x−Bn

)
+

δn+2

n+ 3

]
P′′n+3(x)

− (n+ 2)
(
γ0
n+12− γ1

n+2

)
P′n+3(x)− δn+2P

′
n+2(x)= 0,

(4.84)

(n+ 3)Pn+3(x) +
{
δn+2

[(
β0
n+3−β1

n+3

)(
x−Bn+1

)
+
Gn+1

n+ 4

]

− (n+ 3)
(
γ0
n+3− γ1

n+3

)[(
γ0
n+2− γ1

n+2

)(
x−Bn

)
+

δn+2

n+ 3

]}
P′′n+3(x)

+ δn+2

[(
γ0
n+3− γ1

n+3

)(
x−Bn+1

)
+

δn+3

n+ 4

]
P′′n+2(x)

− (n+ 3)
{
δn+2

[
x−Bn+1

n+ 3
+
(
β0
n+3−β1

n+3

)]

− (n+ 2)
(
γ0
n+2− γ1

n+2

)(
γ0
n+3− γ1

n+3

)}
P′n+3(x)= 0.

(4.85)
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Differentiating (4.84) and eliminating P′′n+2(x) by substitution between this relation
and (4.85), we obtain

[(
γ0
n+3− γ1

n+3

)(
x−Bn+1

)
+

δn+3

n+ 4

][(
γ0
n+2− γ1

n+2

)(
x−Bn

)
+

δn+2

n+ 3

]
P(3)
n+3(x)

+

{
δn+2

(
β0
n+3−β1

n+3

)
[
x−Bn+1 +

δn+3

(n+ 4)
(
γ0
n+3−γ1

n+3

)
]

− (
γ0
n+2−γ1

n+2

)(
γ0
n+3−γ1

n+3

)
{

(n+ 3)

[
(
x−Bn

)
+

δn+2

(n+ 3)
(
γ0
n+2− γ1

n+2

)
]

−(n+1)

[
x−Bn+1+

δn+3

(n+4)
(
γ0
n+3−γ1

n+3

)
]}}

P′′n+3(x)

− {
δn+2

[
x−Bn+1 + (n+ 3)

(
β0
n+3−β1

n+3

)]

− (n+ 2)(n+ 3)
(
γ0
n+2− γ1

n+2

)(
γ0
n+3− γ1

n+3

)}
P′n+3(x) + (n+ 3)δn+2Pn+3(x)= 0.

(4.86)

Taking into account

(
γ0
n+2− γ1

n+2

)(
γ0
n+3− γ1

n+3

)= γδn+2, (4.87)

then this last equation is written as

[
x−Bn+1 +

(
γ0
n+4− γ1

n+4

)

(n+ 4)γ

][
x−Bn +

(
γ0
n+3− γ1

n+3

)

(n+ 3)γ

]
P(3)
n+3(x)

+

{(
β0
n+3−β1

n+3

)

γ

[
x−Bn+1 +

(
γ0
n+4− γ1

n+4

)

(n+ 4)γ

]
− (n+ 3)

[
x−Bn +

(
γ0
n+3− γ1

n+3

)

(n+ 3)γ

]

− (n+ 1)

[
x−Bn+1 +

(
γ0
n+4− γ1

n+4

)

(n+ 4)γ

]}
P′′n+3(x)

−
{

1
K

[
x−Bn+1 + (n+ 3)

(
β0
n+3−β1

n+3

)]− (n+ 2)(n+ 3)
}
P′n+3(x)

+
(n+ 3)

γ
δn+2Pn+3(x)= 0,

(4.88)
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taking into account
(
γ0
n+4− γ1

n+4

)

(n+ 4)γ
−Bn+1 = 4b3−β0

3 +
γ0

3

3
(
2γ+ b3

) ,

(
β0
n+3−β1

n+3

)

γ
− 2(n+ 2)= b3

γ
− 4,

(n+ 3)
(
β0
n+3−β1

n+3

)−Bn+1

γ
− (n+ 2)(n+ 3)= 6

(
b3−K

)−β0
3

γ
,

(4.89)

then we get (4.83). �

Remark 4.11. (a) When 2γ + b3 = 0, that is, γ0
3 = 0 and b4 = β0

4 − β1
4 = 0, the coefficients

of the recurrence relation are, respectively, given by

β0
n+3 = 3n(n+ 1)γ+β0

3, n≥ 0,

γ0
n+4 = 3(n+ 1)(n+ 4)

