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To answer a question proposed by Mari in 1996, we propose ���α(R+), the space of
uniform limit power functions. We show that ���α(R+) has properties similar to that
of ��(R+). We also proposed three other limit power function spaces.
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1. Introduction

In literature of Fourier transforms and Wavelet transforms, the basic space is L2(R).
From the point of view of signal analysis, a signal f ∈ L2(R) can only be transient (or
“wavelets”). During recent years in some application areas, it has become more common
to motivate a theory via persistent rather than transient signals (e.g., [16, 28, 30, 42]).
To work on persistent signals, people have to seek a space different from L2(R). One
important example of such spaces is ��(R), the space of almost periodic functions. Peo-
ple have developed a profound theory and applications for ��(R) (e.g., see [4, 5, 7–
15, 18, 19, 24, 26, 30, 32, 37, 38]).

As in [30], a function f is called limit power if the limit

lim
T→∞

1
2T

∫ T

−T

∣∣ f (t)
∣∣2
dt (1.1)

exists. Denote by H2 the set of all such functions.
It is well known that ��(R)⊂H2 and so is the Besicovitch space B2 [5], the comple-

tion of ��(R) in H2. In fact, many useful persistent signals are in H2, for example, the
bounded power signals studied in Wiener’s generalized harmonic analysis [36]. However,
H2 is not a linear set. An example in [29] shows that H2 is not closed under addition.
The lack of closedness under addition caused some difficulties in Robust control (e.g.,
see [27]).

As [29] pointed out that except for some subsets of H2 which are already known to
be vector spaces (e.g., L2(R), { f ∈ L∞(R) : lim|t|→∞ f (t) exists}, ��(R)), it is not clear
whether a “nice” (e.g., Hilbert) large vector space could be defined.
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Let us recall when the spaces mentioned above were invented. The latest one is B2

invented by Besicovitch in 1926 (see [5]); a year earlier is ��(R+) invented by Bohr [8–
10]; L2(R) was invented even earlier. We remark that the function set studied by Wiener
mentioned above is not closed under addition either. Some generalizations of ��(R),
for example, the functions studied in [1, 2, 17, 21, 32–34, 38], are vector spaces. They are
larger than ��(R) in �(R). However, they are the same with ��(R) in H2. We remark
that though H2 is not linear, there have been Banach spaces containing H2, for example,
the space B2 proposed in [11] (in [28] for the discrete setting). However, [11, 28] use
lim instead of lim in (1.1) to construct the spaces. In many cases, lim is needed too.
The background of [29] and related problems being pointed out by some authors (e.g.,
[27, 28, 30] and references therein) show real needs for new, larger, nice spaces in H2.

The purpose of the paper is to propose such spaces. One will see that the new spaces
are so natural that they come from what we call generalized trigonometric polynomials in
the same way as ��(R) and B2 come from trigonometric polynomials. One will also see
that they are so huge that to compare ��(R) and B2 with them is the same as to compare
one point with R+.

The layout of the paper is as follows. In the next section, we show the existence of
a larger orthonormal basis. In Section 3, we develop a theory of uniform limit power
functions in a way parallel to that of ��(R) (e.g., [12, 13]). In Section 4, we discuss the
limit power type functions.

2. Orthonormal basis

It is well known that {eiλt} is a complete orthonormal basis in B2 [5]. In this section, we
consider the set

{
eiλt

α}
, (2.1)

where λ∈R and 0 < α <∞.
When α > 1, in radar and sonar terminology, the function eiλt

α
represents a chirp sig-

nal because it is reasonably well defined but steadily rising frequency. By analyzing f (t)=
sin(πt2), [25, Chapter 2] points out the fact that a chirp has a well-defined instantaneous
frequency and ordinary Fourier analysis hides the fact. By using Windowed Fourier trans-
form, the signal is reasonably well localized both in time and in frequency. In particular,
when α = 2, the function eit

2
, being an underlying kernel (e.g., in oscillatory integrals,

optics, etc.), has important applications; we refer the reader to [3, 6, 20, 22, 23, 31, 35]
for details.

