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We construct the linear differential equations of third order satisfied by the classical 2-
orthogonal polynomials. We show that these differential equations have the following
form: R4,,1(3C)P£,3+)3(x)+R3‘,1 (x)P;),5(x)+Rp,, (%) Py 5 (x)+Ry 1, (x) Ppy3 (x) =0, where the coeffi-
cients {Ry ,(x)}k=1,4 are polynomials whose degrees are, respectively, less than or equal
to 4, 3, 2, and 1. We also show that the coefficient Ry, (x) can be written as Ry ,(x) =
F1 1 (x)S3(x), where S3(x) is a polynomial of degree less than or equal to 3 with coefficients
independent of n and deg(F),,(x)) < 1. We derive these equations in some cases and we
also quote some classical 2-orthogonal polynomials, which were the subject of a deep
study.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) satisfy a
hypergeometric-type differential equation of second order [5]:

o(x)y" (x)+7(x)y" (x) + Any(x) =0, where dego <2, degr <1,

n(n—1) (L.1)

Ap=— 5 o' —nt' #0, n=0.

These polynomials are the unique polynomial solutions of a second-order linear dif-
ferential equation of hypergeometric type [14].

The aim of this work is to generalize the results obtained in the standard orthogonality
to 2-orthogonality. We first look for the differential equations whose the solutions are
classical 2-orthogonal polynomials and we explicit them, where it is possible.

First, we recall some basic notions of the d-orthogonality, then we study the nature of
coefficients of recurrence relations satisfied by the classical 2-orthogonal polynomials se-
quences. We show afterwards that these polynomials are solutions of a third-order linear
differential equation with polynomial coefficients of degree less than or equal to 4, 3, 2,
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2 Orthogonal polynomials and differential equations

and 1, depending generally on #n. The main result is that the coefficient associated with
highest derivative can be written as the product of 2 polynomials of which one is of degree
< 3 and independent of n. The latter, will allow us not only to enumerate some polyno-
mial solutions, but also to explicit some ODEs. Of course, these equations generalize the
Sturm-Liouville equations.

The cases where the polynomial solutions are 2-symmetric orthogonal are completely
derived. Finally, we mention some examples of classical 2-orthogonal polynomials with
some of their properties.

The final goal being naturally to search for the analog theorem of Bochner, that is,
first, to enumerate all sequences of classical 2-orthogonal polynomials and afterwards, to
study their properties, in particular the representation of the pair of linear forms in each
case.

2. Preliminary notions

First, we recall some definitions and properties of the sequences of d-orthogonal polyno-
mials, without forgetting to mention however, that the d-orthogonal polynomials P, (n >
0) are a special case of type II multiple orthogonal polynomials R ,,), where the sequence
S (n) (n = 0) of multi-indices in N¢, with n = md + &, 0 < « < d — 1, m > 0, is defined by

Sn)=|m+1,m+1,....m+1L,mm,...,m]|, (2.1)

a times

and where P, (x) = R5(, (n=0) [1, 21].

Note that the multiple orthogonal polynomials are narrowly related to simultaneous
vectorial Pade approximation, to be more precise as Hermite-Pade approximation. In
particular, the type II multiple orthogonal polynomials R5;, # = (n1,n2,...,14), for the
measures {‘u]-};-i:l, that is, the monic polynomial R; of degree |1 | =n;+ny+ -« - +ng4
which satisfies the orthogonal conditions

j KR () = 0, k=0,Lcon;—1, j=1,2,....d (22)
Ak
(resp., the d-orthogonal polynomials with respect to the vector linear form & = (%,

...»¥%41)T) represent the common denominator of rational approximation of the d Stielt-
jes functions [3, 17, 19, 21]

du; .
filz) = Lj - zE N, j=1,2,....d, (2.3)
that is,
R;(2)fi(2) = Qy,j(2) =0(z "), |z| — o, j=1,2,...,d. (2.4)

Definition 2.1. Let {P,},>0 be a sequence of monic polynomials (i.e., P,(x) = x" + - - -).
Call the dual sequence of the sequence {P,},-0, the sequence of linear forms {£,} >0
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defined by
£n (Pm(x)) = <£n’Pm(x)> = 8n,m: m,n= 0, (25)

where (-,-) denotes the duality bracket between the vector space of polynomials % and
its algebraic dual space %".

Definition 2.2 [16, 21]. A sequence of polynomials {P,},>¢ is d-orthogonal with respect
to £ = (£0,£1,...,£4-1) 7 if it satisfies

£4(x"P,(x)) =0, n=md+a+1, m=0,
(2.6)
£a(x™Ppgia(x)) #0, m=0,0<a<d-1.

THEOREM 2.3 [16, 21]. Let {P,} =0 be a monic sequence of polynomials, then the following
statements are equivalent.

(a) The sequence {P,} = is d-orthogonal with respect to £ = (£9,£1,...,£4-1)".

(b) The sequence {Py} 1= satisfies a recurrence relation of order d+1 (d = 1):

Pm+d+l ( ﬁm-%—d m+d Z Yerd v m+d71—v(x)> m =0, (27)

with the initial data

Py(x) =1, Pi(x) = x - Bo,

(2.8)
Pu(x) = ( ,Bm 1 Z)’fn N va 15(x), 2=m<d,

where yo,,1 # 0, m > 0. (Regularity conditions.)
Remark 2.4 [12, 18]. This result generalizes the Shohat-Favard theorem.

Definition 2.5. The sequence {P,} > is said to be d-symmetric if it satisfies

Zik”) k=1,..d. (2.9)

P, (pkx) = piPu(x), n =0, where py = exp (m ,

THEOREM 2.6 [9-11]. For each monic d-orthogonal sequence { Py} =0, the following equiv-
alences hold.
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() {Pu}n=0 is d-symmetric.
(b) {Py} n=0 satisfies the recurrence relation

P,(x)=x", 0<n<d,
(2.10)
Pyidr1(x) = xPpra(x) — )’2+1Pn(x)> n=0.

Definition 2.7 [10]. A sequence of polynomials {P,} >0 (d = 1) is said to be “classical” if
the sequence of the derivatives is also d-orthogonal.

CoroLLARY 2.8 [9, 15]. When the sequence {Py},=o is classical d-orthogonal and d-
symmetric, then the monic sequence of derivatives {Q,}n=0 (i.e., Qu(x) = P, (x)/(n+1))
satisfies the following recurrence relation:

Qu(x)=x", 0<n<d,
. (2.11)
Qurar (x) = xQua(x) — 62+1Qn(x) with 82+1 #0,n=0.

3. Classical 2-orthogonal polynomials

Statement of the problem. In this work, we try to answer three main questions.
(i) Which type of differential equations have as solutions classical 2-orthogonal
polynomials?
(ii) Can we exhibit these differential equations?
(iii) What are these polynomials solutions?
For this, we consider a monic sequence of classical 2-orthogonal polynomials
{Pu(x)}n=0, such that the recurrence relations satisfied by the polynomials P,(x) and
P} (x) (n = 0) are given, respectively, by

Py(x)=1,  Pi(x)=x-p5,  Pix)=(x—B))Pi(x) -y},

(3.1)
Pn+3(x) = (.X _ﬁ2+2)Pn+2(x) - V2+2Pn+1(x) - 82+1Pn(x)) n= 01
with the regularity condition 89 # 0, n > 1, and
7 7 ’ 3 /
Pi(x) =1, Py(x) =2(x - B1), P3(x)=£[(x—/3§)P2(x)—y5],
(3.2)

n+3 ,
—Pn+4(x) ( ﬁn+3) n+3 yn+3pn+2 (X) n+2Pn+1('x)’ n =0,

with the regularity condition 8}, # 0, n > 1.

PrOPOSITION 3.1 [9]. The coefficients 85, L, y5, yL, 8, and 8}, satisfy the following finite
difference system:

(n+2)Bh —npl—(n+ 1Y, +(n—1)B = n=0, (3.3)

(n+3)ynia = (n+2)yn  nynn — (n—Dyn,
n+2 n+1

= (/3n+l n+1)2) n=0, (3.4)
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(n+4)8,,, — (n+3)85 n&iﬂ —(n-1)8,,
n+3 n+1

(3.5)
= )’2+2 (/52+2 +ﬁ2+1 - 2ﬁ111+1) - y;+2 (2ﬁ2+2 - /5;11+2 - ﬁ}aﬂ)a n=0,
n+1 (ﬁo /jn) n+1 (/371+2 ﬁn+2) ( n+l 6]’1l+1)( n+2 ﬁn)
(3.6)
= Y:L+1 (Y2+2 - Y:L+2) - 72+2 ()’2+1 - )’:ﬁl)) nx=l,
61(1)+2 (Y2+1 - )’:11+1) - 811+1 ()’2+3 - le1+3)
(3.7)
= Y:Hl (52+2 - 6r£+2) - Y2+3 (62+1 arlwl) nxzl,
6n+3(5n+1 8n+1) 6n+1 (8n+3 6n+3) nzl (38)
Proof. From (3.1) and (3.2), we get the relation
1 ’ ’ !
Pn+3(x) = mPnH(X) + (ﬁ2+3 - ﬁ}HS)PnH + (VSH - lel+3)Pn+2(x) (3 9)

+(8p2 = Opia) Pra (%), n=0.

