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components. The efficiency and power of the technique are shown for wide classes of
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1. Introduction

We consider linear, one-dimensional, time-dependent partial differential equations
(PDEs) of the form

N∑

n=0

αn(x, t)
∂nu

∂tn
=

M∑

m=1

βm(x, t)
∂mu

∂xm
(x, t) + f (x, t), (x, t)∈Ω⊂R2, (1.1)

where (αn)n=0,N , (βm)m=1,M are given coefficients, αn �= 0, βM �= 0, and N , M are positive
integers. Associated with (1.1), we can consider the initial conditions

∂nu

∂tn
(x,0)= gn(x), n= 0,(N − 1), x ∈R, (1.2)

or the lateral (Cauchy) boundary conditions

∂mu

∂xm
(0, t)= fm(t), m= 0,(M− 1), t ∈R. (1.3)

When the initial conditions (1.2) are imposed, Ω = R× (0,∞); whilst when the lat-
eral boundary conditions (1.3) are imposed, Ω= (0,∞)×R. Further, we assume that the
functions f , (αn)n=0,N , (βm)m=1,M , (gn)n=0,(N−1), and ( fm)m=1,(M−1) are such that problems
(1.1) and (1.2) and (1.1) and (1.3) have a solution.
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2 The decomposition method for linear PDEs

In recent years, the Adomian decomposition method (ADM) has been applied to wide
classes of stochastic and deterministic problems in many interesting mathematical and
physical areas, [5, 6]. For linear PDEs, this method is similar to the method of successive
approximations (Picard’s iterations), whilst for nonlinear PDEs, is similar to the homo-
topy or imbedding method, [24]. The ADM provides analytical, verifiable, and rapidly
convergent approximations which yield insight into the character and behaviour of the
solution just as in the closed-form solution. In this study, we review and develop new
applications of the ADM for solving linear PDEs of the type (1.1) subject to the initial
conditions (1.2), or to the lateral boundary conditions (1.3).

A wide range of linear PDEs, which have very important practical applications in
mathematical physics, (see [35]), are investigated which include the advection equation
(Section 4.1), the heat equation (Section 4.2), the wave equation (Section 4.3), the KdV
equation (Section 4.4), and the Euler-Bernoulli equation (Section 4.5). Extensions to sys-
tems of linear PDEs and nonlinear PDEs, (see [20]) are presented in Sections 5 and 6,
respectively. Finally, conclusions are presented in Section 7.

2. Adomian’s decomposition method

First, let us define the following differential operators:

Gn = ∂n

∂tn
, n= 0,N ,

Fm = ∂m

∂xm
, m= 0,M,

(2.1)

with the convention that G0 = F0 = I = the identity operator.
Then (1.1)–(1.3) can be rewritten as

N∑

n=0

αn(x, t)Gnu(x, t)=
M∑

m=1

βm(x, t)Fmu(x, t) + f (x, t), (x, t)∈Ω, (2.2)

Gn(x,0)= gn(x), n= 0,(N − 1), x ∈R, (2.3)

Fm(0, t)= fm(t), m= 0,(M− 1), t ∈R. (2.4)

Now let us formally define the left-inverse integral operators

G−1
N =

∫ t0=t

0

∫ t1

0
···

∫ tN−1

0
dtN ···dt1, (2.5)

F−1
M =

∫ x0=x

0

∫ x1

0
···

∫ xM−1

0
dxM ···dx1. (2.6)
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Applying (2.5) to (2.2) and using (2.3), and (2.6) to (2.2) and using (2.4), we obtain

u(x, t)=G−1
N

(
f (x, t)
αN (x, t)

)
+
N−1∑

n=0

tn

n!
gn(x) +

M∑

m=1

G−1
N

(
βm(x, t)
αN (x, t)

Fmu(x, t)

)

−
N−1∑

n=0

G−1
N

(
αn(x, t)
αN (x, t)

Gnu(x, t)

)
,

(2.7)

u(x, t)=−F−1
M

(
f (x, t)
βM(x, t)

)
+
M−1∑

m=0

xm

m!
fm(t) +

N∑

n=0

F−1
M

(
αn(x, t)
βM(x, t)