When α < 1, the function eiλt
α

behaves conversely.
As {eiλt}, the set {eiλtα} is also orthonormal. We show this in the next two theorems.

Theorem 2.1. For α≥ β ≥ 0 with α≥ 1 and λ,μ∈R with λ �= 0, the following limit

lim
T→∞

1
T

∫ T+a

a
ei(λt

α+μtβ)dt =
⎧⎨
⎩

1, α= β, μ=−λ,

0, otherwise
(2.2)

exists uniformly with respect to a∈R+.
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Proof. The conclusion for the case of α = β, μ = −λ is obvious, so we only consider the
other cases. In these cases, if we can find a0 > 0 such that

1
T

∫ T+a

a
ei(λt

α+μtβ)dt −→ 0 (T −→∞) (2.3)

uniformly with respect to a∈ [a0,∞), then we have

1
T

∫ T+a

a
ei(λt

α+μtβ)dt −→ 0 (T −→∞) (2.4)

uniformly with respect to a∈R+. In fact, for a∈ [0,a0], one has

∣∣∣∣∣
1
T

∫ T+a

a
ei(λt

α+μtβ)dt

∣∣∣∣∣≤
1
T

∣∣∣∣
(∫ a0

a
+
∫ T+a0

a0

−
∫ T+a0

T+a

)
ei(λt

α+μtβ)dt
∣∣∣∣

≤ 2a0

T
+

1
T

∣∣∣∣
∫ T+a0

a0

ei(λt
α+μtβ)dt

∣∣∣∣−→ 0 (T −→∞).

(2.5)

Note that α, β, λ, and μ are fixed, we can chose a0 > 1 such that |λα+μβaβ−α| ≥ ε0 > 0
for some ε0 > 0 and all a ∈ [a0,∞). In fact, if β = α then λ+ μ �= 0 and for all a ∈ [1,∞)
one has |λα+μβaβ−α| = |α(λ+μ)| = ε0 > 0; if β < α, then tβ−α→ 0 as t→∞, and therefore
there exists a0 > 1 such that for all a ∈ [a0,∞) one has |λα+ μβaβ−α| ≥ |λα/2| = ε0 > 0.
For such a and t ≥ a, λαtα−1 +μβtβ−1 = tα−1[λα+μβaβ−α] �= 0 and

∫ T+a

a
ei(λt

α+μtβ)dt

=
∫ T+a

a

ei(λt
α+μtβ)i

(
λαtα−1 +μβtβ−1

)
i
(
λαtα−1 +μβtβ−1

) dt =
∫ T+a

a

ei(λt
α+μtβ)di

(
λtα +μtβ

)
i
(
λαtα−1 +μβtβ−1

)

= ei(λt
α+μtβ)

i
(
λαtα−1 +μβtβ−1

)
∣∣∣∣
T+a

a
− 1

i

∫ T+a

a
ei(λt

α+μtβ)d
1

(λαtα−1 +μβtβ−1)
= I1 + I2.

(2.6)

So

|I1| ≤ 1∣∣λα(T + a)α−1 +μβ(T + a)β−1
∣∣ +

1∣∣λαaα−1 +μβaβ−1
∣∣

= 1
(T + a)α−1

∣∣λα+μβ(T + a)β−α
∣∣ +

1
aα−1

∣∣λα+μβaβ−α
∣∣ ≤M1,

(2.7)

where M1 is a constant which is independent of T and a∈ [a0,∞).
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To estimate I2, we have

∣∣I2
∣∣≤

∫ T+a

a

∣∣∣∣λα(α− 1)tα−2 +μβ(β− 1)tβ−2

(
λαtα−1 +μβtβ−1

)2

∣∣∣∣dt =
∫ T+a

a

∣∣∣∣λα(α− 1) +μβ(β− 1)tβ−α

t2−α(λαtα−1 +μβtβ−1
)2

∣∣∣∣dt

≤
∫ T+a

a

∣∣λα(α− 1)
∣∣+

∣∣μβ(β− 1)
∣∣

tα
(
λα+μβtβ−α

)2 dt ≤M2

∫ T+a

a

1
tα
dt

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M2

(
ln
(
T

a
+ 1
))
≤M2 ln(T + 1), α= 1,

M2

[(
1
a

)α−1

−
(

1
(T + a)

