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LetA be a unital sequentially complete topologically primitive exponentially galbed Haus-
dorff algebra over C, in which all elements are bounded. It is shown that the center of A
is topologically isomorphic to C.
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1. Introduction

(1) Let A be an associative topological algebra over the field of complex numbers C with
separately continuous multiplication. Then A is an exponentially galbed algebra (see, e.g.,
[1–4, 19, 20]) if every neighbourhood O of zero in A defines another neighbourhood U
of zero such that

{ n∑
k=0

ak
2k

: a0, . . . ,an ∈U

}
⊂O (1.1)

for each n∈N. Herewith, A is locally pseudoconvex, if it has a base {Uλ : λ∈Λ} of neigh-
bourhoods of zero consisting of balanced and pseudoconvex sets (i.e., of sets U for which
μU ⊂ U , whenever |μ|� 1, and U +U ⊂ ρU for a ρ � 2). In particular, when every Uλ

in {Uλ : λ∈Λ} is idempotent (i.e., UλUλ ⊂Uλ), then A is called a locally m-pseudoconvex
algebra, and when every Uλ in {Uλ : λ∈Λ} is A-pseudoconvex (i.e., for any a∈ A there is a
μ > 0 such that aUλ,Uλa⊂ μUλ), thenA is called a locallyA-pseudoconvex algebra. It is well
known (see [21, page 4] or [6, page 189]) that the locally pseudoconvex topology on A is
given by a family {pλ : λ∈Λ} of kλ-homogeneous seminorms, where kλ ∈ (0,1] for each
λ ∈ Λ. The topology of a locally m-pseudoconvex (A-pseudoconvex) algebra A is given
by a family {pλ : λ∈ Λ} of kλ-homogeneous submultiplicative (i.e., pλ(ab) � pλ(a)pλ(b)
for each a,b ∈ A and λ ∈ Λ) (resp., A-multiplicative (i.e., for each a ∈ A and each λ ∈
Λ there are numbers N(a,λ) > 0 and M(a,λ) > 0 such that pλ(ab) � N(a,λ)pλ(b) and
pλ(ba) � M(a,λ)pλ(b) for each b ∈ A)) seminorms, where kλ ∈ (0,1] for each λ∈ Λ. In
particular, when kλ = 1 for each λ∈ Λ, then A is a locally convex (resp., locally m-convex
and locally A-convex) algebra and when the topology of A has been defined by only one
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2 The center of exponentially galbed algebras

k-homogeneous seminorm with k ∈ (0,1], then A is a locally bounded algebra. It is easy
to see that every locally pseudoconvex algebra is an exponentially galbed algebra.

Moreover, a complete locally bounded Hausdorff algebra A is a p-Banach algebra; a
complete metrizable algebra A is a Fréchet algebra; a unital topological algebra A, in which
the set of all invertible elements is open, is a Q-algebra (see, e.g., [14, page 43, Definition
6.2]) and a topological algebra A is a topologically primitive algebra (see [5]), if

{a∈ A : aA⊂M} = {θA} ({a∈A : Aa⊂M} = {θA}) (1.2)

for a closed maximal regular (or modular) left (resp., right) ideal M of A (here θA denotes
the zero element of A).

An element a in a topological algebra A is bounded, if there exists an element λa ∈
C\{0} such that the set

{(
a

λa

)n
: n∈N

}
(1.3)

is bounded in A and nilpotent, if am = θA for some m ∈ N. If all elements in A are
bounded (nilpotent), then A is a topological algebra with bounded elements (resp., a nil
algebra).