Multiplying by x both hand sides of this relation and using once again (3.2), we get the
precedent system. O

Remark 3.2. We see that the determination of all the 2-orthogonal sequences goes
through the resolution of the system (3.1)—(3.8). Many authors have tried to solve it,
but up to now, its resolution is still giving many problems because it is nonlinear as well
as the number of unknowns is relatively high (six). Nevertheless, we will analyze the cases
where its resolution is complete. In fact, we have the following.

LEmMMA 3.3. Equation (3.8) admits the following as a unique set of solutions.
(A) 8y =0y n= 1.
(B) 83, = (n+p2)/(n—1+p2)8%, and 83,1 = 83,1, n > 1.
(C) 83pp1 = (n+p3)/(n—1+p3)8%,,, and 83, = 89, n > 1.
(D) 8}, = (n+p2)/(n—1+p2)8%, and 8}, = (n+p3)/(n—1+p3)8%,,1, n > 1, where
pa=—08%/(89—83), ps = —083/(89 — 83), and (p, and p5 & 7).

Remark 3.4. In the last case if we put p = 2p, = 2p5 — 1, then we obtain the important
particular case denoted by D1 and where

n+l+p
w1 = _1+P62+1, nz1l (3.10)
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Proof of Lemma 3.3. 8}, =80, ,, n > 1, is a trivial solution of (3.8).
In case, where there exists ng = 1 such that 8, ,, # (SSOH, then for ny = 2k (resp., np =
2ko+1), ko € N, (3.8) becomes

8gk0+3 (6;)](04_1 - é\%ko-#l) = 821k0+1 (6gk0+3 - 621kg+3) ?é 0 (3'11)
(resp., 8gk0+4(8gk0+2 - ‘gész) = 821k0+2(63k0+4 - (?21k0+4) # 0)'0
Thus 8} .1)e1 # Ok, 17410 ko = 1 (resp., 83 1142 # 03k +1)+2> Ko = 0), and therefore

83npr1 # 01> Mo = 1 (resp., 83,12 # 0%,,42> Mo = 0). Equation (3.8) can be written as

0 0
82n0+3 82n0+1 _ 1

0 1 T 50 1
82n0+3 - 82n0+3 82n0+1 - 82n0+1

0 0

62n0+4 _ 62n0+2 _ _1

resp., 30 ol 30 gl =
2np+4 2np+4 2np+2 2np+2

(3.12)

then

8 & no +

2n0+3 3 _ 1 _ 0T pP3 0

89 _ 5! - 89— ol —ng, nog=0 or 82ng+1 T a1+ 2ne+1> 10 = L
2n0+3 ~ O2ny+3 3~ 03 0 P3

no +p2

— 8 mg=1].
n0—1+p2 2np> 710 )

<resp., 03, =
(3.13)
(Il

LEMMA 3.5. In case (A) (i.e., 8L, = 69,1, n = 1), (3.7) admits the following four solutions.
(A1) y91+1 = le1+1’ nxl.
( ) y(Z)n = y%n and y(Z)nJrl - y%nﬂ = (Vg - Y%)((?(l)/ag) H:=1(82v/88v—1)) nx=l
(A3) ygnﬂ = y%nﬂ and ygn - y%n = (Vg - )/%)(1/6?) Hzlll(agvH/ng)’ (88 = 1)) nxl.
(A4) Y3, — by = 08 — YD) (/BN 1521 (89,11/63,) and 3,1 — Yhur = (3 — y3)(87/69)
X szl(agv/agv—l)’ nx=l.

LemMA 3.6 [9]. In case (A1) (i.e., o, = yhsy and 8Ly = 8%, n>1),

B3, =B +n(b1+3b:), n=0,

(3.14)
l[ggnﬂ :,8(1)+i’l(3b1+b2), n=0,
Pourn = Cn+ D[ +n(bi+03)], n=0,
(3.15)
Pouia =2(n+ D))+ (n+ )b} +nb3], n=0,
81 =(m+1)2n+1)[8Y +2nb3 (b, — b1)], n=0,
(3.16)

8r = (n+1)2n+3){8) +2(by — by) [ + (n+ 1bT]}, n=0,
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Table 3.1

Case 0n>0 Yo, n=0
(A1) Bo=0 Yo = (n+ 1)y}
(A1.2) B4 = 2nb, Yo = (n+1)(y) +nb})

Bowr =1 Poner = 2n+ 1)(n+ o 5 b )
(AL3) B, =3 Yoo = (n+1)(2n+ 8] — k1)

Boner =3n+2 Vowrr = (2n+ 1)(n+ 1{2%76?)

(A4 B = Poor = (1) 2+ Ky - )
(AL.5) See (3.14) See (3.15)

where B3, 3, 9, and & are arbitrary and by and b, are constants defined by

bim BB =S (BB, b= BBl GRB-R-f).  Ga7)

Proof. From (3.6) we have (% — BL) = (B%,, — Bhis), n > 0.
In particular for n = 2k,

(Boksz = Bagsa) = (B —Bo) = --- =B~ B3 = é(zﬁg - Bl -Bg) = ba, (3.18)

and forn =2k +1,

(Brs = Bokss) = (Bt = Boksr) = - =B = Pi = %(ﬁ? —Bg) =bu. (3.19)
Using (3.3), we get

2[(k+1)by —kby| = %, — %, n=0,
(3.20)
(2k+3)by — 2k+1)by = Sy — Pohsr» 1 =0,

By adding up term by term these last 2 relations and summing this last result, we obtain

the first relation of (3.14). The second relation of (3.14) is obtained in the same way.
Equations (3.15) and (3.16) are obtained similarly by using, respectively, (3.4) and

(3.5). O

ProrosiTioN 3.7 [9]. The case (Al) is constituted by the following five canonical classical
2-orthogonal polynomials.

(Al.l) by =b, =0.

(A1.2) by =b, #0.



8  Orthogonal polynomials and differential equations

Table 3.2
Case 8%,1,n=0(8=2) Initials parameters
0
(A1.1) 8%, =(n+ 1)(n+2)%2 B5 = 0; ¥ and &Y arbitrary
0

(A1.2) 8 (n+1)(n+ 2)% B5 = 0; b8} and y! arbitrary
(AL3) 81 = (n+1)(2n+1)(2n +67) by=1,B=0

) 8 =ki(n+1)(2n+3) 89 and k; = 89 — 29? # 0 arbitrary
(A14) 8 = (n+1)2n+1)8) bi=1,8=0

’ 8 = (n+1)(2n+3)(2n+k,) &Y and ky = 8 + 299 + 2 # 0 arbitrary
(A1.5) See (3.16) B5, bi, y1, and &} arbitrary

(A1.3) b1 =0and bz 9& 0.
(A1.4) bz =0and bl 7é 0.
(AI.S) bl % bz and blbz 7é 0.

Remark 3.8. In the precedent case (i.e., (A1)) the coefficients 9,y%,,, and &2, can be
written, respectively, in the simplified forms in Tables 3.1 and 3.2.

ProrosiTioN 3.9 [9]. There exist only four sequences of classical 2-symmetric 2-orthogonal
polynomials. The coefficients 80,1 and 8., (n > 0) are explicit in Table 4.1.

4, Main results

4.1. Differential equations. In this section, we will construct the differential equations,
whose solutions are classical 2-orthogonal polynomials, afterwards, we will give the na-
ture of these equations by the study of the coefficient associated with highest derivative.

Let us note that the polynomials enumerated in Proposition 3.7 and the 2-symmetric
solution polynomials will be completely exhibited (perfectly identified).

An analysis of a particular case (already studied) is done at the end of this section, as
well as the citation of some classical 2-orthogonal polynomials, which were the subject of
a deep study.

