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Comparison arguments are used to study a problem in combustion theory consisting of a
nonlinear parabolic equation together with initial and boundary conditions. Upper and
lower bounds for the problem are constructed. The lower solutions are used to determine
whether the solution of the problem is increasing in time for certain initial condition. Nu-
merical results are presented for the slab, infinite cylinder, and unit sphere. The bounds
are compared with the existing ones in the literature for the slab geometry.
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1. Introduction

In this paper we consider the nonlinear parabolic equation, which describes the reactive-
diffusive problem for a nonisothermal permeable catalyst pellet with first-order Arrhe-
nius kinetics. The governing equation in the nondimensional form is

∂θ

∂t
=∇2θ + λ2(β− θ)eδ(θ/(1+θ)), x ∈Ω, t > 0, (1.1)

subject to homogeneous boundary condition of Dirichlet type and initial condition

θ(x,0)= r(x)≥ 0. (1.2)

HereΩ is a bounded domain ofRN and ∂Ω is the smooth enough boundary ofΩ. θ(x, t) is
the temperature of the reacting species, and β, δ, and λ are nonnegative parameters which
represent the chemical heat release, the activation energy of the reaction, and the Thiele
modulus, respectively. All variables are considered nondimensionalized. The full deriva-
tion of the system and extensive literature for early work can be found in [3]. The steady-
state problem has been studied by many authors for the Dirichlet and Robin boundary
conditions, see [5–9], and here is a summary of previous work. Kapila and Matkowsky
[7] considered the problem on the slab and infinite cylinder and derived asymptotic ex-
pansion for the solution with large δ. They found that the behavior of the solution is
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similar for both geometries and therefore only presented the results for the infinite cylin-
der. For the slab geometry the steady-state system has been reduced to a single equation
by integrating the governing differential equation twice, see [5]. The literature shows that
for certain values of δ and β there exist λo and λo such that the steady-state system has
multiple solutions for λo ≤ λ≤ λo. Here λo and λo correspond to extinction and ignition
limits, respectively, and the corresponding steady-state solutions are known as the middle
solutions, whereas for λ > λo and λ < λo the unique steady-state solutions are known as
the upper and lower solutions, respectively. The number of middle solutions depends on
the geometry of the domain Ω and the boundary conditions [6–8]. Of interest are the
values of λo and λo. An attempt to evaluate these values was made in [7] for the slab and
infinite cylinder geometries using asymptotic expansion approach. Recently, Al-Refai [1]
has considered the problem with Dirichlet boundary conditions. He proved the existence
of a nonnegative solution and derived sharp upper and lower bounds for the values of λ
and δ using comparison theory. Also in [2] he derived analytical upperand lower bounds
for the extinction and ignition limits for the three geometries: slab, infinite cylinder, and
unit sphere. Although the steady-state problem may have more than one solution, the
problem with time-dependent has a unique solution provided that 0 ≤ θ(x,0) ≤ β (see
[10, page 42]).

In this paper, we study the time-dependent problem in the slab [0,1], in the unit
sphere, and infinite cylinder. In Section 2, we write some preliminary results for the sys-
tem which will be used through the text. In Section 3, we construct upper and lower
solutions for the problem (1.1)-(1.2). In Section 4, we present some numerical results in
the three geometries. Finally, we write some concluding remarks in Section 5.

2. A preliminary result

We have the problem

Pθ = ∂θ

∂t
−∇2θ− λ2g(θ)= 0, x ∈Ω, t > 0,

θ(x, t)= 0, x ∈ ∂Ω,

θ(x,0)= r(x)≥ 0,

(2.1)

where g(θ) = (β− θ)eδ(θ/(1+θ)). A well known result for the system is that 0≤ θ(x, t) ≤ β
provided that r(x)≤ β. If δβ≤ 1, then

g′(θ)=−e
δ(θ/(θ+1))

(θ + 1)2

[
θ2 + (2 + δ)θ+ 1− δβ] < 0, (2.2)

and the corresponding steady-state problem has a unique solution, see [2, 10]. While, for
δ > 4 + 4/β, the steady-state problem may have more than one solution. The following
result will be used in this paper.
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Proposition 2.1. Consider the problem in (2.1) with g′(θ) being bounded.
(i) If (∂θ/∂t)(x,0) < 0, then (∂θ/∂t)(x, t) < 0 for all x ∈Ω, and t ≥ 0.
(ii) If (∂θ/∂t)(x,0) > 0, then (∂θ/∂t)(x, t) > 0 for all x ∈Ω, and t ≥ 0.