(2) It is well known that the center of a primitive ring (a ring (in particular, algebra) R
is primitive if it has a maximal left (right) regular ideal M such that {a∈ R : aR⊂M} =
{θR} (resp., {a∈ R : Ra⊂M} = {θR})) is an integral domain (a ring R is an integral do-
main, if from a,b ∈ R and ab = θR follows that a= θR or b = θR) (see [12, Lemma 2.1.3])
and any commutative integral domain can be the center of a primitive ring (see [13,
Chapter II.6, Example 3]). Herewith, every field is a commutative integral domain, but
any commutative integral domain is not necessarily a field. In particular (see [5]), when
R is a unital primitive locally A-pseudoconvex Hausdorff algebra overC or a unital locally
pseudoconvex Fréchet Q-algebra over C, then the center Z(R) of R is topologically iso-
morphic to C (for Banach algebras a similar result has been given in [16, Corollary 2.4.5]
(see also [8, page 127], [15, Theorem 4.2.11], and [9, Theorem 2.6.26 (ii)]); for k-Banach
algebras in [6, Corollary 9.3.7]; for unital primitive locally m-convex Q-algebras in [17,
Corollary 2], and for unital primitive locally A-convex algebras, in which all maximal
ideals are closed, in [18, Theorem 3]). For topological algebras with all maximal regular
one-sided or two-sided ideals closed see also [7, 10, 11, 14].

In the present paper we will show that a similar result will be true for any unital se-
quentially complete topologically primitive exponentially galbed Hausdorff algebra over
C in which all elements are bounded.

2. Auxiliary results

For describing the center of primitive exponentially galbed algebras we need the following
results.

Proposition 2.1. Let A be a unital exponentially galbed Hausdorff algebra over C with
bounded elements, λ0 ∈ C and a0 ∈ A. If A is a sequentially complete or a nil algebra, then
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there exists a neighbourhood O(λ0) of λ0 such that

∞∑
k=0

(
λ− λ0

)k
ak0 (2.1)

converges in A and

(
eA +

(
λ0− λ

)
a0
)−1 =

∞∑
k=0

(
λ− λ0

)k
ak0 (2.2)

for each λ∈O(λ0).

Proof. Let O be an arbitrary neighbourhood of zero in A. Then there is a closed and
balanced neighbourhood O′ of zero in A and a closed neighbourhood O′′ of zero in C
such that O′′O′ ⊂O. Now O′ defines a balanced neighbourhood V of zero in A such that

{ n∑
k=0

vk
2k

: v0, . . . ,vn ∈V

}
⊂O′ (2.3)

for each n∈N. Since every element in A is bounded, then there is a number μ0 = μa0 ∈
C\{0} such that

{(
a0

μ0

)n
: n∈N

}
(2.4)

is bounded in A. Therefore, there exists a number ρ0 > 0 such that

(
a0

μ0

)n
∈ ρ0V (2.5)

for each n∈N.
Let now a0 ∈A and λ0 ∈ C be fixed,

Sn(λ)=
n∑

k=0

(λ− λ0)kak0 (2.6)

for each n∈N and λ∈ C,

UC =
{
λ∈ C : |λ| < 1

3|μ0|
}

(2.7)

and U(λ0)= λ0 +UC. Then

Sm(λ)− Sn(λ)=
m∑

k=n+1

(
λ− λ0

)k
ak0 =

m−n−1∑
k=0

(
λ− λ0

)n+k+1
an+k+1

0 (2.8)

for each n,m∈N, whenever m> n and λ∈ C. If we take

vn,k(λ)= 2k
(
λ− λ0

)k an+k+1
0

ρ0μ
n+1
0

(2.9)
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for each n,k ∈N and λ∈ C, then

Sm(λ)− Sn(λ)= (λ− λ0
)n+1

μ0
n+1ρ0

m−n−1∑
k=0

vn,k(λ)
2k

(2.10)

for each n,m∈N, whenever m> n and λ∈ C. Now,

vn,k(λ)= 1
ρ0

(
2
(
λ− λ0

)
μ0
)k(a0

μ0

)n+k+1

∈ 1
ρ0

(
2μ0
(
λ− λ0

))k
ρ0V ⊂V (2.11)

for each n,k ∈N and λ∈U(λ0), because |2μ0(λ− λ0)| < 2/3 < 1. Hence,

Sm(λ)− Sn(λ)∈
(
2μ0
(
λ− λ0

))n+1

2n+1
ρ0O

′, (2.12)

whenever m> n and λ∈U(λ0). Since again |2μ0(λ− λ0)| < 1, then there exists a number
n0 ∈N such that