First, let us note

dpir =06, -8%,, n=0, By:=(n+4)Bls—(n+3)B,; n=0,
By =8}z — Oniofrss, 120, Gyi=(n+4)yl;—(n+3)yh; n=0,
[(n+4)5711+2 - (”+3)82+2]

Cy:= 6r11+2)’2+3 - 62+2))r11+3’ nz=0, ne= n+4a » nz0.
(4.1)

Then, we have the following result.
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Table 4.1

Case 8,.,n=0

(A) & = (n+1)(n+2)%?

1)(2 1
) 83n+1 = 4(’13-’;:-1—)(11;2 )(P2+ 1)8¢
(n+1)(2n+3)(n+p,) (py +1)80

0 _
Ounvz = (Bn+1+p,)(3n+4+p,)
(n+1)2n+1)(n—1+p3)
Gr—14ps) Bn2+p3) " s +2)00
©

_ (n+1)(2n+3)

0 0
Opir = 3n+2+ps (ps + 1)

(n+1)2n+1)(n—1+p;)
(Bn—14p3)(3n+2+p3) B3n+1+p,)
P (n+1)(2n+3)(n+py)
2T (Bn+1+py) (Bn+4+p,) (B3n+2+ps

B (n+1)(n+2)(n—1+p)
(D1) 01 = Bn-1+p)Bn+2+p)3n+5+p)

0 —
62n+1 -

&

(p2+1) (s +2)

6(2)n+l =
(D) 0

S (42 Y

60
(p+2)(p+5)7

THEOREM 4.1. When

Cndn+2 # 0) n=z O) (42)

the classical 2-orthogonal polynomials Py,.3(x) (n = 0) which satisfy a differential equation
are solutions of a third-order linear differential equation with polynomial coefficients of the

form

R4,n(x)P;(13+)3(x) +R3,n(x)P;1,+3(x) +R2,n(x)P;/1+3 (x) + Rin(x)Pyy3(x) =0, n=0, (4.3)

with
R4,n(x) = Fl,n(x)s3,n(x))
R3 1 (x) := F (%) Vou(x) = F{ ,(x)S3,0(x),
Ryun(X) := Fi () Wi n(x) = Fy (%) Ty, (),

. Sz hn-1 Cn1Gy , 8t
R“"(’C)"(””)dmz{[(x‘dnﬂ s a)Dydyn [T g, T2 )P
(4.4)
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and where

Fi(x) L _ hu Cu-1Gy
(n+ DDy~ m"[(" dur ) " i 0D

1
+ <8n+1 1) [Cn (-x_BnH) +(n+5)D”DnH]

dn+1
(4.5)
_ 8711+1 Cn quG
= |:dn+1 +(n+4) C,1x+(n+3)dn+1 (1+4)D, huoq
+ <3"“ + 1) [(n+5)DyDys1 — CuBoi1 ] := F{x+ F\),
n+1
= [ (- et ) Coc1 G . _ ) _DiGun
53’”(x)"[<x nﬂ>+<n+4)D dn+1][(x B"*”(" dn+2> drer ]
1 C,
—m[l) (x— Bn+1)+(n+5)Dn+1j|
X[Cn—l(.x_Byl)+(n+4)DﬂDﬂ—1]’
(4.6)

. hy Cn-1Gn % — il
Vz,n(x)—[<x dm) (114)D, dn+1:||:(dn+2+2> x—Bui1) — (n+2)(x dﬂﬂ)}

n D n
(i) [epnle-gi) -5
dn+1 n+2 n+2

1 C,
+ WW{(I’H— 1)Cyy [Dn(x —Bpy1) + (n+5)Dn+1}
Cn—l
+ (n+2)Cn[ D (x—By) + (n+4)Dn_1} }

(4.7)

L _ hnfl CnflGn 6r1z+2 _
Tz’”(x)"K" dn+1)+(n+4)Dndnﬂ][(dm“ Ge=Brn)

h
- (n+3)<x— dn+2):| (4.8)

(x - Bn+1) + (” + S)DnJrl] 5

1 Cy
- - 2)Choq | 22
" (n+4)dn+1dn+2 (n+ )C ! |:Dn
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Wl,n(x):=< ntl +2>[< nt2 ) (x—But1) — (n+3)<x— i )]
A1 dni2 dni2

hnfl Cn—IGn 4.9
) |:< dn+l ) i (” +4)Dndn+l :| ( )
(n+2)2Cn_1Cn

- (l’l + 4)Dndn+ldn+2 ’

—(n+2)

Proof. Differentiating (3.1) with n — n+ 1 and eliminating successively P, (x) and
P, 4(x) by substitution in (3.2), we get, respectively,

DyPpy4(x) = (dus2x = Ba) Ppy3(x) = 850 Pui3 (%) + CuPyin (x) = 0, (4.10)

(% = Bus1) Py (x) — (n+4)Ppia(x) — Gu1 Ppyy3(x) — (n+5)Dpy1 Py iy (x) = 0. (4.11)

Eliminating successively P;,,(x) and P, ,(x) by substitution between (4.10) and (4.11)
(because C,, # 0 by hypothesis and D, # 0), we obtain

[(l’l + 5)Dn#—l (dn+2x - hn) + CnGn+l ]P];+3 (X) + (I’I + 5)671,+2Dn+lpn+3(x)
(4.12)
- [Cn (X - Bn+1) + (n + S)DnDn+l]P;/1+4(x) + (1’1 +4)Cnpn+4(x) =0,

— (n+4)DyPyyq(x) + [(x - Bn+1) (dn+2x - hn) —DyGut ]P;l+3(x)

(4.13)
+ 6n+2 (x - Bn+1)Pn+3 (x) - [Cn (x - Bn+1) + (” + S)DnDn+1]P;z+2(x) =0.

Differentiating (4.11), (4.12), and (4.13), and eliminating successively P,/ ,(x) and
P;,.4(x) we get, respectively,

(8711+2 + dn+2) (x - Bn+1)P;z+3(x) + [(x — By ) (dn+2x - hn) - DnGn+l]P;,1,+3(x)

(4.14)
—[Cu(x = But1) + (n+5)DyDps1 | Pyliy(x) — (n+3)Dy P,y (x) = 0,
[(.X - Bn+1) (dn+2x - hn) - DnGn-%—l]P;l,-{-E}(x) - (Yl + 3)8rll+zpn+3(x)
+ [(6rll+2 + dn+2) (x - Bn+1) —(n+ 3)(dn+2x - hn)]P,,1+3(x) (4.15)

+(n+3)CyP,,(x) — [Co(x = Bps1) + (n+5)DyDyy1 |Pa(x) = 0
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We replace n by n — 1 and differentiate (4.12), that is,

[(” + 4)Dn (dn+1x hn 1) + Cn lGn] n+2( ) + (” +4)Dn(dn+1 + 6711+1)P;,1+2(x)
(4.16)
—[Cuo1(x—By) + (n+4)DyDy—1 Py 5(x) + (n+2)Cy_1 P5(x) = 0.

Taking into account d,4; # 0, then eliminating successively P;,,(x) and P},,(x) by
substitution between (4.16) and (4.15), we get, respectively,

- Fl,n(x)Pn+2 + {(}’l +4)D ( n+1 + dn+1) [(x - Bn+1) (dn+2x - hn) - DnGn+1]
+(n+3)Cy[Cyo1(x— By) + (n+4)D,—1D, ]} Py 5(x
+ {(1’1+4)Dn(6i+1 + dn+1) [((S,IHZ +dn+2) (X — Bn+1) — (1’1+ 3) (dnJer — hn)]

- (n+2)(n+3)cn—lcn}P;’1+3( (7’l+3)(1’l+4)D 8n+2(81+1 +dn+1) n+3(x) = 0)

(4.17)
’ ’ Fl,n(x) ’
S3,u(X)Pyy3(x) + To,n () Ppys (x) + (n+4)Dydyerdes Py (x)
(4.18)
_ 8n+2 _ hnfl Cn—lGn _
(“”%J@ %J*mmm%l%m”a

Then differentiating (4.18) and eliminating P;,,,(x) by substitution in (4.17) we get

Fln( ) ( )
( +4)D dn+1dn+2 n+2

83, (X)P3 (%) + Vi () Plfy3 (%) + Wi (x) Pl () +
(4.19)
_ 8n+2 8n+1 _
(n+3)dn+2 (dn+1 +2 |P,y3(x) = 0.

Finally, (4.3) is obtained by eliminating P;,,, (x) by substitution between (4.18) and (4.19).
|

Before giving the main result of this work whose proof contains cumbersome calcula-
tions, we give the following lemmas.