For the proof one can see [4, 12].

3. Upper and lower bounds

To construct upper and lower bounds for the problem we use maximum principle for
parabolic equations, see [11, page 187]. Let w(x, t) and u(x, t) satisfy

Pw ≤ 0≤ Pu, x ∈Ω, t > 0,

w(x, t)≤ 0≤ u(x, t), x ∈ ∂Ω,

w(x,0)≤ r(x)≤ u(x,0).

(3.1)

Then w(x, t) and u(x, t) are lower and upper solutions for the problem in (2.1), respec-
tively, w(x, t)≤ θ(x, t)≤ u(x, t), as long as both exist.

Let λ1 be the first eigenvalue and φ1 the corresponding normalized, with respect to
L2-norm, eigenfunction of

∇2φ =−λφ, x ∈Ω,

φ= 0, x ∈ ∂Ω.
(3.2)

It is easily obtained that φ1 =
√

2sin(πx), (1/
√

2π)(sin(πx)/x), and J0(γ0x), for the slab,
spherical, and cylindrical geometries, respectively. Here J0(γ0x) is the Bessel function of
order zero, γ0 = 2.404825 . . . is the first zero of J0(x), and 0 ≤ x ≤ 1. In all cases, the first
eigenfunction φ1 is nonnegative in Ω.

3.1. Bounds when g(θ) is decreasing. We derive upper and lower solutions for the prob-
lem when δβ ≤ 1 and so g(θ) is decreasing. The function g(θ) has only one inflection
point θ0 = (δβ− 2β− 2)/(δ + 2 + 2β), and g(θ) is concave up for θ < θ0 and concave down
for θ > θ0. For δβ ≤ 1, we have θ0 < 0, and therefore, g(θ) is concave down on [0,β].

Theorem 3.1. Let φ1 and λ1 be as defined in (3.2) and let φ1m be the maximum of φ1 on Ω.
Let k(t) be the solution of the IVP

k′(t)= λ2g
(
k(t)

)− λ1k(t),

k(0)= k0.
(3.3)

Then k0 ≤ k(t)≤ km andw(x, t)= k(t)(φ1(x)/φ1m) is a lower solution of (2.1). Here km is
the unique solution of g(km)= (λ1/λ2)km and k0 = k(0) is chosen such that k0(φ1(x)/φ1m)≤
r(x).

Proof. Since g(0) = β > 0, we have (λ1/λ2)u ≤ g(u) for 0 ≤ u ≤ km and (λ1/λ2)u ≥ g(u)
for km ≤ u≤ β. If k0 < km, then k′(t)≥ 0 and k(t) is increasing with equilibrium value km,
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and therefore, k0 ≤ k(t)≤ km. The analogous result is obtained if km ≤ k0 ≤ β, but k(t) is
decreasing. Now,

Pw = k′ φ1

φ1m
+ λ1k

φ1

φ1m
− λ2g

(
k
φ1

φ1m

)

= φ1

φ1m
λ2g(k)− λ2g

(
k
φ1

φ1m

)
≤ λ2

[
g(k)− g

(
k
φ1

φ1m

)]
.

(3.4)

Since k(t)(φ1/φ1m) ≤ k(t) and g is decreasing, we have Pw ≤ 0, which together with
w(x,0)≤ r(x) proves that w is a lower solution of (2.1). �

Theorem 3.2. Let ψ be the solution of

∇2ψ =−1, x ∈Ω,

ψ = 0, x ∈ ∂Ω.
(3.5)

Then ψ ≥ 0, and u(x, t)= h(t)ψ(x) is an upper solution of (2.1), where

h(t)= h0− 1
λ2g′(0)

[
1− eλ2g′(0)t], (3.6)

and h0 = h(0) is chosen such that h0 ≥ λ2β and h0ψ(x)≥ r(x).