)α−1
]

, α > 1,

(2.8)

where M2 is a constant which is independent of T and a∈ [a0,∞).
It follows from (2.6)–(2.8) that

lim
T→∞

1
T

∫ T+a

a
ei(λt

α+μtβ) = 0 (2.9)

uniformly with respect to a∈ [a0,∞), and therefore with respect to a∈ R+, the proof is
complete. �

Corollary 2.2. For α≥ 1 and λ �= 0, the limit

lim
T→∞

1
T

∫ T+a

a
eiλt

α
dt = 0 (2.10)

exists uniformly with respect to a∈R+.

Proof. Put μ= 0 in Theorem 2.1 to get the conclusion. �

Theorem 2.3. Let 1 > α≥ β ≥ 0 with α > 0 and λ,μ∈R with λ �= 0. Then

lim
T→∞

1
T

∫ T

0
ei(λt

α+μtβ)dt =
⎧⎨
⎩

1, α= β, μ=−λ,

0, otherwise.
(2.11)

Proof. First, we consider the case α= β and w = λ+μ �= 0,

∫ T

1
eiwt

α
dt =

∫ T

1

eiwt
α
iwαtα−1

iwαtα−1
dt = eiwt

α

iwαtα−1

∣∣∣∣
T

1
−
∫ T

1

eiwt
α

iwαtα
(1−α)dt. (2.12)
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So

1
T

∫ T

0
eiwt

α
dt = 1

T

(∫ 1

0
+
∫ T

1
eiwt

α
dt
)
−→ 0 (2.13)

as T →∞.
If α > β, let T > a > 1 be so large that |λα| > |μβaβ−α|. As in the proof of Theorem 2.1,

one has
∫ T

a
ei(λt

α+μtβ)dt = I3 + I4,

∣∣I3
∣∣≤ 1(

λαTα−1 +μβTβ−1
) +

1(
λαaα−1 +μβaβ−1

)

≤ T1−α(
λα+μβTβ−α) +

a1−α(
λα+μβaβ−α

)

≤ T1−α
[

1(
λα+μβTβ−α) +

1(
λα+μβaβ−α

)
]

≤ T1−α
[

1
|λα|−∣∣μβaβ−α∣∣ +

1
|λα|−∣∣μβaβ−α∣∣

]

≤M3T
1−α.

(2.14)

To estimate I4 we have the following:

∣∣I4
∣∣≤

∫ T

a

∣∣∣∣λα(α− 1)tα−2 +μβ(β− 1)tβ−2

(
λαtα−1 +μβtβ−1

)2

∣∣∣∣dt

=
∫ T

a

∣∣∣∣λα(α− 1)tα−2 +μβ(β− 1)tβ−2

t2(α−1)
(
λα+μβtβ−α

)2

∣∣∣∣dt

=
∫ T

a

∣∣∣∣λα(α− 1)t−α +μβ(β− 1)tβ−2α

(
λα+μβtβ−α

)2

∣∣∣∣dt

≤
∫ T

a

∣∣λα(α− 1)
∣∣t−α +

∣∣μβ(β− 1)
∣∣tβ−2α

[|λα|−∣∣μaβ−α∣∣]2 dt

≤M4t
1−α∣∣T

a +M5t
1+β−2α

∣∣T
a ,

(2.15)

where M4 and M5 are constants which are independent of T .
It follows that

∣∣∣∣ 1
T

∫ T

0
ei(λt

α+μtβ)dt
∣∣∣∣= 1

T

∣∣∣∣
∫ a

0
+
∫ T

a
ei(λt

α+μtβ)dt
∣∣∣∣

≤
∣∣∣∣ 1
T

∫ a

0
ei(λt

α+μtβ)dt
∣∣∣∣+

∣∣∣∣ 1
T

∫ T

a
ei(λt

α+μtβ)dt
∣∣∣∣−→ 0

(2.16)

as T →∞. The proof is complete. �
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It follows from Theorems 2.1 and 2.3 that

lim
T→∞

1
T

∫ T

0

(
eiλt

α · e−iμtβ)dt =
⎧⎨
⎩

1, α= β, μ= λ,

0, otherwise.
(2.17)

That is, the set {eiλtα} constitutes an orthonormal basis.