LEMMA 4.2. The system (3.3)—(3.8) is equivalent to

By—Bu1=Bois = Prias (4.20)
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Gy
n+3

(n+ 1))’3+2 - ”)’;11+2
n+2

>

= (By—B,1)’+

(n+6)Dn+2 anl 1 0 0 1
= + n nra T Pn
(1 5)drs ~ oy T s e Brat By

- 2/5:11+3) - Vrlu+4 (2ﬁ2+4 - ﬁ:1+4 - 2/3i1+3) }a

0 g1y S Ot
( n+2_/—))n) - d (BH—Z_BH—3) - (Bn_Bn—l)

n+1 dn+l
1
o {02 (Vo1 = Vi) = Paert sz = Yae2) b

Coot Opia(Viea = Yiva) + Voradniz

dn+1 dn+3

0 1
8n+3 _ 6n+1

dn+3 dnﬂ .
LEmMMA 4.3. Also, the following relations hold:

Cn_dn+2Gn _ 0 1
(f’l+4)Dn Yn+3 = Vn+3o

C.B, —h,G
W = Y2+3ﬂ}1+3 - yr11+3/52+3)

Byt _B _ (n+5)Dy4
dn+3 m dn+3

(Bn+2 - Bn+1)>

hn+l hnfl _ V2+4 (V2+3 — Vr11+3) — )/,11+3 ()’2+4 B V:11+4)

dn+3 dn+1 dn+3

- (Bn+2 - Bn+1)

0
8n+3

dn+3

= ( 2+4 _ﬁ711+4) + {(Bn+2 _Bn+1) - (Bn _anl)}-

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

THEOREM 4.4. The polynomial Sz ,(x) is of degree 3 and it is independent of n. Henceforth,

it will be denoted by S5(x).
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Proof. We have

0o .1
S3,n(-x) _ X3 _ |:(Yn+3 Yn+3)Cn71 + i + E +Bn+1:|-x2

dn+2dn+1 dn+2 dn+1
+ |:Bn+1hn —D,Gpiq + hn—l (i +Bn+1) + (Y2+3/371;+3 - YI11+3ﬁ2+3)Cn*1
dn+2 dn+1 dn+2 dn+2dn+1

+ ()/2+3 - Y},+3)Bn+lcn71 _ CiDyy (n+5)Dy11Cpy :|
dpiadpi dpiadpi (n+4)dy2dn

1
+
(T’l + 4)Dndn+2dn+l

{[Bnﬂhn - DnGnH] [CnHGn —(n+ 4)Dnhn—l]

- [(”+4)DnDn71 - Cnlen] [(”"'S)DnDnH - CanH]}

2 1 0
i= X0 4 SR Syx S

(4.30)
Let us prove that 3 ,+1(x) — S3,,(x) = 0, that is,
2 2 1 1 0 0
Sl = Sim =0 S =S =0, Siyu = s =0, (4.31)
Indeed
s _ @ (Y4 = Yiea) G -~ (Y3 = ¥ie3) Cuma
3,n 3,n+1 dn+2dn+3 dn+2dn+]
(4.32)
hn+1 hn—l
+ - + (Busa — Bus1).-
( dn+3 dn+1 ( e n+1)

Replacing C,,—1/dy+1 and hy41/dyss — hy—1/dys1 by using (4.24) and (4.26), respectively,
we obtain

@ _ @ 1
S$3n T S3n41 T d

" (Y94 (Y03 = Vor3) = Vs (Vora — Visa)

+ 82+3 (ﬁg+2 - ﬁ}ﬁ—Z) - 6é+3 (/32+4 - ﬁ;11+4)] (4'33)
- (” +5)(Bn+2 - Bn+1) - (Bn+1 - Bn) - (i’l+2) (Bn - anl)-
Now, using (4.23), we get

2 2
S s =0, (4.34)
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that is,

Denoted
sg2,), = sg?,zﬁ e 552) = constant. (4.35)

In the same way, we have

(1) (1
S3,n41 — 53,

)
+ B +2 +
" " dn+2 dn+3

_ |:hn+l + hn ()’2+4 B )’:1+4)Cn
dn+3 dn+2

}Bmz — (Byia—Bryy)

hn hn—l ()’2+3 - V;11+3)Cn—1
- + Byl + B
|:dn+2 " dn+1 i dn+2 dn+1 el

_ |:Dn+1Gn+2 + Dn (Cn+l - dn+3Gn+l) (7’1 + S)DnHCnfl :| (4 36)
dni3 dni2dnys (n+4)dyi2dnn '

Cy [(” +6)Dpi2 _ D, _ yg+4ﬁrl1+4 - y}1+4/32+4:|
dpiz | (n+5)dnys dni1 dnis

dn+2 dn+2 dn+1

n [ hy, (hn+1 hnl) _ (ynr3Buss = lez+3,32+3)cnl]
dn+3 dn+1 ’

Taking into account

2 _ hui + hy 4Byt (}’2+4 - V;11+4)Cn,

4.37
’ dn+3 dn+2 dn+2dn+3 ( )

and from (4.21), (4.26), and (4.24), we have

Dy1Gua  Du(Cst = dn3Gnr1) — (1+5)DpiCoy _ (1+5)Diiy (Buss — Byor)?
dn+3 dn+2dn+3 (i’l +4)dn+2dn+3 dn+3 " Vl+(4 38)

From (4.22) and (4.25), we have

(n+6)Dyi2  Dy_y _ Y2+4/3);11+4 - V}L+4/32+4j|
(n + S)dn+3 dn+1 dn+3

1
= des {72+4 (ﬁ2+3 - /5111+3) + (Y2+4 - V;11+4) (/32+4 - ﬂ:;+4) - [331+3()’2+4 - lez+4) })
(4.39)
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and from (4.29) and (4.24), we have

ha (hn+l hnl) _ (yn3Bhss = YursBnsz) Cooa

dn+2 dn+3 dn+1 dn+2 dn+1
C” 0 0 1 1 0 1 th
= drades [Vn+4( n+3 _ﬁn+3) _ﬁn+3(yn+4 - yn+4)] - doia (Bn+2 - Bn+1)-
n n n
Then
n+5)D 2
Sg}r)wl - 55121 = 552) (Bn+2 = But1) — (145D P D1 (But2 —But1)” — (Bl — B
n+3
C h
- ﬁ:ilﬁ (Yora = Viia) (Buiz = Bui1) — TL (Bui2 — Bui1
n n n

®) Cn 0 1 hy
= (By42 — By, - - - ———B,
(Bus2 +1) {53 dirdes ()’n+4 )’n+4) dor +1

—Bpio— (n-{—;& (Bn+2 - Bn+1)} =0.
n+3
That is,
sgf,iﬂ = gl,i Dengted sgl) = constant.
In the same way, using (4.27), we can write
= sth= e B Bt B |

Can+1 |: (11 + 6)l)n+2 Dn—l :|
(n+5)dums  dun

dn+2

_ Dy1D, |:(n+6)Dn+2 _ (n+5)Dn—1:|
dn+2 dn+3 dn+1

Bn+lcn—1 Cn Gn+1 Gn+2

0 | B | 0 _
+ dn+2dn+1 [YW+3/3n+3 Yn+3[;rl+3] (1’l+5)dn+2dn+3

_ Bn+2 Cn
dn+2dn+3

DnCn+1Bn+2

0 1 A | 0
[YnraBisa = VneaBrsal + drirdes

Ci-1GuGpi hu-1D,Gpi1 _ (n+5)Dy11Cy-1By,

2
n+l

)

+ —
(I’Z + 4)dn+1dn+2 dn+2dn+l (1’1 + 4)dn+ldn+2

)

(4.40)

(4.41)

(4.42)

(4.43)
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By using (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), and (4.29), we get