Proof. To show that ψ ≥ 0, let ξ = −ψ, then ξ satisfies ∇2ξ = 1 ≥ 0, and ξ = 0 on ∂Ω.
Using maximum principle of elliptic equations (see [11, page 64]), we have ξ ≤ 0, and
hence ψ ≥ 0. Since g′(0)= δβ− 1≤ 0, it is not difficult to see that h(t) is increasing with

h0 ≤ h(t)≤ h0 +
1

λ2(1− δβ)
, (3.7)

and it is the unique solution of the IVP

h′′ − λ2g′(0)h′ = 0,

h(0)= h0 > 0, h′(0)= 1.
(3.8)

Now, Pu= h′ψ +h− λ2g(hψ) and

∂Pu

∂t
= h′′ψ +h′ − λ2h′ψg′(hψ)= (h′′ − λ2h′g′(hψ)

)
ψ +h′. (3.9)

Since h(t)ψ ≥ 0 and g′ is decreasing, we have

∂Pu

∂t
≥ (h′′ − λ2h′g′(0)

)
ψ +h′(t)= h′(t). (3.10)

Integrate the above inequality from 0 to t to get

Pu−Pu(0)≥ h(t)−h(0), (3.11)
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or

Pu≥ ψ +h(t)− λ2g
(
h0ψ

)≥ h(t)− λ2β ≥ 0, (3.12)

which together with u(x,0) = h0ψ(x) ≥ r(x) ≥ 0 proves that u is an upper solution of
(2.1). �

3.2. Lower solutions for δ > 4 + 4/β. When δ > 4 + 4/β, the inflection point θ0 =
(β(δ− 2)− 2)/(δ + 2 + 2β)∈ [0,β]. Let θ∗ ∈ [0,β] be the smallest solution of (λ1/λ2)θ =
g(θ) and λ1/λ2 = g′(θ), and let λ∗ be the corresponding value of λ, see Figure 3.1. For the
exact values of θ∗ and λ∗, one is referred to [2]. We have the following.

Proposition 3.3. (1) θ0= (β(δ−2)−2)/(δ+2β+2) > θ∗= (β(δ−2)−
√
βδ(βδ−4β−4))/

2(β+ δ) for δ > 4 + 4/β.
(2) The function h(θ)= g(θ)− (λ1/λ2)θ is decreasing in [0,θ∗] for λ≤ λ∗.

Proof. (1) It is enough to show that

β(δ− 2)− 2
δ + 2 + 2β

>
β(δ− 2)
2(β+ δ)

, (3.13)

or

2(β+ δ)
[
β(δ− 2)− 2

]
> β(δ− 2)(δ + 2β+ 2). (3.14)

The last inequality is equivalent to

βδ2− δ(4β+ 4)≥ 0. (3.15)

Now, 4β+ 4 < βδ and hence −δ(4β+ 4) >−βδ2, which proves (3.15).
(2) Since θ∗ < θ0, we have g′(θ) increasing in [0,θ∗] and hence h′(θ)= g′(θ)− λ1/λ2 ≤

g′(θ∗)− λ1/(λ∗)2 = 0, which proves the result. �

Theorem 3.4. Let φ1 and λ1 be as defined in (3.2) and let φ1m be the maximum of φ1 on Ω.
For λ≤ λ∗, let k(t) be the solution of the IVP

k′(t)= 1
φ1m

{
λ2g
(
k(t)φ1m

)− λ1k(t)φ1m
}

,

k(0)= k0,
(3.16)

where k0 ≤ kM is chosen such that k0φ1(x) ≤ r(x), and kM is the solution (the smallest so-
lution if there is more than one) of λ2g(kMφ1m) = λ1kMφ1m, see Figure 3.1. Then k(t) is
an increasing function, with k0 ≤ k(t) ≤ kM , and w(x, t) = k(t)φ1(x) is a lower solution of
(2.1).
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Figure 3.1. The values of θ∗ and kM , for β= 0.3 and δ = 25.

Proof. Since k0 ≤ kM and (λ1/λ2)φ1mu≤ g(φ1mu) for 0≤ u≤ kM , we have k(t) increasing
with equilibrium value kM , that is, k0 ≤ k(t)≤ kM . Now,

Pw = k′(t)φ1 + λ1k(t)φ1− λ2g
(
k(t)φ1

)

= φ1

φ1m

{
λ2g
(
kφ1m

)− λ1kφ1m
}

+ λ1kφ1− λ2g
(
kφ1

)

≤ (λ2g
(
kφ1m

)− λ1kφ1m
)− (λ2g

(
kφ1

)− λ1kφ1
)
.