Gnu(x, t)

)

−
M−1∑

m=1

F−1
M

(
βm(x, t)
βM(x, t)

Fmu(x, t)

)
,

(2.8)

respectively, where the last term in (2.8) vanishes if M = 1.
Using the ADM (see [6]), we define the following relationships for (2.7) and (2.8),

namely,

u0(x, t)=G−1
N

(
f (x, t)
αN (x, t)

)
+
N−1∑

l=0

tl

l!
gl(x),

uk+1(x, t)=
[ M∑

m=1

G−1
N

(
βm(x, t)
αN (x, t)

Fm

)
−

N−1∑

n=0

G−1
N

(
αn(x, t)
αN (x, t)

Gn

)]
uk(x, t), k ≥ 0,

(2.9)

u0(x, t)=−F−1
M

(
f (x, t)
βM(x, t)

)
+
M−1∑

l=0

xl

l!
fl(t),

uk+1(x, t)=
[ N∑

n=0

F−1
M

(
αn(x, t)
βM(x, t)

Gn

)
−

M−1∑

m=1

F−1
M

(
βm(x, t)
βM(x, t)

Fm

)]
uk(x, t), k ≥ 0,

(2.10)

respectively. Then we expect that

u(x, t)=
∞∑

k=0

uk(x, t) (2.11)

or if we define the sequence of partial sums

φK (x, t)=
K∑

k=0

uk(x, t), K ≥ 0, (2.12)

then limK→∞φK (x, t)= u(x, t).
Equation (2.9), via (2.11), gives the solution of problem (1.1) and (1.2) in Ω = R×

(0,∞), whilst (2.10), via (2.11), gives the solution of problem (1.1) and (1.3) in Ω =
(0,∞)×R.



4 The decomposition method for linear PDEs

3. A special case

We consider the special case of (1.1) with αn = 0 for n = 0,(N − 1), βm = 0 for m =
0,(M− 1), f = 0, αN , βM nonzero constants, given by

αN
∂Nu

∂tN
(x, t)= βM ∂

Mu

∂xM
(x, t), (x, t)∈Ω. (3.1)

Then (2.9) and (2.10) simplify to

u0(x, t)=
N−1∑

l=0

tl

l!
gl(x), uk+1(x, t)= βM

αN
G−1
N FMuk(x, t), k ≥ 0,

u0(x, t)=
M−1∑

l=0

tl

l!
fl(t), uk+1(x, t)= αN

βM
F−1
M GNuk(x, t), k ≥ 0,

(3.2)

respectively.
Solving (3.2), we obtain

uk(x, t)=
(
βM
αN

)k N−1∑

l=0

tl+Nk

(l+Nk)!
g(Mk)
l (x), k ≥ 0,

uk(x, t)=
(
αN
βM

)k M−1∑

l=0

xl+Mk

(l+Mk)!
f (Nk)
l (t), k ≥ 0,

(3.3)

respectively.
Then (2.11) gives explicitly the ADM partial t-solution of (1.2) and (3.1) as

u(x, t)=
∞∑

k=0

(
βM
αN

)k N−1∑

l=0

tl+Nk

(l+Nk)!
g(Mk)
l (x), (x, t)∈R× [0,∞), (3.4)

and the ADM partial x-solution of (1.3) and (3.1) as

u(x, t)=
∞∑

k=0

(
αN
βM

)k M−1∑

l=0

xl+Mk

(l+Mk)!
f (Nk)
l (t), (x, t)∈ [0,∞)×R. (3.5)

These solutions will be equal only when the compatibility conditions

fm(t)=
∞∑

k=0

(
βM
αN

)k N−1∑

l=0

tl+Nk

(l+Nk)!
g(Mk+m)
l (0), m= 0,(M− 1), t ∈ [0,∞), (3.6)

and the partial x-solution of (1.3) and (3.1) as

gn(x)=
∞∑

k=0

(
αN
βM

)k M−1∑

l=0

xl+Mk

(l+Mk)!
f (Nk+n)
l (0), n= 0,(N − 1), x ∈ [0,∞), (3.7)

hold.
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4. Applications

Without loss of generality, we may assume that N ≥M.