Remark 2.4. Since the domain of the function eiλt
α

in general is R+, we consider R+ only
in the paper. For special numbers of α, for example, α′s are positive integers, the domain
will be R. In this case all the results will hold for R.

3. Uniform limit power functions

We call the functions

n∑
k=1

ake
iλktα (3.1)

α-trigonometric polynomial, where ak ∈ C and λk ∈R. As ��(R), we have the following
definition.

Definition 3.1. Let α > 0 be fixed. A function f on R+ is called uniform limit power if for
each ε > 0 there exists an α-trigonometric polynomial Pε such that

∥∥ f −Pε
∥∥= sup

{∣∣ f (t)−Pε(t)
∣∣ : t ∈R+} < ε. (3.2)

Denote by ���α(R+) the set of all such functions.

One sees that when α = 1, ���α(R+) =��(R+). Also one sees that ���α(R+) is
the completion of α-trigonometric polynomial in C(R+). Since the set of α-trigonometric
polynomials are closed under addition, multiplication, and conjugation, so is the com-
pletion ���α(R+). Thus we have shown the following statement: ���α(R+) is a C∗-
subalgebra of C(R+) containing the constant functions.

Next, we discuss the Fourier expansion of f ∈���α(R+). First of all, we show that
the mean exists.

Theorem 3.2. If f ∈���α(R+), then

lim
T→∞

1
T

∫ T

0
f (t)dt (3.3)

exists. In the case of α≥ 1,

lim
T→∞

1
T

∫ T+a

a
f (t)dt (3.4)

exists uniformly with respect to a∈R+.
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Proof. We first show the theorem in the case that f is an α-trigonometric polynomial. Let

f (t)= P(t)= c0 +
n∑

k=1

cke
iλktα . (3.5)

Then by Theorems 2.1 and 2.3,

lim
T→∞

1
T

∫ T

0
P(t)dt = c0. (3.6)

If f is an arbitrary function in ���α(R+) then for ε > 0 there exists an α-trigo-

nometric polynomial Pε such that (3.2) holds. Since limT→∞(1/T)
∫ T

0 Pε(t)dt exists, we
can find a number T0 such that when T1,T2 > T0,

∣∣∣∣ 1
T1

∫ T1

0
Pε(t)dt− 1

T2

∫ T2

0
Pε(t)dt

∣∣∣∣ < ε. (3.7)

It follows from (3.2) and the last inequality above that when T1,T2 > T0,

∣∣∣∣ 1
T1

∫ T1

0
f (t)dt− 1

T2

∫ T2

0
f (t)dt

∣∣∣∣≤ 1
T1

∫ T1

0

∣∣ f (t)−Pε(t)
∣∣dt

+
∣∣∣∣ 1
T1

∫ T1

0
Pε(t)dt− 1

T2

∫ T2

0
Pε(t)dt

∣∣∣∣

+
1
T2

∫ T2

0

∣∣ f (t)−Pε(t)
∣∣dt < 3ε.

(3.8)

Similarly, one shows the existence of the second limit. The proof is complete. �

We call the limit in Theorem 3.2 the mean of f and denote it by M( f ).
For λ∈R and f ∈���α(R+) since the function f e−iλtα is in ���α(R+), the mean

exists for the function. We write

a(λ)=M
(
f e−iλt

α)
. (3.9)

As the proof for ��(R+) (see [12, 13, 18, 26, 37, 38]), for a function f ∈���α(R+) the
frequency set

Freq( f )= {λ∈R : a(λ) �= 0
}

(3.10)

is countable (or finite). Let Freq( f ) = {λk} and Ak = a(λk). Thus f has an associated
Fourier series

f (t) ∼

∞∑
k=1

Ake
iλktα , (3.11)

and Parseval’s equality holds:

∞∑
k=1

∣∣a(λk)∣∣2 =M
(| f |2). (3.12)
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The unique theorem for almost periodic function is well known. That is, distinct al-
most periodic functions have distinct Fourier series. We point out that this is also true for
���α(R+). To show this we need to set up some correspondence between ���α(R+)
and ��(R+). For the α-trigonometric polynomial Pε in Definition 3.1, let s = tα. Then
Pε becomes trigonometric polynomial of s. That is,

Pε(s)=
n∑

k=1

ake
iλks. (3.13)

For f ∈���α(R+) define the function

f̃ (s)= f
(
s1/α). (3.14)

Thus, (3.2) becomes

∣∣ f̃ (s)−Pε(s)
∣∣ < ε (

s∈R+). (3.15)

So, f̃ ∈ ��(R+). Conversely, let h ∈ ��(R+). By the approximation theorem of
��(R+) for ε > 0, there exists a trigonometric polynomial

∑n
k=1 ake

iλks such that

∣∣∣∣h(s)−
n∑

k=1

ake
iλks

∣∣∣∣ < ε (
s∈R+). (3.16)

Let s= tα(t ∈R+) and let h(t)= h(tα). It follows that

∣∣∣∣h(t)−
n∑

k=1

ake
iλktα

∣∣∣∣ < ε (
t ∈R+). (3.17)

Therefore, we have h ∈ ���α(R+). Thus (3.14) is the correspondence between
���α(R+) and ��(R+).

Note the translate property of almost periodic function, that is, for ε > 0 there exists
l > 0 with the property that any interval I ⊂R+ of length l has a number τ ∈ I such that

∣∣ f̃ (s+ τ)− f̃ (s)
∣∣ < ε (

s∈R+). (3.18)

By the correspondence (3.14), we have in fact already shown the following theorem.

Theorem 3.3. Let f ∈ C(R+). Then the following statements are equivalent:
(1) f ∈���α(R+);
(2) for ε > 0 there exists l > 0 with the property that any interval I ⊂R+ of length l has a

number τ ∈ I such that

∣∣ f [(t+ τ)1/α]− f
(
t1/α)∣∣ < ε. (3.19)

Furthermore, if f ∈���α(R+) then so is | f (·)|.
Now, we make use of the unique theorem for f̃ to get the same conclusion for f .
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Lemma 3.4. Let f ∈ ���α(R+) be nonnegative and f (t0) > 0 for some t0 ∈ R+. Then
M( f ) > 0.

Proof. Let f̃ be the function in (3.14). So f̃ (s) ≥ 0 and f̃ (s0) > 0, where so = tα0 . Since

f̃ ∈��(R+), one has

lim
T→∞

1
T

∫ T+a

a
f̃ (s)ds=M( f̃ ) > 0 (3.20)

uniformly with respect to a∈R+.
To show the theorem we need to discuss two cases.
(1) α≥ 1:

1
T

∫ T

1
f (t)dt = 1

T

∫ Tα

1
f
(
s1/α) s1/α−1

α
ds= 1

α

1
T

∫ Tα

1

f̃ (s)
s1−1/α

ds

≥ 1
α

1
T

∫ Tα

1

f̃ (s)(
Tα
)1−1/α ds=

1
α

1
Tα

∫ Tα

1
f̃ (s)ds.

(3.21)

It follows from (3.20) that

M
(
f (t)

)≥ 1
α
M
(
f̃ (s)

)
> 0. (3.22)

(2) 0 < α < 1: in this case,

1
T

∫ T

0
f (t)dt = 1

T

∫ Tα

0
f
(
s1/α) s1/α−1

α
ds= 1

α

1
T

∫ Tα

0
f̃ (s)s1/α−1ds

≥ 1
α

1
T

∫ Tα

Tα/2
f̃ (s)

(
Tα

2

)1/α−1

ds= 1
α

1
T

T1−α

21/α−1

∫ Tα

Tα/2
f̃ (s)ds

= 1
α21/α

1
Tα/2

∫ Tα

Tα/2
f̃ (s)ds.