(3.17)

Since g(θ)− (λ1/λ2)θ is decreasing in [0,θ∗] for λ≤ λ∗, we have Pw ≤ 0 and the result
is obtained. �

Theorem 3.5. For λ > λ∗, let ε(λ) > 1 be such that g(θ∗)= ε(λ1/λ2)θ∗, and let k(t) be the
solution of

k′(t)= 1
φ1m

{
λ2g
(
k(t)φ1m

)− ελ1k(t)φ1m
}

,

k(0)= k0,
(3.18)

where k0 ≤ θ∗/φ1m is chosen such that k0φ1(x) ≤ r(x). Then the function h(θ) = g(θ)−
ε(λ1/λ2)θ is decreasing in [0,θ∗] and w(x, t)= k(t)φ1(x) is a lower solution of (2.1).

Proof. Since ε = (λ/λ∗)2, we have h(θ)=g(θ)−(λ1/(λ∗)2)θ and h′(θ)=g′(θ)−λ1/(λ∗)2 ≤
g′(θ∗)− λ1/(λ∗)2 = 0. Using the same arguments as in the previous theorem, one can
verify that k(t) is increasing in k0 ≤ k(t) ≤ θ∗/φ1m. Since g(θ)− ε(λ1/λ2)θ is decreasing
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in [0,θ∗] and ε > 1 we have

Pw = k′(t)φ1 + λ1k(t)φ1− λ2g
(
k(t)φ1

)

= φ1

φ1m

(
λ2g
(
kφ1m

)− ελ1kφ1m
)− (λ2g

(
kφ1

)− λ1kφ1
)

≤ λ2g
(
kφ1m

)− ελ1kφ1m−
(
λ2g
(
kφ1

)− ελ1kφ1
)

= λ2
([
g
(
kφ1m

)− ελ1

λ2
kφ1m

]
−
[
g
(
kφ1

)− ελ1

λ2
kφ1

])
≤ 0,

(3.19)

which proves the result. �

4. Numerical results

We consider the case where g(θ) is decreasing, and use Theorems 3.1 and 3.2 to ob-
tain lower and upper solutions of (2.1). We present the bounds for different values of
λ, β, δ and 0 ≤ t ≤ 0.2, with initial condition θ(x,0) = λ2βψ(x), where ψ(x) is defined
in Theorem 3.2. Figures 4.1, 4.2, and 4.3 depict these bounds of the problem when Ω
is the slab, unit sphere, and infinite cylinder, respectively, and β = 0.5, δ = 0.1, and λ =
0.5,1,2,5. In order for the condition k0(φ1/φ1m)≤ r(x) to be satisfied in Theorem 3.1, we
take k0 = λ2β/8, λ2β/18.9, λ2β/6.4, for the slab, sphere, and infinite cylinder, respectively.
From the figures one can see that the upper bounds are increasing in time, where

h(t)= λ2β+
1
λ2

1
1− δβ

[
1− e−λ2(1−δβ)t], (4.1)

whereas the lower bounds are decreasing or increasing in time, depending on the geome-
try k0 and km. For example, the lower solutions are decreasing in time in the slab geometry
since k0 > km, while they are increasing with time for λ= 0.5,1,2 and decreasing for λ= 5
in the sphere. Table 4.1 shows k0 and km, for β = 0.5, δ = 0.1, and different values of λ.
Also, the upper and lower solutions are close to each other and give good information
about the exact solution θ.

From Proposition 2.1 we have that if θt(x,0) 	= 0, then the solution θ is either increas-
ing or decreasing in time. We now take θ(x,0) = cφ1(x) and ask the following: for what
values of c the solution θ of (2.1) is increasing with respect to time? To answer the ques-
tion, we substitute k0 = cφ1m in Theorem 3.1. Since θ(x,0) = w(x,0) and w(x, t) is in-
creasing in time for c < km/φ1m, then so is θ.

