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For random coefficients aj and bj we consider a random trigonometric polynomial de-
fined as Tn(θ) =∑n

j=0{aj cos jθ + bj sin jθ}. The expected number of real zeros of Tn(θ)
in the interval (0,2π) can be easily obtained. In this note we show that this number is in
fact n/

√
3. However the variance of the above number is not known. This note presents a

method which leads to the asymptotic value for the covariance of the number of real
zeros of the above polynomial in intervals (0,π) and (π,2π). It can be seen that our
method in fact remains valid to obtain the result for any two disjoint intervals. The ap-
plicability of our method to the classical random trigonometric polynomial, defined as
Pn(θ) =∑n

j=0 aj(ω)cos jθ, is also discussed. Tn(θ) has the advantage on Pn(θ) of being
stationary, with respect to θ, for which, therefore, a more advanced method developed
could be used to yield the results.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let (Ω,Pr,�) be a fixed probability space and for ω ∈Ω let {aj(ω)}nj=0 and {bj(ω)}nj=0 be
sequences of independent, identically and normally distributed random variables, both
with means zero and variances one. Denote by Nn(α,β) the number of real zeros of ran-
dom trigonometric polynomial

Tn(θ,ω)≡ Tn(θ)=
n∑

j=0

{
aj(ω)cos jθ + bj(ω)sin jθ

}
(1.1)

in the interval (α,β) and by ENn(α,β) its expected value. Indeed the above definition of
random trigonometric polynomials differs from the classical case of

Pn(θ,ω)≡ Pn(θ)=
n∑

j=0

aj(ω)cos jθ (1.2)
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2 Covariance of the number of real zeros

which has been extensively studied. The literature includes the original work of Dunnage
[3] which was later extended by Das [2] and Wilkins [8] and was reviewed by Bharucha-
Reid and Sambandham [1] and recently by Farahmand [7]. They generally show that for
all sufficiently large n and for different classes of distributions of the coefficients or in
different cases, for example, the level crossing case instead of zero crossings, ENn(0,2π) is
asymptotic to 2n/

√
3. In particular the above work of Wilkins is of interest as it shows that

the error term involved in the asymptotic estimate is small and in fact is O(1). However,
finding the variance of the number of real zeros involves a different level of difficulties.
There have been several attempts, for instance, see [4] or [6], to obtain the asymptotic
value for the variance of Nn(0,2π) for Pn(θ). So far, the results are only in the form of
upper bounds. As far as the expected number of zeros is concerned the asymptotic value
of ENn(0,2π) for Tn(θ) and Pn(θ) is the same. Therefore, we conjecture that their vari-
ances are also the same. In addition, with the above assumptions of independence of the
coefficients aj(ω) and bj(ω) the inner term of Tn(θ) given in (1.1) has the property of
being stationary with respect to θ. This can be seen by evaluating its covariance function
as

E
{[
aj(ω)cos jθ + bj(ω)sin jθ

][
aj(ω)cos j(θ + τ) + bj sin j(θ + τ)

]}

= cos jθ cos j(θ + τ) + sin jθ sin j(θ + τ)= cos jτ.
(1.3)

Therefore it is natural to seek to evaluate the variance of number of zeros of Tn(θ) which
possess the above stationary property instead of Pn(θ) given in (1.2). We, however, are
unable to make any substantial progress in this direction. Instead, we obtain the covari-
ance of the number of real zeros in the intervals (0,π) and (π,2π). As our main aim
remains to estimate the variance of Nn(0,2π) we will present our results and discussions
in such a way that they could be used to be generalized for variance. Although we are
considering two intervals (0,π) and (π,2π) our proof is also valid for any two disjoint
intervals. A small modification and some generalization to our analysis should lead to an
asymptotic value for the variance. Looking at our proof it suggests that our estimate for
the covariance will remain the same as for the variance. Furthermore, although we are
considering the polynomial Tn(θ) given in (1.1) as far as the results for the covariance,
and, therefore, the variance are concerned, it should remain invariant also for Pn(θ). For
random trigonometric polynomial Tn(θ) given in (1.1) we prove the following.