4.1. The advection equation (N =M = 1). In this application, we consider the time-
dependent spread of contaminants in moving fluids, which, in the simplest case, is gov-
erned by the one-dimensional linear advection equation

∂u

∂t
(x, t)= β1

∂u

∂x
(x, t), (x, t)∈Ω, (4.1)

where β1 is the constant coefficient of advection, which corresponds to the case N =M =
1, α1 = 1 in (3.1).

If (4.1) is solved subject to the initial condition

u(x,0)= g0(x), x ∈R, (4.2)

then (3.4) gives the ADM partial t-solution

u(x, t)=
∞∑

k=0

(
β1t
)k

k!
g(k)

0 (x), (x, t)∈R× [0,∞), (4.3)

whilst if (4.1) is solved subject to the boundary condition

u(0, t)= f0(t), t ∈R, (4.4)

then (3.5) gives the ADM partial x-solution (see [8])

u(x, t)=
∞∑

k=0

xk

βk1k!
f (k)
0 (t), (x, t)∈ [0,∞)×R. (4.5)

Example 4.1. Taking β1 = 1, g0(x) = x, f0(t) = t, then both the ADM partial solutions
(4.3) and (4.5) give, with only two terms u= u0 +u1 in the decomposition series (2.11),
the exact solution u(x, t)= x+ t of problem (4.1), (4.2), and (4.4). It is worth noting that
this solution can also be obtained by using the ADM complete solution (see [1]) based
on the recursive relationship

u0(x, t)= 1
2

(
f0(t) + g0(x)

)= x+ t
2

,

uk+1(x, t)= 1
2

[
G−1

1 F1 +F−1
1 G1

]
uk(x, t)= x+ t

2k+1
, k ≥ 0,

(4.6)

using (2.11), that is,

u(x, t)=
∞∑

k=0

uk(x, t)=
∞∑

k=0

x+ t
2k+1

= x+ t. (4.7)
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4.1.1. The reaction-advection equation. We consider the linear reaction-advection equa-
tion

α0u(x, t) +
∂u

∂t
(x, t)= β1

∂u

∂x
(x, t), (x, t)∈Ω, (4.8)

where β1, α0 are constants, which corresponds to the case N =M = 1, α1 = 1, f = 0
in (1.1).

If (4.8) is solved subject to the initial condition (4.2), then (2.9) gives

u0(x, t)= g0(x), uk+1(x, t)= (β1G
−1
1 F1−α0G

−1
1

)
uk(x, t), k ≥ 0. (4.9)

Calculating a few terms in (4.9), we obtain

u1(x, t)= (β1g
′
0(x)−α0g0(x)

)
t, u2(x, t)= (β2

1g
′′
0 (x)− 2β1α0g

′
0(x) +α2

0g0(x)
) t2

2!
,

(4.10)

and in general

uk(x, t)= tk

k!

k∑

l=0

Clkβ
k−l
1 (−α0)lg(l)

0 (x), k ≥ 0, (4.11)

where Clk = k!/l!(k− l)!. Then (2.11) gives the ADM partial t-solution of problem (4.2)
and (4.8) as

u(x, t)=
∞∑

k=0

tk

k!

k∑

l=0

Clkβ
k−l
1

(−α0
)l
g(l)

0 (x), (x, t)∈R× [0,∞). (4.12)

If now (4.8) is solved subject to the boundary condition (4.4), similarly as above one
obtains the ADM partial x-solution given by

u(x, t)=
∞∑

k=0

xk

βk1k!

k∑

l=0

Clkα
l
0 f

(l)
0 (t), (x, t)∈ [0,∞)×R. (4.13)

4.2. The heat (diffusion) equation (N = 1, M = 2). Consider the linear heat equation

∂u

∂t
(x, t)= β2

∂2

∂x2
(x, t), (x, t)∈Ω, (4.14)

where β2 > 0 is the constant coefficient of diffusion, which corresponds to the case N = 1,
M = 2, α1 = 1 in (3.1).