B..r —B,.1)h h,— n+5)D
(0) (M’M)H[Bm.z n 1-|—( ) ntl (Bn+QBn+1):|

(0)
N —S =
3,n+1 3,n dn+2 dnﬂ dn+3
h,B
d 12;:2_3 [)’24—4()’24—3 - )’r11+3) - Vrl1+3 (Y2+4 - lel+4)]
(n + 5)Dn+lhn 1 0
T~ 3 — 2
(1’1+4)dn+2dn+3 [(”+ )))n+4 (7’1+ ))}n+4]
Bn+1Cn 0 0 0 1 1 0 1 1
Y dodonn [Vova(Boia + Boss — 2Biis) — Viea (2Boia — Bhia — Bris)]
(n+5)D,4+1D
T (B Bhus = 2Bhus) = Vs (2B = Bhsa = Bh)]
n n
B
+ dn+:;:1+3 [)’2+3/3;11+3 - y111+3ﬂ2+3] [Srlwz ()’2+4 - )’rll+4) + dn+2y2+4]
CnGrit 1 0 CuGuni 2
T s dd 3 —(n+2 - By —B
(n+4)dpradnss [(n+ Vs — (n+ )Yn+4] drordy s (Buia 1)
_ LZC" 0 1 _ .1 0 D, Cyi1Bui2
dn+2dn+3 [le+4ﬁn+4 yn+4ﬁn+4] + dn+2dn+3
Gn1Gn Gyt -~ Gu1 Dy hyy _ (n+5)D,1B, Cp—q
(7’1 + 4)dn+2 dn+l dn+2 dn+1 (l’l + 4)dn+2 dn+1
= Qn,l + Qn,z + Qn,3 + Qn,4 + Qn,S)
(4.44)
where
Bn - Bn hn hn, n+5 Dn
Q1= M B,y — Ly ( )Dui1 (Byss — Bus1)
di’l+2 dVl+1 di’l+3
(Buss — Bu1 )
= i DO =) = aea Ohes = )
Bn hn
Qnai=— d +Z; - [)’2+4()’2+3 - y114+3) - y}l+3 ()’2+4 - y}l+4)])
n n
(4.45)

B, C,
Qn,3 = d :Zld B [ 2+4( +/391+3 - 2ﬂ31+3) - le1+4(2/32+4 - IBiz+4 - /5514-3)]

CnGn+1 ( 0 1 )2

_ Bn+2cn 0 1 1 0 B B
dn+2 dn+3 [Yn+4ﬂn+4 Yn+4ﬁn+4] dn+2dn+3 n+4 n+4
B
+ y ﬂ; (Y0585 = yhaBla ] [0k (Yors = Vhis) + dns2ylia]
n+28n+3
Bui1h
_ _Dnt1fin [Y2+4()’2+3 - y},+3) - )’3:+3()’9,+4 _ )’}z+4)],

dn+2 dn+3
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(” + S)Dn+1Bn Cn—l

L (n+5)Dys1hy 1 0 7_
Qut = (e Dy addyey (T = Ot Dneal = =

18

( 2+4 +ﬂ9¢+3 - 2ﬂ3¢+3) - )’rll+4 (2ﬂ2+4 - /3);11+4 - ﬂ}:+3)]

_ (n+5)Dn+1Dn [ 0
dn+2dn+3 i
_ DnGn+1 hn—l + Dan+2Cn+l
dn+2 dn+l dn+2dn+3 (4 46)
D,G '
= o [Y2+4()’2+3 - le1+3) - )’rll+3 ()’2+4 - )’rll+4)]’
dn+2dn+3
Gn+1 Cn Cnfl Gn+l Gn 1 0
- —(n+2
(i’l n 4)dn+2dn+3 [(i’l + 3))/n+4 (I’Z + )Yn+4]

A5 = o D) dues dont

[)’2+4 (Y2+3 - leﬁ-S) - Yr11+3 (Y2+4 - Vrl1+4)]:

_ DnGn+1
dn+2dn+3
then
© (0 _ B
S341 — S3n = Qu1+ Qu2a+ Qu3+ Quat+Qus =0, (4.47)
that is,
(4.48)

(0) Denoted ()
S3, = S3 .
O

Now, we are going to study the case dy1» = 0.

THEOREM 4.5. When
D d 1
1 enote 8n+2>’ C,#0 (l-e-’ )’2+3 - yrlz+3 # O)’

dua=0 (ie, 8% =8l
0o .1
Ynes ZYnis 5 0)) "> 0.

1 Ci1Gn ] ( o _pl
Epin:= . [7(’1 4D, a1 | #0  ie, Bois — Psa Sy
(4.49)

The polynomials P,.3(x) (n = 0) satisfy a third-order linear differential equation with poly-

nomial coefficients of the form

Fun(x)80, () PE) () + [Fr () Vi () = By ()80, () 1Py ()
(4.50)

+ [Frn () Wi (x) = F () T10 () ] Py (x)

— (4 3)[Fin(x) + EniaF} ,(0)[Pras(x) =0, n=0,
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where
N O
Fia(x):= ()’2+3 - y;11+3) [(x = Bus1) — (n+3)Epa] + n—-:il, (4.51)
S2n() 1= Bnia | (Bhss = Bhes) (6 = Bur) + 22
2 (X) 1= Epy2 n+3 n+3 n+l n+4a
. (4.52)
s — 1
B 0.1 _ nt3 || Ynt2 = Vnr2 o
|:(Yn+3 )}n+3)(x Bﬂ+1)+n+4:||: 8n+2 ( B )+ +3:|
N On
Vin(x):=(n+1) [(V2+3 - Vrl1+3) (x _BV!H) + n—_{j]
V0+2 — V1+2 1
+(1+3) (s~ o) | 2222 (e )+ ]
n+2 n (4.53)
— Epea[ (= Buet) + (n42) (B, — Bl )] — 21
n+2 n+1 n+3 n+3 n+4
- (/32+3 - ﬁ}1+3) (x — By ))
T Y2+2 - )’rlt+2 0 1 O3
Ty n(x) = (”+2)67 [()’n+3 ~ Yns3) (X = Bui1) + 7n+4]
n+2 (454)
- En+2[(x - Bnﬂ) +(n+3) ( n+3 ﬁn+3)]
WLn(x) = (x - Bn+1) (n+ 3)( n+3 ﬁfl1+3) +(n+2)Ep2
(4.55)

)2 ()’2+2 B )’}l+2) (Y2+3 _ Y;+3) )

—(n+2
( 6n+2

Remark 4.6. (i) The proof of this theorem is analogous to Theorem 4.1.
(ii) The condition E,, # 0 is natural condition which appears in the construction of
(4.50).

THEOREM 4.7. The polynomial 8, ,,(x) is of degree 2 and it is independent of n. Henceforth,
it will be denoted by §2(x).

Proof. From (3.7), note that

(V2+2 - Vr11+2) ()’2+3 - le1+3) Denoted

y = constant # 0, n >0, (4.56)
6n+2

that is,

1 _ ()’2+2 - Y1£+2)
(y91+3 - Vrlt+3) Y012 ’

n=>0, (4.57)
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then

Sonr1 (%) = Sy (%)

8n+4 8n+2 :|
=\X— Bn - - Bf’l +Bn
( +1){y|:(”+5)()’2+4_)’51+4) (”+3)()’2+2 _)’}z+2) "

(U | G
+ (Bnﬂ - Bn+n) |:(Bn - Bn—l) - (Bn+2 - Bnﬂ) - (yn+26—y:+2)n:|
n+

+ (Bn+2 - Bn+1)

()’2+3 - Y;+3) G }
8n+3

Gui1 (Y2+2 — le:+2) Gy
+ n+4 |:( n+2 ﬁn+2) 8n+2

+ K6n+3 |: 6n+4 _ 6n+2
(n+3) ()’2+3 - Yr11+3) (n+5) ()’2+4 - )’rll+4) (n+3) (y91+2 - yrl1+2)

0o _ .1
+ |:(Bn+2 Bui1) — Gn2 :| n+3 ﬁn+3 (Vn+3 Yn+3) Gu1 ]

6n+3
<§(2121+1 §§1,1)(x Bn+1) (ggoﬂ §(20)

+ Bn - Bn+2:|

(4.58)
Since (from (3.5))
8n+4 8n+3
= + (By+2 — Bus1)
(n+5)()/2+4 - Y711+4) (n+3) ()’2+4 _)’;11+4) " o
(4.59)
Byi» —2B,1 +B
+3(Bn+l _Bn) + ( n+2 - n+l - n)GnJrl’
(Yn+a = Vnea)
and from (3.6)
0 _ 41 0o _ .1
(By = Bu-1) — (B2 — Bui1) — (s = yu2) G _ -2y — (Yo y””)G““, (4.60)
8n+2 8Vl+3
then by using (3.7) (i.e., 8ns2/ (Y042 — Yhiz) = Ones/(Yois — Yhia)) We get
§2(,iz)+1 Sz(i;) =0 (1 e, gz(i,) Detioed 5! )>- (4.61)
In the same way, by using (4.59), (4.60), and the following relation:
Gui2 2 G ()’91+4 - )/:,4.4)
n+5 (Bn+2 Bnﬂ) - n+4 +2 n+4 > (4-62)

we obtain

~ (0 0
52(,n)+l 52(;1) =0, (4.63)
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that is,
A D d A~
0 Denoted o) (4.64)
O

Now, we are going to study the case dy;» = 0 and E,;» = 0. We start with the following
lemma.