(
2μ0
(
λ− λ0

))n+1 ∈ 1
ρ0
O′′ (2.13)

for each n > n0. Taking this into account,

Sm(λ)− Sn(λ)∈ 1
2n+1

1
ρ0
O′′ρ0O

′ ⊂O′′O′ ⊂O, (2.14)

whenever m > n > n0 and λ ∈ U(λ0), since O′ is balanced. It means that (Sn(λ)) is a
Cauchy complete, the sequence in A for each λ∈U(λ0).

In the case when A is sequentially complete the sequence (Sn(λ)) converges in A. Sup-
pose now that A is a nil algebra. Then am+1

0 = θA for some m∈N. Hence,

Sn(λ)=
m∑
k=0

(
λ− λ0

)k
ak0 (2.15)

for each λ∈ C, whenever n≥m. Consequently, (Sn(λ)) converges in A for each λ∈O(λ0)
in both cases.

Since

(
eA +

(
λ0− λ

)
a0
) ∞∑
k=0

(
λ− λ0

)k
ak0 =

∞∑
k=0

(
λ− λ0

)k
ak0
(
eA +

(
λ0− λ

)
a0
)= eA, (2.16)

one gets

(
eA +

(
λ0− λ

)
a0
)−1 =

∞∑
k=0

(
λ− λ0

)k
ak0 (2.17)

for each λ∈O(λ0). �
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Corollary 2.2. Let A be a unital exponentially galbed algebra over C with bounded ele-
ments. If A is a sequentially complete or a nil algebra, then for each a0 ∈ A there exists a
number R > 0 such that

∞∑
k=0

ak0
μk+1

(2.18)

converges in A, whenever |μ| > R.

Proof. If we take λ0 = 0 in the previous proposition, then we get that

∞∑
k=0

λkak0 (2.19)

converges inA, whenever |λ| < δ for some δ > 0. If now μ > R= δ−1, then |μ−1| < δ, which
means that

∞∑
k=0

ak0
μk

(2.20)

converges in A. Hence,

∞∑
k=0

ak0
μk+1

= 1
μ

∞∑
k=0

ak0
μk

(2.21)

converges in A, whenever |μ| > R. �

3. Main result

Now, based on Proposition 2.1 and Corollary 2.2, we give a description of the center Z(A)
of such unital topologically primitive exponentially galbed Hausdorff algebras A over C
in which all elements are bounded.

Theorem 3.1. Let A be a unital sequentially complete topologically primitive exponentially
galbed Hausdorff algebra over C with bounded elements. Then Z(A) is topologically isomor-
phic to C.

Proof. Since A is a topologically primitive algebra, there is a closed maximal left ideal (if
M is a closed maximal right ideal, then the proof is similar) M in A such that

{a∈A : aA⊂M} = {θA} (3.1)

(then M∩Z(A)= {θA}). Denote by πM the canonical homomorphism from A onto the
quotient space A−M of A with respect to M. For each z ∈ Z(A)\{θA} consider the left
ideal

Kz = {a∈A : az ∈M}. (3.2)