(3.23)

So, in this case we also have

M
(
f (t)

)≥ 1
α21/α

M
(
f̃ (s)

)
> 0. (3.24)

The proof is complete. �

By the lemma above we are able to show the following unique theorem.

Theorem 3.5. Distinct uniform limit power functions have distinct Fourier series.

Proof. Suppose that the distinct functions f1, f2 ∈���α(R+) have the same Fourier se-
ries. Then f1− f2 will have Fourier series of all term zero. By Parseval’s equality M(| f1−
f2|2) = 0. However, by Lemma 3.4 we get M(| f1 − f2|2) > 0. This is a contraction. The
proof is complete. �



10 Uniform limit power-type function spaces

For f (t)∈���α(R+) since f̃ (s)∈��(R+), the function f̃ has an associated Fourier
series

f̃ (s) ∼

∞∑
k=1

ake
iμks, (3.25)

where ak =M( f̃ (s)e−iμks). It is well known (e.g., see [12, 13, 38]) that f̃ can be approxi-
mated uniformly on R by the Bocher-Fejér trigonometric polynomials

σm(s)=
n(m)∑
k=1

rm,kake
iμks, (3.26)

where the rational numbers 0≤ rm,k ≤ 1 and limm→∞ rm,k = 1. Thus, replacing s in (3.26)
by tα we have

∣∣∣∣
n(m)∑
k=1

rm,kake
iμktα − f̃

(
tα
)∣∣∣∣=

∣∣∣∣
n(m)∑
k=1

rm,kake
iμktα − f (t)

∣∣∣∣−→ 0, (3.27)

uniformly on R+.
The following remark tells us an important conclusion.

Remark 3.6. In the section all the results are achieved under the assumption of fixed
α. We may release the restriction on α. Let {α1,α2, . . . ,αn} be nonnegative sequence. A
generalized trigonometric polynomial is a function of the form

n∑
k=1

ake
iλktαk , (3.28)

where ak ∈ C and λk ∈R, 1≤ k ≤ n. If in Definition 3.1 Pε is a generalized trigonometric
polynomial, then the function f is also called uniform limit power and ���(R+) is de-
noted the set of all such functions. It is not difficult to show that ���(R+) is a Banach
space and (3.10)–(3.12) are valid. For the question if an f ∈���(R+) can be approx-
imated by the Bochner-Fejer polynomials, as well as how to construct the polynomials,
we refer the reader to [40, 41] for details. Also

���
(
R+)= span

{
���α

(
R+) : 0 < α <∞}⊂ C

(
R+)∩H2, (3.29)

where the closure is taken in C(R+). One can see how huge ���(R+) is by comparing
with ��(R+).

Remark 3.7. As chirps, some existing results enable us to analyze and reconstruct f ∈
���(R+). For example, by [30, Theorem 2.1] a windowed Fourier transform of f exists,
by Theorem 2.2 of the same paper the transform satisfies some Parseval’s relation, and by
Theorem 2.4 of that paper again a generalized frame exists.

One more remark is needed to end the section.
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Remark 3.8. (1) The conclusion in the paragraph before Remark 2.4 is mentioned in [39,
Section 2] without proof. Here we not only prove it in details, but we also distinguish the
limits between the case α≥ 1 and the case α < 1 in Theorems 2.1 and 2.3, respectively. (2)
Also, the results in Section 3 are presented in [39, Section 2] in an abstract-like form. To
convince the reader the correctness of these results, we present and prove them in details
here.

4. Limit power type functions

In this section, we will define and investigate three types of limit power function which
are corresponding to the three types of well-known almost periodic functions (e.g., see
[1, 2, 17, 21, 31, 33, 34, 38]).

Let

C0
(
R+)= {ϕ∈ C

(
R+) : lim

t→∞ϕ(t)= 0
}

,

���0
(
R+)= {ϕ∈ C

(
R+) : M

(|ϕ|)= 0
}
.