LEmMA 4.8. When dyyr =0, Epyr =0and C, # 0, n > 0, that is,

Denoted

52+2 = 6rll+2 =" Ons )’2+2 - lel+z #0,
(YO+2 — Y1+2) (4'65)
( 2+2 _ﬂ:wz) - W[(”""L)V}ﬁ-s - (”+3)Y2+3] =0, nx=0,
then

B =n[Bn+7)y+2bs]+B3, n=0, (4.66)

0

0 _ _ V3
Yn+3—(”+3)[(37’l+2))’+b3] |:1’l[(}’l 1)V+b3]+3(2y+b3)]) YlZO, (467)

Opiz = (n+3)(n+4)y[n[(n —1)y+bs]

s ][(n+l)[ny+bs]+%]’ n=0,

32yt 2y +b;
(4.68)
where
0 1V(10 _ 1
y:()’z y2) (45 )’3)%0, b3=(ﬁ(3)—/3§)- (4.69)

8

Assume also that [(3n+ 1)y +b3][(3n+2)y+bs] # 0, n = 0, as well as that the initial
conditions are given by

1 2
Br=5Bi+Bo),  y2=30+yi+bi),
1 1
Bi= @B +Bi+Bs),  y3= (395 +y2+yi+3b3+b}),
1 2
Bi= S OB 7B+ B+, =301+ )2(8 — )~ 3rA2B - B - D) .
(4.70)

where B3, B3, B3, B3, 5, y3, ¥3, and &, are arbitrary.

Proof. From (3.7), we get

(Vo1 = Voe1) (Vo2 = Vo2) = POus1 #0, n=1. (4.71)
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Knowing that (4.65) can be written in the following form:

(n+ 3)(V2+2 - yrll+2) (yrll+3 - Y2+3) + y;11+3(y2+2 - y;11+2) = On+2 (/-’)9:+2 - ﬁ}HZ)’ n=0,
(4.72)

then, from (4.71) we obtain
Yoes (Voo = Yasa) = Oni2[(Bosy — Bria) + (n+4)y], n=0,
iz Vo2 = Vuez) = Ona[(Biva = Braa) +(n+3)y], n=0, (4.73)
that is,

Yozl (Boiz = Bhsa) + (1 +3)y] = yus[ (Boiy — Phia) +(n+4)yl, n=0. (4.74)

Then (3.6) is written as

6n+2[(/32+1 _ﬂgﬁl) - ( n+3 ﬁn+3)] = y111+2 ()’2+3 - )/,11+3) - )’24-3()’24-2 - )’,11+2), n=0.

(4.75)
Thus, from (3.6), (3.7), and (4.73) we have
Szl (Bhsr = Bust) = (s = Buss)]
= Vhea g Ofhr = Vo) = s 0Bz = V) (476
= Sna {[(Bher = Brat) + (n+2)y] = [(Braz = Bria) + (n+4)yl}, n=1,
then
(Bhss = Bnss) = (Bhaa = Brsa) = (4.77)
that is,
0 —Plia=2(n—1)y+bs, n=>1. (4.78)
Equation (3.3) is written as
s = Bl =203n—1)y+2bs, n=2, (4.79)
then
By =n[(Bn+7)y+2bs]+B3, n=0. (4.80)

In this case (4.74) is written as

[(Bn+1)y+bs]yds =[(Bn+2)y+bslyl.s, n=0. (4.81)
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Taking into account [(3n+ 1)y +b3][(3n+2)y+bs] # 0, (3.4) gives

0 0
Vu+3 _ Vn+2 _ _

n+3)[Gn+2)y 4] (nr2)[Gn-yrby] 2"~ Dr+bs (4.82)

then we get (4.67), and from (4.71) we obtain (4.68). O

Remark 4.9. According to the lemma above, it easy to see that the coefficients 9,5, 5.3,
and 8, are, respectively, polynomials in # with degrees exactly 2, 4, and 6. So, we con-
clude that the case of dy42 = 0, Eyq2 =0, and C, # 0, (n > 0) is constituted by one se-
quence of polynomials, which we can consider as the canonical sequence.

TaEOREM 4.10. When dy2 =0, E,2 =0, and C, #0, n > 0, the polynomials Py3(x) (n > 0)
are solutions of the following third-order linear differential equation:

yA2(x)P) (x) + (bs — 4y) A(x)P,5(x)

(4.83)
—[x=BS+6(bs — ) |P)5(x) + (n+3)Pyi3(x) =0, n=>0,
where A(x) := x — Y+ by +y3/(3(2y + b3)), 2y +bs # 0).
Proof. In this case (4.16) and (4.17) are, respectively, written as
0 1 6ﬂ+2 ’r
(Vn+2 - yn+2) (x - Bn) + nt3 Pys(x)
(4.84)

— (n+2) (Vo112 = Ynr2) Pras (%) = 8,42Ppn(x) = 0,

Gn+1 ]

(n+3)Ppys3(x) + {6n+2 [(ﬂ2+3 _/3;11+3) (x—Bus1) + ntd

6" rr
- (n+ 3) ()’2+3 - y;ﬂ+3) [(y2+2 - Yiz+2) (x - Bn) + n_:ZS]}PnH(x)

61’1 44
+ 6n+2 [()’2+3 - le1+3) (x - Bn+1) + n _:Z]sz(x)

x— By
n+3

—(l’l+3){5n+2[ +( 2+3_/5r11+3)]

—(n+ 2)()’2+2 - le1+2) ()’2+3 - le1+3) }P;l+3('x) =0.
(4.85)
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Differentiating (4.84) and eliminating P/, (x) by substitution between this relation
and (4.85), we obtain

8 O
[()’2+3 - Yr11+3) (x = Bpuy1) + T_:Z] [()’2+2 - le¢+2) (x—B,) + n—:é]P,ﬁé(x)

o
+ {6 (B,s L) [x—Bm + = }

(n +4)(V2+3 _Y:l+3)

Ot
- (V2+2_yr11+2) (Y2+3_Y;£+3) {(”"'3) |:(x —By) + (n+3) (ygé — le:+2) ]

8n+3 ’r
~(n+]) [x_B”“+(n+4)(y2+s—yi+a) ]}}P’M(x)

- {8n+2 [x — By +(n+ 3)(/32+3 _ﬁrlwrs)]

= (n+2)(n+3)(Vnz2 = Yuez) (Pnes = Ynes) Pz (%) + (1 + 3) 8512 Pys (x) = 0.

(4.86)
Taking into account
(V2+2 - V}1+2) ()’2+3 - Yi:+3) = Y6ni2s (4.87)
then this last equation is written as
[x — By + 7())2(;*;4);’2}”) } [x —B,+ —()/2(:13; 3);’1;3) :|P,(13+)3(x)
" {( ne3 ;/371,+3) |:x_Bn+1 + ()’9&:1;4);};4)] _ (n+3)[x—Bn+ ()’2(4;13_:3);;;3)]

0o .1
~(n+1) [xBnH + W} }p,;;3<x)

e B 0143) (B = Bin) ] = (n+2)n+3) [Py )

+ M8n+2pn+3(x) =0,

(4.88)
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taking into account

(V2+4 — yrl1+4) 0

TR NS Fr)
0 _ npl
(Bres = Bues) _ 2(n+2) = bs —4, (4.89)
Y Y
0 1 0
(”+3)(/3)n+3 _ﬁn+3) — Pntl (n+2)(n+3) = 6(b3 _K) _/33’
Y Y

then we get (4.83). O

Remark 4.11. (a) When 2y + by = 0, that is, y3 = 0 and by = 8 — B} = 0, the coefficients
of the recurrence relation are, respectively, given by

0 =3nn+1)y+p, n=0,

y2+4=3(n+1)(n+4)[ n(n— 1)y +V4] n=0,

12 (4.90)
_ (n+4)(n+5) M y4
Opia = 7)} [n(n Dy”+ B n(n+1)y*+ B n=0,
and then the differential equation (4.83) becomes
yA2(x)P); (x) — 6y A(x) P, (x)
(4.91)

—[x =B —18y]P;5(x) + (n+3)Pyy3(x) =0, n=>0,

where A(x) := x — 3 — 6y +yJ/12.
(b) Equation (4.83) admits one singularity of order 2 at finite distance.