Since mz = zm∈M for each m∈M and eAz = z �∈M, M ⊂ Kz �= A. Hence, Kz is a proper
left ideal in A. Since the ideal M is maximal, M = Kz for each z ∈ Z(A)\{θA}.
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We will show that every z ∈ Z(A) defines a number λz ∈C such that z = λzeA. If z = θA,
then we take λz = 0. Suppose now that there exists a z ∈ Z(A) \ {θA} such that z(λ) =
λeA− z �= θA for all λ∈ C. Then z(λ)∈ Z(A)\{θA} means that z(λ) �∈M for each λ∈ C,
M +Az(λ) is a left ideal in A, M ⊂M +Az(λ) and

z(λ)= θA + eAz(λ)∈ (M +Az(λ)
)\M (3.3)

for each λ ∈ C. Since M is a maximal left ideal in A, then M +Az(λ) = A for each λ ∈
C. Therefore, for each λ ∈ C there are elements m(λ) ∈M and a(λ) ∈ A such that eA =
m(λ) + a(λ)z(λ), because of which a(λ)z(λ)− eA ∈M.

Let a′(λ)∈ A be another element such that a′(λ)z(λ)− eA ∈M. Then from

[
a(λ)− a′(λ)

]
z(λ)= a(λ)z(λ)− a′(λ)z(λ)∈M (3.4)

it follows that [a(λ)− a′(λ)]∈ Kz(λ) =M. Therefore, πM(a(λ))= πM(a′(λ)) for each λ∈
C.

Let now λ0 ∈ C and

d(λ)= eA +
(
λ− λ0

)
a
(
λ0
)

(3.5)

for each λ∈ C. Then there is (by Proposition 2.1) a neighbourhood O(λ0) of λ0 such that

∞∑
k=0

(
λ− λ0

)k
a
(
λ0
)k

(3.6)

converges in A and

d(λ)−1 =
∞∑
k=0

(
λ− λ0

)k
a
(
λ0
)k

(3.7)

for each λ∈O(λ0).
Now,

a
(
λ0
)
d(λ)−1z(λ)− eA

= a
(
λ0
)
d(λ)−1z(λ)− [a(λ0)z

(
λ0
)

+m
(
λ0
)]

=−a(λ0
)
d(λ)−1[− z(λ) +d(λ)z

(
λ0
)]−m

(
λ0
)

=−a(λ0
)
d(λ)−1[(z− λeA

)
+
(
eA +

(
λ− λ0

)
a
(
λ0
))(

λ0eA− z
)]−m

(
λ0
)

=−a(λ0
)
d(λ)−1[(λ0− λ

)(
eA− a

(
λ0
)
z
(
λ0
))]−m

(
λ0
)

=−a(λ0
)
d(λ)−1(λ0− λ

)
m
(
λ0
)−m

(
λ0
)∈M.

(3.8)

Therefore,

πM
(
a
(
λ
))= πM

(
a
(
λ0
)
d(λ)−1) (3.9)

for each λ∈O(λ0).
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Let now Ψ(λ) = πM(a(λ)) for each λ ∈ C. We will show that Ψ is an (A−M)-valued
analytic function (i.e., if λ0 ∈ C, then there are a number δ > 0 and a sequence (xn) of
elements of A−M such that Ψ(λ0 + λ) =∑∞

k=0(xkλk), whenever |λ| < δ, and a number
R > 0 and a sequence (yn) of elements of A−M such that Ψ(λ)=∑∞

k=0(yk/λk), whenever
|λ| > R) on C ∪{∞}. For it, let again λ0 ∈ C. Then Ψ(λ) = πM(a(λ0)d(λ)−1) for each
λ ∈ O(λ0) and there exists a number δ > 0 such that λ0 + λ ∈ O(λ0), whenever |λ| < δ.
Now,

Ψ
(
λ0 +h

)= πM
(
a
(
λ0
)
d
(
λ0 +h

)−1
)

= πM

(
a
(
λ0
) ∞∑
k=0

hka
(
λ0
)k)= ∞∑

k=0

hkπM
(
a
(
λ0
)k+1)

,
(3.10)

if |h| < δ, where πM(a(λ0)k+1)∈A−M for each k ∈N.
By Corollary 2.2, there is a number R > 0 such that