Finally, we compare our bounds with the bounds obtained in [10]. Consider the PDE

∂v

∂t
=∇2v− λ2c0v+μ0β, x ∈Ω,

v(x, t)= 0, x ∈ ∂Ω,

v(x,0)= r(x)≥ 0,

(4.2)

where c0 =max{−λ2g′(v), 0 ≤ v ≤ β}. Let v(x, t) be the solution of (4.2) with μ0 = c0,
then v(x, t) is an upper solution of (2.1). A lower solution v(x, t) of (2.1) is obtained
by solving (4.2) with μ0 = λ2. For more details one can see [10, page 36]. For the slab
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Figure 4.1. Upper and lower bounds for the slab geometry, when β= 0.5, δ = 0.1, and λ= 0.5,1,2,5.
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Figure 4.2. Upper and lower bounds for the spherical geometry, when β = 0.5, δ = 0.1, and λ =
0.5,1,2,5.
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Figure 4.3. Upper and lower bounds for the cylindrical geometry, when β = 0.5, δ = 0.1, and λ =
0.5,1,2,5.

Table 4.1. The values of k0 and km, for β = 0.5 and δ = 0.1, in the three geometries.

λ 0.5 1.0 2.0 5.0

Slab
k0 0.015625 0.062500 0.250000 1.562500

km 0.012367 0.046185 0.145507 0.361155

Sphere
k0 0.006614 0.026455 0.105820 0.661380

km 0.012367 0.046185 0.145507 0.361155

Cylinder
k0 0.019531 0.078125 0.312500 1.953100

km 0.020759 0.074147 0.206504 0.408257

geometry we have

v(x, t)= 2β
π

∞∑

n=1

1− (−1)n

n

(
λ2

n2π2
e−rnt +

μ0

rn

(
1− e−rnt)

)
sin(nπx),

v(x, t)= 2βλ2

π

∞∑

n=1

1− (−1)n

n

(
1

n2π2
e−rnt +

1
rn

(
1− e−rnt)

)
sin(nπx),

(4.3)

where rn = n2π2 + λ2μ0 and μ0 = 1.033895.
Figures 4.4 and 4.5 on the left show the upper solutions u and v and on the right

the difference between them. For λ = 0.1 and 0.5 we have v− u ≥ 0, that is, the upper
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Figure 4.4. The upper solutions u(x, t) and v(x, t) and the difference v(x, t)− u(x, t) for the slab ge-
ometry, when β= 0.5, δ = 0.1, and λ= 0.1,0.5.
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Figure 4.5. The upper solutions u(x, t) and v(x, t) and the difference v(x, t)− u(x, t) for the slab ge-
ometry, when β= 0.5, δ = 0.1, and λ= 1,4.
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Figure 4.6. The lower solutions w(x, t) and v(x, t) and the difference v(x, t)−w(x, t) for the slab ge-
ometry, when β= 0.5, δ = 0.1, and λ= 0.1,0.5.
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Figure 4.7. The lower solutions w(x, t) and v(x, t) and the difference v(x, t)−w(x, t) for the slab ge-
ometry, when β= 0.5, δ = 0.1, and λ= 1,4.

solution u is better than v. Whereas for λ= 1 and 4 we have u≥ v, and the upper solution
v is better than u. Figures 4.6 and 4.7 on the left show the lower solutions w and v and on
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the right the difference between them. One can see that the two bounds are close to each
other and for all values of λ we have v ≥w, that is, the lower solution v is better than w.

5. Concluding remarks

We have used comparison arguments to study a nonlinear parabolic equation arising
from the theory of catalyst pellets reaction. For δβ ≤ 1, a lower solution of the form
w(x, t) = k(t)(φ1/φ1m) is obtained, where φ1 is the first normalized eigenfunction of the
associated Laplacian operator, φ1m is the maximum of φ1 in Ω, and k(t) is the solution
of an IVP. Depending on the initial condition k(0), the function k(t) might be decreasing
or increasing. An upper solution of the form u(x, t) = h(t)ψ(x) is obtained by solving a
second-order linear IVP for h(t) and a linear PDE for ψ, where h(t) is increasing in time.
The lower solution is used to give a sufficient condition for the solution θ to be increasing
in time for certain initial condition. For the case where δ > 4 + 4/β, we have constructed
a lower solution w(x, t)= k(t)φ1(x), where k(t) is increasing and depends on the value of
λ∗. We present the upper and lower solutions for certain parameters in the three geome-
tries numerically. These upper and lower solutions are compared with the ones obtained
by Pao [10] for the slab geometry.
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