Now, we are going to study the case C, = 0.

PROPOSITION 4.12. When C, = 0, then necessarily y., = yl.,, n > 0. Moreover, y°,, =
Yiia =0,n>0, when d,, # 0.

PTOOf Indeed Ci=0e Yn+3 (6n+2/8n+2)))n+3

In case (A) (i.e., d,12 = 0), we have yn+3 =yh3n=0.

In case (B), we have 8,,/8},, = (n+p+2)/(n+p), then 0,5 — yh3 = =203/ (n+p).
But, from (3.7) we have

[ n+p+1 B 1
(n+p)n+tp—-1) n+p-1

:|Yn+38n+1 0, then )724.3 =0. (4.92)

In case (C)) we have 821n+1/82n+1 = y%n+2/ygn+2 =1land 821n+2/63n+2 = (1’1 +P2 + 1)/(1’1 +P2)’
then y3,.5 — Y913 = —)3s/(n+ p2). But, from (3.7), we have, for n even (n = 2k),

8gk+2y(2)k+3 0
K+ p> =0, thenyy,;=0, (4.93)
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and for n odd (n =2k +1),
9 (80 —681.,) =0, then 9 .=0. (4.94)
Vak+4\O2n12 2n+2 > Vok+a

That is, y2,, = 0, n > 0.

Similarly, in case (D), we show that yg o =0,n>0.

In case (E), we have 68n+2 - 621n+2 = _68n+2/(n +P2) and agnﬂ - 621n+1 = —68,1“/(1’1 +
pP3 — 1).

Then y,43 = Yines = —Vaues/(n+p2) and y3,4 = Pawes = —Youaa/(n + p3). But, from
(3.7), for n even (n = 2k) we have

P3 — P2
(k+p2)(k+ps—1

)5gk+1ygk+3 =0 (i'e" (ps — P2))’gk+3 = 0)> (4.95)

and for n odd (n = 2k + 1) we have

p2—p3tl :
m5gk+zygk+4 =0 (ie, (pr—ps+1)p%s =0). (4.96)

Therefore we get y9;,3 = Ysq = 0, 0r p2 = p3and 9, ., =0, 0r pr + 1 = p3 and y9;,; = 0.
In the first case the proposition is true.
In the case where p, = p3 and y9;,, = 0, (3.4) gives for n even (n = 2k +2),

=20k +1)Y3es + 2k + D)5y = 2k +3) (Bl — Biss)” (4.97)

knowing that y};,; = (k+p2 + 1)/(k+ p2)y5.» then this last (4.52) can be written as

— (3K +p2+2) s = (2k+3) (Bls = Bhia) s (4.98)

and for n odd (n = 2k + 1), (3.4) gives

(3k+92+4)y8k+3 = (2k+3) (ﬁ%k-ﬁ _ﬁgkﬂ)z) (4'99)

thus

(3k+p2+4) (Biss — /3(z)k+z)2 + (3k+p2+2) (Bhyis — /3(2)k+3)2 =0, k=0, (4.100)

and this last relation is satisfied:

(ﬁ;ku - ﬁgkﬂ) = (ﬁ;kﬁ - /—’)gk+3) =0, k=0, (4.101)

thus 9, = 0, and consequently y5,, = 0, n > 0.
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In the same way, we show that if p, + 1 = p3 and y9;,; =0, then 9, , =0. Thus y3,, =0,
n=0. O

ProPOSITION 4.13. The 2-classical polynomials sequences such that y). 5 = yL.5 =0, for
n >0, are 2-symmetric if ) = 0 (i.e., o =L =0, n>1).

Proof. Indeed, (3.4) gives us B.,; = B.1 and consequently (3.3) gives B2,; = B9, n > 0.
That is, B2, , =, n > 0. |

Remark 4.14. (a) When C,=0 and d,;+,#0, the sequences of polynomials are 2-symmetric
(if B = 0)

(b) The case C, = 0 is constituted by five canonical sequences described in Proposition
3.7 (du+2 = 0) and the four 2-symmetric sequences, respectively, denoted (Al.1) (with

Yo3 = yhis = 0), (B), (C), and (D).

ProrosiTiON 4.15. Each of the five canonical sequences of polynomials described in
Proposition 3.7 (i.e., when C, = 0 and d,+; = 0), satisfies a third-order linear differential
equation with polynomial coefficients of degree less than or equal to 1, where the coefficients

of PP, (x) and P!',5(x) are independent of n:

(b b2x+y1b2—761) PO (x)

n+3

_[(bl+b2)x—b1h2+y?]P,’1;3(x){x+[T]bH_[n+4]b2} P (4102

— (n+3)Pp3(x) =0,

where [n/2] is the integer part of n/2.

Proof. When C,, = 0, the coefficients of the equation Ry, (x), R3,(x), Ry,»(x), and Ry ,(x)
simplify, respectively, to

0
+ Ot
Ra ()= (B = Blya) | (8o = Bhea) (6= Byen) + 2224 | — 0
0
R3n |:(:8n+3 ﬁn+3)(x_Bﬂ+1)+3:r:Z:|

— (o2 = Brsa) [(x = Bui1) + (n+2) (B3 = ras) s
Ryu(x) := (x = Bus1) + (n+3)[(Bris = Bres) + (Borz — Brsa) s

Rin(x):=—(n+3), whereB,=(n+4)L;—(n+3)B,.
(4.103)
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Table 4.2
Case Equations
(AL1) P () + Y0Py 5 (x) = xP;y5(x) + (14 3)Pyas(x) = 0

(b1x +b3y) — 1)PEA(x) — (2b1x — b + ) Pl (x) + [x — (n+3)by | Pl (%)

(A12)

(14 3)Pya(3) = 0
(A1.3) %p,gig(x) (e ) Pl () — (x+ [”;4])1{;3(@ +(n43)P,s(x) = 0
(A1.4) PO (x) + (x+90) Plls () — (x+ [’” 3 ] )P,’,+3(x) T (n43)Pyes(x) = 0

Taking into account

by = (ﬁ’(z)n+1 _ﬁ%nﬂ)’ by, = (ﬁgn+2 _ﬁ%nﬂ)) )’2+2 = y;£+2r (4.104)
then using (3.14), (3.15), and (3.16) we obtain (4.102). O

Remark 4.16. Equation (4.102) is written, respectively, as shown in Table 4.2.

4.2. 2-symmetric solutions

ProrosiTiOoN 4.17. Each of the four sequences of 2-symmetric polynomials (i.e., when C, =
0 and d,, # 0) satisfies a third-order linear differential equation with polynomial coeffi-
cients. In each case, we give this equation (&) = 2).

(i) In case (A.1) (y2.3 = yh.3 = 0), the equation is written as

P.(x) = xP5(x) + (n+3)Pus3(x) =0, n=0. (4.105)

(ii) In case (B), the equation is written as

% n +1 i
(b2 + DPEAG) = WP+ {2 = (-1 = [ a0
4.1

n+4 (4.106)

i (n+3){p2 (=1t [ ! ]}Pn+3(x) ~0, n=o0.

(iii) In case (C), the equation is written as
124 n +2 i
(pa+ DB 00) = By 0) = s+ (<1 = | 22| [ 2hso)

(4.107)

n+3

+(n+3){p3+(—1)”+[ ]}Pn+3(x)=0, n=0.
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(iv) In case (D), the equation is written as
2% = (p2+1) (p3 +2) IPE5 (x) + (p2 + p3 + 3)x2 Py (x)
+57 1+ (=1)"*! 1+(-1)"
_{([nz ]+ (2 " (2 ) P3)

X([n;3]_l+(;1)np2_1+(_21)n+1p3>(7’l+2) (w108

y ([n;—4] . 1+(2—1)"p2+ 1+(_21)n+1p3)}xp,;+3(x)

- (n+3)([nT+2] +p3) ([HTH] +p2)Pn+3(x) =0, n=0.

Remark 4.18. In particular case (D.1), the equation is written as

[4x° — (p+2)(p+ 5)]PP(x) - 2(2p+7)x*P,) 5(x) — [2n* — 6n— 8+ p? + 3p|xP;,,5(x)

—(n+3)(n+2+p)(n+5+p)Py3(x) =0, n=0.
(4.109)

COROLLARY 4.19. From the above propositions (i.e., C, = 0), the coefficient of Pf,i)3(x) is
independent of n (a fortiori Ss ,(x) is independent of n).