If (4.14) is solved subject to the initial condition (4.2), then (3.4) gives the ADM partial
t-solution of the characteristic Cauchy problem for the heat equation, namely,

u(x, t)=
∞∑

k

(
β2t
)k

k!
g(2k)

0 (x), (x, t)∈R× [0,∞), (4.15)
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whilst if (4.14) is solved subject to the lateral boundary conditions

u(0, t)= f0(t),
∂u

∂x
(0, t)= f1(t), t ∈R, (4.16)

then (3.5) gives the ADM partial x-solution of the noncharacteristic Cauchy problem for
the heat equation (see [33])

u(x, t)=
∞∑

k=0

1

βk2

[
f (k)
0 (t)
(2k)!

x2k +
f (k)
1 (t)

(2k+ 1)!
x2k+1

]
, (x, t)∈ [0,∞)×R. (4.17)

The solution (4.15) represents a simplified improvement over the Green formula and
was previously obtained in [15] using the method of separating variables.

Particular examples of the Cauchy problems (4.14), and (4.2) or (4.16), solved using
the ADM, can be found in [2, 3, 13, 31, 39, 45, 47].

4.2.1. The reaction-diffusion equation. We consider the biological interpretation of (4.14)
with a linear source

α0u(x, t) +
∂u

∂t
(x, t)= β2

∂2

∂x2
(x, t), (x, t)∈Ω, (4.18)

where β2 > 0, α0 are constants, which corresponds to the case N = 1, M = 2, β1 = f = 0,
α1 = 1 in (1.1). In contrast to the simple diffusion (α0 = 0, see (4.14)), when reaction
kinetics and diffusion are coupled through the term α0u, travelling waves of chemical
concentration umay exist and can affect a biological change much faster than the straight
diffusional process, see [34].

If (4.18) is solved subject to the initial condition (4.2) then, similarly as in Section 4.1.1,
one obtains the ADM partial t-solution given by

u(x, t)=
∞∑

k=0

tk

k!

k∑

l=0

Clkβ
k−l
2

(−α0
)l
g(2l)

0 (x), (x, t)∈R× [0,∞). (4.19)

On the other hand if (4.18) is solved subject to the boundary conditions (4.16), then
(2.10) gives

u0(x, t)= f0(t) + x f1(t), uk+1(x, t)= 1
β2

(
α0F

−1
2 +F−1

2 G1
)
uk(x, t), k ≥ 0. (4.20)

Calculating a few terms in (4.20), we obtain

u1(x, t)= 1
β2

[(
f ′0 (t) +α0 f0(t)

)x2

2!
+
(
f ′1 (t) +α0 f1(t)

)x3

3!

]
,

u2(x, t)= 1
β2

2

[(
f ′′0 (t)+2α0 f0(t) f ′0 (t)+α2

0 f0(t)
)x4

4!
+
(
f ′′1 (t) + 2α0 f1(t) f ′1 (t)+α2

0 f1(t)
)x5

5!

]
,

(4.21)
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and in general

uk(x, t)= 1

βk2

[
x2k

(2k)!

k∑

l=0

Clkα
l
0

(
f (l)
0 (t) +

x

2k+ 1
f (l)
1 (t)

)]
, k ≥ 0. (4.22)

Then (2.11) gives the ADM partial x-solution of problem (4.2) and (4.18) as given by

u(x, t)=
∞∑

k=0

x2k

βk2(2k)!

k∑

l=0

Clkα
l
0

(
f (l)
0 (t) +

x

2k+ 1
f (l)
1 (t)

)
, (x, t)∈ [0,∞)×R. (4.23)

For particular cases of f0, f1, and g0, one can calculate the series (4.19) and (4.23)
explicitly, see [36].

4.2.2. The advection-diffusion equation. TakingN = 1,M = 2, α0 = f = 0, α1 = 1 in (1.1),
we obtain the advection-diffusion equation

∂u

∂t
(x, t)= β2

∂2u

∂x2
(x, t) +β1

∂u

∂x
(x, t), (x, t)∈Ω, (4.24)

which arises in advective-diffusive flows when analysing the mechanics governing the re-
lease of hormones from secretory cells in response to a stimulus in a medium, flowing
past the cells and through a diffusion column, see [38]. In (4.24), β2 > 0 is the diffusion
coefficient, u is the concentration of hormones, and −β1 > 0 is the flow velocity down
the column. A similar situation arises in forced convection cooling of flat electronic sub-
strates, (see [19]) or in the dispersion of pollutants in rivers.