[
n(n− 1)γ2 +

γ0
4

12

]
, n≥ 0,

δn+4 = (n+ 4)(n+ 5)
γ

[
n(n− 1)γ2 +

γ0
4

12

][
n(n+ 1)γ2 +

γ0
4

12

]
, n≥ 0,

(4.90)

and then the differential equation (4.83) becomes

γA2(x)P(3)
n+3(x)− 6γA(x)P′′n+3(x)

− [
x−β0

3− 18γ
]
P′n+3(x) + (n+ 3)Pn+3(x)= 0, n≥ 0,

(4.91)

where A(x) := x−β0
3− 6γ+ γ0

4/12.
(b) Equation (4.83) admits one singularity of order 2 at finite distance.

Now, we are going to study the case Cn = 0.

Proposition 4.12. When Cn = 0, then necessarily γ0
n+2 = γ1

n+2, n ≥ 0. Moreover, γ0
n+2 =

γ1
n+2 = 0, n≥ 0, when dn+2 �= 0.

Proof. Indeed, Cn = 0⇔ γ0
n+3 = (δ0

n+2/δ
1
n+2)γ1

n+3.
In case (A) (i.e., dn+2 = 0), we have γ0

n+3 = γ1
n+3, n≥ 0.

In case (B), we have δ0
n+2/δ

1
n+2 = (n+ ρ+ 2)/(n+ ρ), then γ0

n+3− γ1
n+3 =−2γ0

n+3/(n+ ρ).
But, from (3.7) we have

[
n+ ρ+ 1

(n+ ρ)(n+ ρ− 1)
− 1
n+ ρ− 1

]
γ0
n+3δ

0
n+1 = 0, then γ0

n+3 = 0. (4.92)

In case (C), we have δ1
2n+1/δ

0
2n+1 = γ1

2n+2/γ
0
2n+2 = 1 and δ1

2n+2/δ
0
2n+2 = (n+ ρ2 + 1)/(n+ ρ2),

then γ1
2n+3− γ0

2n+3 =−γ0
2n+3/(n+ ρ2). But, from (3.7), we have, for n even (n= 2k),

δ0
2k+2γ

0
2k+3

k+ ρ2
= 0, then γ0

2k+3 = 0, (4.93)
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and for n odd (n= 2k+ 1),

γ0
2k+4

(
δ0

2n+2− δ1
2n+2

)= 0, then γ0
2k+4 = 0. (4.94)

That is, γ0
n+2 = 0, n≥ 0.

Similarly, in case (D), we show that γ0
n+2 = 0, n≥ 0.

In case (E), we have δ0
2n+2 − δ1

2n+2 = −δ0
2n+2/(n+ ρ2) and δ0

2n+1 − δ1
2n+1 = −δ0

2n+1/(n+
ρ3− 1).

Then γ0
2n+3 − γ1

2n+3 = −γ0
2n+3/(n + ρ2) and γ0

2n+4 − γ1
2n+4 = −γ0

2n+4/(n + ρ3). But, from
(3.7), for n even (n= 2k) we have

ρ3− ρ2(
k+ ρ2

)(
k+ ρ3− 1

)δ0
2k+1γ

0
2k+3 = 0

(
i.e.,

(
ρ3− ρ2

)
γ0

2k+3 = 0
)

, (4.95)

and for n odd (n= 2k+ 1) we have

ρ2− ρ3 + 1(
k+ ρ2

)(
k+ ρ3

)δ0
2k+2γ

0
2k+4 = 0

(
i.e.,

(
ρ2− ρ3 + 1

)
γ0

2k+4 = 0
)
. (4.96)

Therefore we get γ0
2k+3 = γ0

2k+4 = 0, or ρ2 = ρ3 and γ0
2k+4 = 0, or ρ2 + 1= ρ3 and γ0

2k+3 = 0.
In the first case the proposition is true.
In the case where ρ2 = ρ3 and γ0