4.3. Particular cases

Remark 4.20. The particular case ) = = constant, n > 0 (i.e., h, = (8}, — 8042), By =
constant) is not a natural condition, and has been studied in detail in [13]. We conclude
the analysis concerning this case by saying that the latter not only contains the four 2-
symmetric sequences (if § = 0) but also the new no 2-symmetric sequence that follows
from (D.1), where the coefficients y,, and 82,,, n > 0 are given by [7]

o (n+2)(n+1+2a)

”*2_(n+1+a)(n+2+oc)y’ 20,
(4.110)
0 (n+1)(n+2)(n+3a) 0
nt2 = 2> 20,
(n+a)(n+l1+a)(n+2+a)
when
p—1 A-1 ¥
K=—=—, p—2p2—2p3—1, A= 1 0> (4-111)
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and where we put

(et D(a+2)
T 2120

(4.112)
(a+1)(a+2) o

(04
0= 6(a—1) &

ProposiTiON 4.21 [7]. When ) = constant = f8 and y",, and 83,,, (n > 0) are given by
relation (4.110), the coefficients Fy ,(x), S3(x), Ry 4(x), Va,u(x), To,n(x), and W ,(x) of (4.3)
are

Fin(x):=303n+3a+10)8yx+27(n+4+30)8% +2(n+3)y°,
S3(x):=3[ —4(x—B)’8 — (x — B)*y* + 18(x — )8y +278% + 4y° ],

Riu(x) = (n+3)(n+3+3a)[33n+6+3a)0F, ,(x) — (60x+2y*)F] ,(x)],

Tou(x) :=6(n+1-3a)0x* — (n—6a)y’x+9(n+2)8y,

Won(x):=3{[(n+1-3a)(n+8+3a)+2(n+3)(n+3+3a)|0x+ (n+2)(n+4+2a)y*},
(4.113)

and the degree of Ry ,(x) is exactly 4.

In conclusion, we have just shown that there are four types of linear third-order differ-
ential equations

Ran(x)P5(x) + Rs () P,3(x) + Ry (%) Pl 3 (%) + Rin(X)Puis(x) =0, =0, (4.114)

having as solutions classical 2-orthogonal polynomials, namely,
(i) equation (4.3), when C,d,+2 # 0, together with Ry ,(x) = Fy ,(x)S5(x),
(ii) equation (4.50), when d,;, =0 and C,E,+, # 0, together with Ry, (x) = ﬁl,n(x)x
§2(x),
(iii) equation (4.83), when dy1, = 0, Eyy2 = 0, and C, # 0, together with Ry ,(x) =
A%(x) (degA = 1),
(iv) equation (4.102), when d,+, =0 and C,, =0, together with Ry ,(x) = B(x) (degB <
1),
(v) equations (4.105), (4.106), and (4.107), together with Ry ,(x) = constant, and
(4.108), together with Ry ,(x) = m, (degSN3 =3).
Furthermore, the coefficients of (4.83) and (4.102) and the coefficients of the four-term
recurrence relations associated with the solutions of these equations are derived. Note
that the 2-symmetric cases have been completely exhibited.
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5. Examples

Several deep works were devoted to classical d-orthogonal polynomials and to type II
multiple orthogonal polynomials and many properties concerning theses polynomials
have been established.

For the type II multiple orthogonal polynomials, there is a rich bibliography [2—4, 20].

Here, we quote some classical 2-orthogonal polynomial sequences which were a sub-
ject of a deep study and whose generating functions and integral representations of the
linear forms £y and £; have been established [6-11].

Indeed, the sequence (Al.1) is the Hermite 2-orthogonal sequence [7]; the sequence
(A1.2) is the Laguerre 2-orthogonal sequence [8]; the sequence (D.1) is the Gegenbauer
2-orthogonal sequence [6]; the sequence (D.1) (where a =1) is the first kind Tchebychev
2-orthogonal sequence [11]; and the sequence (D.1) (where p = 4) is the second kind
Tchebychev 2-orthogonal sequence [10]

6. Conclusion

First, we enumerated fen classical 2-orthogonal sequences and derived the coefficients of
their recurrences (nine sequences for C, = 0 and one for d,4» =0, C, # 0, and E,;4 =
0). It remains to do the same thing for (d,42 = 0 and C, # 0) and (C,dy+, # 0), which
constitutes the generalization Bochner’s result. This enumeration is probably realized by
using not only the system (3.3)—(3.8), but also by using the fact that the coefficient Ss ,,(x)
of Pf,i)S(x) is independent of n. This topic will be studied in the near future.

Acknowledgments

The authors thank the anonymous referees for their useful comments and remarks.
This work is supported by Agence Nationale pour le Développement de la Recherche
Universitaire (ANDRU).

References

[1] A. L Aptekarev, Multiple orthogonal polynomials, Journal of Computational and Applied Math-
ematics 99 (1998), no. 1-2, 423-447.

[2] A.I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical
weights, Transactions of the American Mathematical Society 355 (2003), no. 10, 3887-3914.

[3] A.I Aptekarev, F. Marcelldn, and I. A. Rocha, Semiclassical multiple orthogonal polynomials and
the properties of Jacobi-Bessel polynomials, Journal of Approximation Theory 90 (1997), no. 1,
117-146.

[4] J. Arvest, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials,
Journal of Computational and Applied Mathematics 153 (2003), no. 1-2, 19-45.

[5] S. Bochner, Uber Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 29 (1929),
no. 1, 730-736.

[6] A.Boukhemis, A study of a sequence of classical orthogonal polynomials of dimension 2, Journal of
Approximation Theory 90 (1997), no. 3, 435-454.

, On the classical 2-orthogonal polynomials sequences of Sheffer-Meixner type, Cubo. A

Mathematical Journal 7 (2005), no. 2, 39-55.

(7]




32

(8]

(20]

(21]

Orthogonal polynomials and differential equations

A. Boukhemis and P. Maroni, Une caractérisation des polynémes strictement 1/p orthogonaux de
type Scheffer. Etude du cas p = 2, Journal of Approximation Theory 54 (1988), no. 1, 67-91.

K. Douak and P. Maroni, Les polyndmes orthogonaux “classiques” de dimension deux, Analysis 12
(1992), no. 1-2, 71-107.

, On d-orthogonal Tchebychev polynomials. I, Applied Numerical Mathematics 24 (1997),
no. 1, 23-53.

, On d-orthogonal Tchebychev polynomials. IT, Methods and Applications of Analysis 4
(1997), no. 4, 404-429.

J. Favard, Sur les polynémes de Tchebicheff, Comptes Rendus de ’Académie des Sciences, Paris
200 (1935), 2052-2053.

W. Hahn, Uber die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische
Zeitschrift 39 (1935), no. 1, 634-638.

D. V. Ho, J. W. Jayne, and M. B. Sledd, Recursively generated Sturm-Liouville polynomial systems,
Duke Mathematical Journal 33 (1966), no. 1, 131-140.

H. L. Krall, On derivatives of orthogonal polynomials I, Bulletin of the American Mathematical
Society 42 (1936), 423-428.

P. Maroni, L'orthogonalité et les récurrences de polyndmes d’ordre supérieur a deux, Toulouse. Fac-
ulté des Sciences. Annales. Mathématiques. Série 5 10 (1989), no. 1, 105-139.

E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Translations of
Mathematical Monographs, vol. 92, American Mathematical Society, Rhode Island, 1991.

J. Shohat, Sur les polynémes orthogonaux généralisés, Comptes Rendus de I’Académie des Sci-
ences, Paris 207 (1938), 556-558.

W. Van Assche, Multiple orthogonal polynomials, irrationality and transcendence, Continued
Fractions: From Analytic Number Theory to Constructive Approximation (Columbia, MO,
1998) (B. C. Berndt and E. Gesztezy, eds.), Contemporary Mathematics, vol. 236, American
Mathematical Society, Rhode Island, 1999, pp. 325-342.

W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials, Journal of
Computational and Applied Mathematics 127 (2001), no. 1-2, 317-347.

J. Van Iseghem, Approximants de Padé vectoriels, These d’Etat, 'Université des Sciences et Tech-
niques de Lille-Flandre-Artois, Lille, 1987.

Boukhemis Ammar: Department of Mathematics, Faculty of Sciences, University of Annaba,
BP 12, Annaba 23000, Algeria
E-mail address: aboukhemis@yahoo.com

Zerouki Ebtissem: Department of Mathematics, Faculty of Sciences, University of Annaba,
BP 12, Annaba 23000, Algeria
E-mail address: ebzerouki@yahoo.fr


mailto:aboukhemis@yahoo.com
mailto:ebzerouki@yahoo.fr