∞∑
k=0

zk

λk+1
(3.11)

converges in A, if |λ| > R. Easy calculation shows that

z(λ)
∞∑
k=0

zk

λk+1
=

∞∑
k=0

zk

λk+1
z(λ)= eA. (3.12)

Therefore,

z(λ)−1 =
∞∑
k=0

zk

λk+1
, (3.13)

whenever |λ| > R. Since z(λ)−1z(λ)− eA ∈M for each λ with |λ| > R, then

Ψ(λ)= πM
(
z(λ)−1)= πM

( ∞∑
k=0

zk

λk+1

)
=

∞∑
k=0

πM
(
zk
)

λk+1
(3.14)

if |λ| > R, where πM(zk) ∈ A −M for each k ∈ N. Consequently, Ψ is an analytic
(A−M)-valued function on C∪ {∞}. Since A−M is an exponentially galbed Hausdorff

space, Ψ is a constant map by Turpin’s theorem (see [19, page 56]).
We show that Ψ(λ)= θA−M for each λ∈ C. So, if O is any neighbourhood of zero in A,

then there exist in A a closed neighbourhood O′ of zero and a neighbourhood V of zero
such that O′ ⊂O and { n∑

k=0

vk
2k

: v1, . . . ,vn ∈V

}
⊂O′ (3.15)

for each n∈N. Moreover, there are μz ∈ C\{0} and ρV > 0 such that

(
z

μz

)k
∈ ρVV (3.16)
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for each k ∈N. If now |λ| > max{3|μz|,ρV}, then

vk(λ)= 2kzk

λk+1
= 1

ρV

ρV
λ

(
2μz
λ

)k( z

μz

)k
∈ 1

ρV

[
ρV
λ

(
2μz
λ

)k]
ρVV ⊂V (3.17)

for each k ∈N. Therefore,

n∑
k=0

zk

λk+1
=

n∑
k=0

vk(λ)
2k

∈O′ (3.18)

for each n∈N. Since O′ is closed, then

z(λ)−1 =
∞∑
k=0

zk

λk+1
= lim

n→∞

n∑
k=0

vk(λ)
2k

∈O′ ⊂O, (3.19)

whenever |λ| > max{3|μz|,ρV ,R}. Hence,

lim
|λ|→∞

z(λ)−1 = θA,

lim
|λ|→∞

Ψ(λ)= lim
|λ|→∞

πM
(
z(λ)−1)= πM

(
lim
|λ|→∞

z(λ)−1
)
= θA−M.

(3.20)

Thus, Ψ(λ)= θA−M or a(λ)∈M for each λ∈ C. Therefore,

eA =−
(
a(λ)z(λ)− eA

)
+ a(λ)z(λ)∈M, (3.21)

which is a contradiction. Consequently, every z ∈ Z(A) defines a λz ∈ C such that z =
λzeA. Hence, Z(A) is isomorphic to C.

Moreover, the isomorphism ρ, defined by ρ(z)= λz for each z ∈ Z(A), is continuous.
Indeed, if O is a neighbourhood of zero in C, then there exists an ε > 0 such that

Oε =
{
λ∈ C : |λ| < ε}⊂O. (3.22)

Let λ0 ∈Oε\{0}. Since A is a Hausdorff space, there exists a balanced neighbourhood V
of zero in A such that λ0eA �∈V . But then we also have

λ0eA �∈V ′ =V ∩Z(A). (3.23)

If |λz|� |λ0|, then |λ0λ−1
z |� 1 and λ0eA = (λ0λ−1

z )z ∈ V ′ for each z ∈ V ′, which is not
possible. Hence, λz ∈ O for each z ∈ V ′. Thus, ρ is continuous (ρ−1 is continuous be-
cause Z(A) is a topological linear space in the subspace topology). Consequently, Z(A) is
topologically isomorphic to C. �
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Remark 3.2. Using Theorem 3.1, it is possible to describe all closed maximal regular one-
sided and two-sided ideals in sequentially complete exponentially galbed algebras with
bounded elements.
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