2k+4 = 0, (3.4) gives for n even (n= 2k+ 2),

−2(k+ 1)γ1
2k+3 + (2k+ 1)γ0

2k+3 = (2k+ 3)
(
β1

2k+3−β0
2k+3

)2
(4.97)

knowing that γ1
2k+3 = (k+ ρ2 + 1)/(k+ ρ2)γ0

2k+3, then this last (4.52) can be written as

−(3k+ ρ2 + 2
)
γ0

2k+3 = (2k+ 3)
(
β1

2k+3−β0
2k+3

)2
, (4.98)

and for n odd (n= 2k+ 1), (3.4) gives

(
3k+ ρ2 + 4

)
γ0

2k+3 = (2k+ 3)
(
β1

2k+2−β0
2k+2

)2
, (4.99)

thus

(
3k+ ρ2 + 4

)(
β1

2k+2−β0
2k+2

)2
+
(
3k+ ρ2 + 2

)(
β1

2k+3−β0
2k+3

)2 = 0, k ≥ 0, (4.100)

and this last relation is satisfied:

(
β1

2k+2−β0
2k+2

)= (
β1

2k+3−β0
2k+3

)= 0, k ≥ 0, (4.101)

thus γ0
2k+3 = 0, and consequently γ0

n+2 = 0, n≥ 0.
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In the same way, we show that if ρ2 + 1= ρ3 and γ0
2k+3=0, then γ0

2k+4=0. Thus γ0
n+2=0,

n≥ 0. �

Proposition 4.13. The 2-classical polynomials sequences such that γ0
n+3 = γ1

n+3 = 0, for
n≥ 0, are 2-symmetric if β0

0 = 0 (i.e., β0
n = β1

n = 0, n≥ 1).

Proof. Indeed, (3.4) gives us β0
n+1 = β1

n+1 and consequently (3.3) gives β0
n+1 = β0

n, n ≥ 0.
That is, β0

n+1 = β0
0, n≥ 0. �

Remark 4.14. (a) When Cn=0 and dn+2 �=0, the sequences of polynomials are 2-symmetric
(if β0

0 = 0).
(b) The case Cn = 0 is constituted by five canonical sequences described in Proposition

3.7 (dn+2 = 0) and the four 2-symmetric sequences, respectively, denoted (A1.1) (with
γ0
n+3 = γ1

n+3 = 0), (B), (C), and (D).

Proposition 4.15. Each of the five canonical sequences of polynomials described in
Proposition 3.7 (i.e., when Cn = 0 and dn+2 = 0), satisfies a third-order linear differential
equation with polynomial coefficients of degree less than or equal to 1, where the coefficients

of P(3)
n+3(x) and P′′n+3(x) are independent of n:

(
b1b2x+ γ0

1b2− 1
2
δ1

)
P(3)
n+3(x)

− [(
b1 + b2

)
x− b1b2 + γ0

1

]
P′′n+3(x)

{
x+

[
n+ 3

2

]
b1 +

[
n+ 4

2

]
b2

}
P′n+3(x)

− (n+ 3)Pn+3(x)= 0,

(4.102)

where [n/2] is the integer part of n/2.

Proof. When Cn = 0, the coefficients of the equation R4,n(x), R3,n(x), R2,n(x), and R1,n(x)
simplify, respectively, to

R4,n(x) := (
β0
n+2−β1

n+2

)[(
β0
n+2−β1

n+2

)(
x−Bn+1

)
+

γ0
n+4

n+ 4

]
− δn+3

(n+ 3)(n+ 4)
,

R3,n(x) :=−
[(
β0
n+3−β1

n+3

)(
x−Bn+1

)
+

γ0
n+4

n+ 4

]

− (
β0
n+2−β1

n+2

)[(
x−Bn+1

)
+ (n+ 2)

(
β0
n+3−β1

n+3

)]
,

R2,n(x) := (
x−Bn+1

)
+ (n+ 3)

[(
β0
n+3−β1

n+3

)
+
(
β0
n+2−β1

n+2

)]
,

R1,n(x) :=−(n+ 3), where Bn = (n+ 4)β1
n+3− (n+ 3)β0

n+3.

(4.103)
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Table 4.2

Case Equations

(A1.1) P(3)
n+3(x) + γ0

1P
′′
n+3(x)− xP′n+3(x) + (n+ 3)Pn+3(x)= 0

(A1.2)

(
b1x+ b2

1γ
0
1 − 1

)
P(3)
n+3(x)− (

2b1x− b2
1 + γ0

1

)
P′′n+3(x) +

[
x− (n+ 3)b1

]
P′n+3(x)

−(n+ 3)Pn+3(x)= 0

(A1.3)
k1

2
P(3)
n+3(x) +

(
x+ γ0

1

)
P′′n+3(x)−

(
x+

[
n+ 4

2

])
P′n+3(x) + (n+ 3)Pn+3(x)= 0

(A1.4) P(3)
n+3(x) +

(
x+ γ0

1

)
P′′n+3(x)−

(
x+

[
n+ 3

2

])
P′n+3(x) + (n+ 3)Pn+3(x)= 0

Taking into account

b1 =
(
β0

2n+1−β1
2n+1

)
, b2 =

(
β0

2n+2−β1
2n+2

)
, γ0

n+2 = γ1
n+2, (4.104)

then using (3.14), (3.15), and (3.16) we obtain (4.102). �

Remark 4.16. Equation (4.102) is written, respectively, as shown in Table 4.2.