Theorem 1.1. With the above assumption of independent and Gaussian distribution of the
coefficients {aj(ω)}nj=0 and {bj(ω)}nj=0 the covariance of the number of real zeros of Tn(θ) is

cov
{
Nn(0,π),Nn(π,2π)

}= 4n+O(1). (1.4)

2. Covariance of the number of real zeros

For any two intervals (α,β) and (δ,γ) it is known that

E
{
Nn(α,β)Nn(δ,β)

}=
∫ β

α

∫ β

δ

∫∫∞

−∞
|xy|pθ1,θ2 (0,0,x, y)dxdxdθ1dθ2, (2.1)
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where pθ1,θ2 (z1,z2,x, y) denotes the four-dimensional joint probability density function
of Tn(θ1), Tn(θ2), T′n(θ1), and T′n(θ2). For our purpose and using the above formula
to obtain the result for The covariance case, the two intervals (α,β) and (δ,γ) are dis-
joint. However the above formula and the following discussions remain valid for any two
intervals, whether or not they are overlapping. Let Π be the 4× 4 variance-covariance
matrix of random variables Tn(θ1), Tn(θ2), T′n(θ1), and T′n(θ2) with cofactor Πi j of i jth
element. Then using the Gaussian assumption for the coefficients we can calculate the
above-required joint density function as

Pθ1,θ2 (0,0,x, y)= 1
4π2

√|Π| exp

{

− Π33x2 +Π44y2 +
(
Π34 +Π43

)
xy

2|Π|

}

. (2.2)

In order to evaluate (2.1) further in (2.2) we let q = x
√
Π33/|Π| and s = y

√
Π44/|Π|. As

we will see later Π33 and Π44 are positive and therefore q and s are real. Hence from (2.2)
we obtain

∫∫∞

−∞
|xy|pθ1,θ2 (0,0,x, y)dxdx

= |Π|3/2
4π2Π33Π44

∫∫∞

−∞
|qs|exp

{

− q2 + s2

2
−
(
Π34 +Π43√
Π33Π44

)

qs

}

dqds

= |Π|3/2
4π2Π33Π44

∫∫∞

−∞
|qs|exp

(

− q2 + s2 + 2ρqs
2

)

dqds,

(2.3)

where ρ = (Π34 +Π43)/2
√
Π33Π44. Now let ρ = cosφ, then from [7, page 97] the integral

appear in (2.3) can be evaluated as 4{1 + (π/2−φ)cotφ}/ cos2φ. Therefore for Gaussian
assumption the required formula in (2.1) is simplified as

ENn(α,β)Nn(γ,δ)= 1
π2

∫ β

α

∫ δ

γ

|Π|3/2{1 + (π/2−φ)cotφ
}

Π33Π44 cos2φ
dθ1dθ2. (2.4)

Now we let

An
(
θ1,θ2

)= cov
{
Tn
(
θ1
)
,Tn
(
θ2
)}

, Cn
(
θ1,θ2

)= cov
{
Tn
(
θ1
)
,T′n
(
θ2
)}

,

Bn
(
θ1,θ2

)= cov
{
T′n
(
θ1
)
,T′n
(
θ2
)}

,
(2.5)

where T′n(θ) is the derivative of Tn(θ) with respect to θ. It is easy to show that the
cov{Tn(θ),Tn(θ)} = 0, alsoAn(θ,θ)= var{Tn(θ)} = n and Bn(θ,θ)= var{T′n(θ)} = n(n+
1)(2n+ 1)/6 are independent of θ. Therefore we can obtain the variance-covariance ma-
trix of random variables Tn(θ1), Tn(θ2), T′n(θ1), and T′n(θ2) as

Π=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n An
(
θ1,θ2

)
0 Cn

(
θ1,θ2

)

An
(
θ1,θ2

)
n −Cn

(
θ1,θ2

)
0

0 −Cn
(
θ1,θ2

) n(n+ 1)(2n+ 1)
6

Bn
(
θ1,θ2

)

Cn
(
θ1,θ2

)
0 Bn

(
θ1,θ2

) n(n+ 1)(2n+ 1)
6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.6)



4 Covariance of the number of real zeros

Let

Sn
(
θ1,θ2

)= sin
{

(2n+ 1)
(
θ1− θ2

)
/2
}

sin
{(
θ1− θ2

)
/2
} ,

Zn
(
θ1,θ2

)= cos
{

(2n+ 1)
(
θ1− θ2

)
/2
}

sin{(θ1− θ2
)
/2} .

(2.7)

Then we can obtain the remaining elements of the above matrix as

An
(
θ1,θ2

)≡An
(
θ2,θ1

)=
n∑

j=0

cos j
(
θ1,θ2

)= Sn
(
θ1,θ2

)− 1
2

,

Cn
(
θ1,θ2

)≡−Cn
(
θ2,θ1

)=
n∑

j=0

j sin j
(
θ1− θ2

)

=− (2n+ 1)Zn
(
θ1,θ2

)

4
+
Sn(θ1,θ2)cot

{(
θ1− θ2

)
/2
}

4
,

Bn
(
θ1,θ2

)≡ Bn
(
θ2,θ1

)=
n∑

j=0

j2 cos j
(
θ1− θ2

)

=− (2n+ 1)2

8
Sn
(
θ1,θ2

)− Sn
(
θ1,θ2

)

8
+

(2n+ 1)
4

Zn
(
θ1,θ2

)
cot
{(

θ1− θ2
)

2

}

− Sn
(
θ1,θ2

)

4
cot2

{(
θ1− θ2

)

2

}

.