(4.1)

Definition 4.1. Let f ∈ C(R+). A function f is called asymptotic limit power if

f (t)= g(t) +ϕ(t)
(
t ∈R+), (4.2)

where g ∈���α(R+) and ϕ∈ C0(R+). Denote by ���α(R+) all such functions.

By (3.14), we have

f̃ (s)= g̃(s) + ϕ̃(s). (4.3)

It is easy to check that ϕ(t) is in C0(R+) if and only if ϕ̃(s) is in C0(R+). Since g̃(s) ∈
��(R+), one gets that f̃ (s) ∈���(R+), the space of asymptotically almost periodic
functions. Therefore, (3.14) is also a correspondence between ���(R+) and
���α(R+). Note the characterization of ���(R+) (e.g., see [38, Theorem 1.2.11]),
we have the following corresponding characterization.

Theorem 4.2. Let f ∈ C(R+). Then the following statements are equivalent:

(1) f̃ ∈���α(R+);
(2) the set { f [(t+ x)1/α] : x ∈R+} is relatively compact in C(R+);
(3) for any ε > 0 there exists a bounded closed interval C = [0,a] and l > 0 such that any

interval I ⊂R+ of length l has a number τ ∈ I with the property

∣∣ f [(t+ τ)1/α]− f (t)1/α
∣∣ < ε (

t, t+ τ ∈R+ \C). (4.4)

If we only require the set in Theorem 4.2(2) to be weakly compact, then we get the
following concept.

Definition 4.3. An f ∈ C(R+) is called weak limit power if the set in Theorem 4.2(2) is
weakly compact in C(R+). Denote by ���α(R+) of all such functions.
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To get the decomposition of a function f ∈���α(R+), we introduce the following
set:

���0(b)R+ =
{
ϕ∈���α

(
R+) : 0∈ {ϕ[(t+ x)1/α

]
: x ∈R+

}}
, (4.5)

where the closure is taken under weak topology in C(R+). The following result is a corre-
spondence in ���α(R+) to that in ���(R+).

Theorem 4.4. Let f ∈ C(R+). Then the following statements are equivalent:
(1) f ∈���α(R+);
(2) f = g +ϕ, where g ∈���α(R+) and ϕ∈���0(R+).

Finally we give the following concept.

Definition 4.5. An f ∈ C(R+) is called pseudolimit power if f has the form f = g + ϕ,
where g ∈���α(R+) and ϕ∈���0(R+). Denote by ���α(R+) all such functions.

Let f ∈���α(R+). Since f (t)e−iλtα = g(t)e−iλtα +ϕ(t)e−iλtα and

lim
T→∞

1/T
∫ T

0
f (t)e−iλt

α
dt =M

(
ge−iλt

α)
(4.6)

for all λ ∈ R, Theorem 3.5 implies that ���α(R+) is a direct sum of ���α(R+) and
���0(R+). Since the ranges R f and R f̃ are the same (so Rg and Rg̃, Rϕ and Rϕ̃) and

R f̃ ⊃ Rg̃ [38, Lemma 1.5.2], we have R f ⊃ Rg. By this, we can show the following theo-
rem.

Theorem 4.6. ���α(R+) is a Banach space.

Proof. Let { fn} ⊂ ���α(R+) be Cauchy. Since R fn ⊃ Rgn, {gn} is Cauchy too. Note
���α(R+) is closed in C(R+), there exists g ∈���α(R+) such that ‖gn − g‖ → 0 as
n→∞. Since { fn − gn} is also Cauchy and ���0(R+) is closed in C(R+), there exists
ϕ ∈���0(R+) such that ‖ϕn −ϕ‖ → 0 as n→∞. Let f = g +ϕ. Then f ∈���α(R+)
and ‖ fn− f ‖→ 0 as n→∞. The proof is complete. �

Since

��
(
R+)⊂���

(
R+)⊂���

(
R+)⊂���(R+), (4.7)

one has the following inclusion relationship:

���α
(
R+)⊂���α

(
R+)⊂���α

(
R+)⊂���α

(
R+). (4.8)
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