4.2. 2-symmetric solutions

Proposition 4.17. Each of the four sequences of 2-symmetric polynomials (i.e., when Cn =
0 and dn+2 �= 0) satisfies a third-order linear differential equation with polynomial coeffi-
cients. In each case, we give this equation (δ0

1 = 2).
(i) In case (A.1) (γ0

n+3 = γ1
n+3 = 0), the equation is written as

P(3)
n+3(x)− xP′n+3(x) + (n+ 3)Pn+3(x)= 0, n≥ 0. (4.105)

(ii) In case (B), the equation is written as

(
ρ2 + 1)P(3)

n+3(x)− x2P′′n+3(x) +
{
ρ2− (−1)n+1−

[
n+ 1

2

]}
xP′n+3(x)

+ (n+ 3)
{
ρ2 + (−1)n +

[
n+ 4

2

]}
Pn+3(x)= 0, n≥ 0.

(4.106)

(iii) In case (C), the equation is written as

(
ρ3 + 2)P(3)

n+3(x)− x2P′′n+3(x)−
{
ρ3 + (−1)n−

[
n+ 2

2

]}
P′n+3(x)

+ (n+ 3)
{
ρ3 + (−1)n +

[
n+ 3

2

]}
Pn+3(x)= 0, n≥ 0.

(4.107)
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(iv) In case (D), the equation is written as

[
x3− (

ρ2 + 1
)(
ρ3 + 2

)]
P(3)
n+3(x) +

(
ρ2 + ρ3 + 3

)
x2P′′n+3(x)

−
{([

n+ 5
2

]
+

1 + (−1)n+1

2
ρ2 +

1 + (−1)n

2
ρ3

)

×
([

n+ 3
2

]
− 1 + (−1)n

2
ρ2− 1 + (−1)n+1

2
ρ3

)
(n+ 2)

×
([

n+ 4
2

]
+

1 + (−1)n

2
ρ2 +

1 + (−1)n+1

2
ρ3

)}
xP′n+3(x)

− (n+ 3)
([

n+ 2
2

]
+ ρ3

)([
n+ 3

2

]
+ ρ2

)
Pn+3(x)= 0, n≥ 0.

(4.108)

Remark 4.18. In particular case (D.1), the equation is written as

[
4x3− (ρ+ 2)(ρ+ 5)

]
P(3)
n+3(x)− 2(2ρ+ 7)x2P′′n+3(x)− [

2n2− 6n− 8 + ρ2 + 3ρ
]
xP′n+3(x)

− (n+ 3)(n+ 2 + ρ)(n+ 5 + ρ)Pn+3(x)= 0, n≥ 0.
(4.109)

Corollary 4.19. From the above propositions (i.e., Cn = 0), the coefficient of P(3)
n+3(x) is

independent of n (a fortiori S3,n(x) is independent of n).

4.3. Particular cases

Remark 4.20. The particular case β0
n = β = constant, n≥ 0 (i.e., hn = β(δ1

n+2− δ0
n+2), Bn =

constant) is not a natural condition, and has been studied in detail in [13]. We conclude
the analysis concerning this case by saying that the latter not only contains the four 2-
symmetric sequences (if β = 0) but also the new no 2-symmetric sequence that follows
from (D.1), where the coefficients γ0

n+2 and δ0
n+2, n≥ 0 are given by [7]

γ0
n+2 =

(n+ 2)(n+ 1 + 2α)
(n+ 1 +α)(n+ 2 +α)

γ, n≥ 0,

δ0
n+2 =

(n+ 1)(n+ 2)(n+ 3α)
(n+α)(n+ 1 +α)(n+ 2 +α)

δ0
2 , n≥ 0,

(4.110)

when

α= ρ− 1
3

= λ− 1
2

, ρ = 2ρ2 = 2ρ3− 1, λ= γ0
2

γ1
2 − γ0

2
, (4.111)
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and where we put

γ = (α+ 1)(α+ 2)
2(1 + 2α)

γ0
2,

δ = α(α+ 1)(α+ 2)
6(3α− 1)

δ0
2 .