(2.8)

Now we are in the position to proceed with the proof of our theorem.

3. Proof of the theorem

From (2.6) we can obtain the determinate of Π as

|Π| = n2
{
n(n+ 1)(2n+ 1)

6

}2

−n2B2
n

(
θ1,θ2

)

− 2nC2
n

(
θ1,θ2

)n(n+ 1)(2n+ 1)
6

−A2
n

(
θ1,θ2

)
{
n(n+ 1)(2n+ 1)

6

}2

+A2
n

(
θ1,θ2

)
B2
n

(
θ1,θ2

)
+ 2An

(
θ1,θ2

)
C2(θ1,θ2

)
Bn
(
θ1,θ2

)
+C4

n

(
θ1,θ2

)
.

(3.1)

Also the required cofactors are

Π43 =Π34 = n2Bn
(
θ1,θ2

)−A2(θ1,θ2
)
Bn
(
θ1,θ2

)−A
(
θ1,θ2

)
C2(θ1,θ2

)
, (3.2)

Π33 =Π44 = n3(n+ 1)(2n+ 1)
6

−n2C2(θ1,θ2
)

+
n(n+ 1)(2n+ 1)

6
A2
n

(
θ1,θ2

)
. (3.3)
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Now we use the advantage that θ1 and θ2 are disjoint and therefore Sn(θ1,θ2), Zn(θ1,θ2)
and cot(θ1− θ2) are bounded. Therefore from (3.1)–(3.3) we obtain

|Π| ∼ n2
{
n(n+ 1)(2n+ 1)

6

}2

,

|Π33| ∼ n3(n+ 1)(2n+ 1)
6

,

|Π34| ∼Π43 ∼ n2Bn
(
θ1,θ2

)=O
(
n4Sn

(
θ1,θ2

))
.

(3.4)

In order to evaluate the integral that appears in (2.4) we note that from (3.4)

ρ = Π34 +Π43

2
√
Π33Π44

−→ 0 (3.5)

as n→∞ and therefore for sufficiently large n,

φ= arccosρ −→ π

2
. (3.6)

This summarizes the value of (2.4) to

E
{
Nn(α,β)Nn(δ,γ)

}=
∫ β

α

∫ γ

δ

|Π|3/2
π2Π33Π44

dθ1dθ2. (3.7)

With our assumptions of our theorem it turns out that |Π|, Π33, and Π44 are independent
of θ1 and θ2. Also for all sufficiently large n,

|Π| ∼ n4(n+ 1)2(2n+ 1)2

36
∼ n8

9
+
n7

3
,

Π44 ∼Π33 ∼ n3(n+ 1)(2n+ 1)
6

∼ n5

3
.

(3.8)

Therefore

E{Nn(0,π)Nn(π,2π)} ∼ |Π|3/2
Π33Π44

∼
{
n8/9 +n7/3

}3/2

(n5/3)2
∼ n2

3
+

9n
2
. (3.9)

In order to proceed we need to find ENn(0,π) and ENn(π,2π). To this end we use the
Kac-Rice formula and because of the stationary property of Tn(θ) mentioned above, we
are able to obtain an estimate with small error easily. Using a same method as [5] and
since cov(Tn(θ),T′(θ))= 0, we have

ENn(0,π)= 1
π

∫ π

0

B

πA
dθ, (3.10)

where

A2 = var
{
Tn(θ)

}= n,

B2 = var
{
Tn(θ)

}= n(n+ 1)(2n+ 1)
6

.
(3.11)



6 Covariance of the number of real zeros

Therefore

ENn(0,π)=
√
n(n+ 1)(2n+ 1)√

6n
=
√

n2

3
+
n

2
+

1
6
= n√

3
+

√
3

4
+O

(
1
n

)

. (3.12)

Hence by (3.9), (3.12) and since a similar result to (3.12) can be obtained for ENn(π,2π),
we can obtain

cov
{
Nn(0,π),Nn(π,2π)

}∼ n2

3
+

9n
2
−
{

n√
3

+

√
3

4
+O(1)

}2

∼ 4n+O(1). (3.13)

This completes the proof of the theorem.
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