(4.112)

Proposition 4.21 [7]. When β0
n = constant = β and γ0

n+2 and δ0
n+2, (n ≥ 0) are given by

relation (4.110), the coefficients F1,n(x), S3(x), R1,n(x), V2,n(x), T2,n(x), and W2,n(x) of (4.3)
are

F1,n(x) := 3(3n+ 3α+ 10)δγx+ 27(n+ 4 + 3α)δ2 + 2(n+ 3)γ3,

S3(x) := 3
[− 4(x−β)3δ− (x−β)2γ2 + 18(x−β)δγ+ 27δ2 + 4γ3],

R1,n(x) := (n+ 3)(n+ 3 + 3α)
[
3(3n+ 6 + 3α)δF1,n(x)− (

6δx+ 2γ2)F′1,n(x)
]
,

V2,n(x) := 2α+ 3
2

S′3(x),

T2,n(x) := 6(n+ 1− 3α)δx2− (n− 6α)γ2x+ 9(n+ 2)δγ,

W2,n(x) := 3
{[

(n+ 1− 3α)(n+ 8 + 3α) + 2(n+ 3)(n+ 3 + 3α)
]
δx+ (n+ 2)(n+ 4 + 2α)γ2},

(4.113)

and the degree of R4,n(x) is exactly 4.

In conclusion, we have just shown that there are four types of linear third-order differ-
ential equations

R4,n(x)P(3)
n+3(x) +R3,n(x)P′′n+3(x) +R2,n(x)P′n+3(x) +R1,n(x)Pn+3(x)= 0, n≥ 0, (4.114)

having as solutions classical 2-orthogonal polynomials, namely,
(i) equation (4.3), when Cndn+2 �= 0, together with R4,n(x)= F1,n(x)S3(x),

(ii) equation (4.50), when dn+2=0 and CnEn+2 �=0, together with R4,n(x)= F̂1,n(x)×
Ŝ2(x),

(iii) equation (4.83), when dn+2 = 0, En+2 = 0, and Cn �= 0, together with R4,n(x) =
A2(x) (degA= 1),

(iv) equation (4.102), when dn+2=0 and Cn=0, together with R4,n(x)=B(x) (degB ≤
1),

(v) equations (4.105), (4.106), and (4.107), together with R4,n(x) = constant, and

(4.108), together with R4,n(x)= ˜S3(x), (deg S̃3 = 3).
Furthermore, the coefficients of (4.83) and (4.102) and the coefficients of the four-term
recurrence relations associated with the solutions of these equations are derived. Note
that the 2-symmetric cases have been completely exhibited.
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5. Examples

Several deep works were devoted to classical d-orthogonal polynomials and to type II
multiple orthogonal polynomials and many properties concerning theses polynomials
have been established.

For the type II multiple orthogonal polynomials, there is a rich bibliography [2–4, 20].
Here, we quote some classical 2-orthogonal polynomial sequences which were a sub-

ject of a deep study and whose generating functions and integral representations of the
linear forms £0 and £1 have been established [6–11].

Indeed, the sequence (A1.1) is the Hermite 2-orthogonal sequence [7]; the sequence
(A1.2) is the Laguerre 2-orthogonal sequence [8]; the sequence (D.1) is the Gegenbauer
2-orthogonal sequence [6]; the sequence (D.1) (where α=1) is the first kind Tchebychev
2-orthogonal sequence [11]; and the sequence (D.1) (where ρ = 4) is the second kind
Tchebychev 2-orthogonal sequence [10]

6. Conclusion

First, we enumerated ten classical 2-orthogonal sequences and derived the coefficients of
their recurrences (nine sequences for Cn = 0 and one for dn+2 = 0, Cn �= 0, and En+2 =
0). It remains to do the same thing for (dn+2 = 0 and Cn �= 0) and (Cndn+2 �= 0), which
constitutes the generalization Bochner’s result. This enumeration is probably realized by
using not only the system (3.3)–(3.8), but also by using the fact that the coefficient S3,n(x)

of P(3)
n+3(x) is independent of n. This topic will be studied in the near future.
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