For β1 = constant, the ADM partial t-solution of problem (4.2) and (4.24) is given by
(see [32])

u(x, t)= exp
(
− β1x

2β2
− β2

1t

4β2

) ∞∑

k=0

(
β2t
)k

k!
θ(2k)

0 (x), (x, t)∈R× [0,∞), (4.25)

where

θ0(x)= g0(x)exp
(
β1x

2β2

)
, x ∈R, (4.26)

whilst the ADM partial x-solution of problem (4.16) and (4.24) is given by

u(x, t)=exp
(
− β1x

2β2
− β2

1t

4β2

) ∞∑

k=0

1

βk2

[
x2k

(2k)!
ψ(k)

0 (t) +
x2k+1

(2k+ 1)!
ψ(k)

1 (t)
]

, (x, t)∈[0,∞)×R,

(4.27)

where

ψ0(t)= f0(t)exp
(
β2

1t

4β2

)
, ψ1(t)=

(
f1(t) +

β1

2β2
f0(t)

)
exp

(
β2

1t

4β2

)
, t ∈R. (4.28)
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Example 4.2. Taking β1 =−1, β2 = 1, then (4.24) becomes

∂u

∂t
(x, t)= ∂2u

∂x2
(x, t)− ∂u

∂x
(x, t), (x, t)∈Ω, (4.29)

and consider the initial and boundary conditions

u(x,0)= ex − x = g0(x), x ∈R, (4.30)

u(0, t)= 1 + t = f0(t),
∂u

∂x
(0, t)= 0= f1(t), t ∈R. (4.31)

Then using (4.26) and (4.28), we obtain

θ0(x)= ex/2− xe−x/2, x ∈R,

ψ0(t)= (1 + t)et/4, ψ1(t)=− (1 + t)
2

et/4, t ∈R.
(4.32)

Using Leibniz’s rule of product differentiation, we obtain

θ(k)
0 (x)= 2−k

(
ex/2 + (2k− x)e−x/2

)
, k ≥ 0, (4.33)

ψ(k)
0 (t)= (1 + 4k+ t)

4k
et/4, ψ(k)

1 (t)=− (1 + 4k+ t)
2 · 4k

et/4, k ≥ 0. (4.34)

Introducing (4.33) into (4.25), we obtain the ADM partial t-solution of problem (4.29)
and (4.30) as

u(x, t)= e(x/2−t/4)
∞∑

k=0

4−ktk

k!

(
ex/2 + (4k− x)e−x/2

)

= ex − x+ e−t/4
∞∑

k=1

41−ktk

(k− 1)!
= ex − x+ t, (x, t)∈R× [0,∞).

(4.35)

Also introducing (4.34) into (4.27), we obtain the ADM partial x-solution of problem
(4.29) and (4.31) as

u(x, t)= ex/2
∞∑

k=0

4−k
[

(1 + 4k+ t)
x2k

(2k)!
− (1 + 4k+ t)

2
x2k+1

(2k+ 1)!

]

= 1 + t+ ex/2
∞∑

k=0

4k
[

(x/2)2k

(2k)!
− (x/2)2k+1

(2k+ 1)!

]
= ex − x+ t, (x, t)∈ [0,∞)×R.

(4.36)

Both the ADM partial series solutions (4.35) and (4.36) yield the exact solution
u(x, t)= ex − x+ t of problem (4.29)–(4.31) which can be verified through substitution.
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Alternatively, for obtaining the ADM partial x-solution, one can use directly the re-
cursive relation (2.10) for problem (4.29) and (4.31) to obtain u0(x, t)= f0(t) + x f1(t)=
1 + t, u1(x, t) = F−1

2 (G1 + F1)u0(x, t) = x2/2!, u2(x, t) = F−1
2 (G1 + F1)u1(x, t) = x3/3! and

in general uk(x, t) = xk+1/(k + 1)! for k ≥ 1. Then the decomposition series (2.11) gives
u(x, t)=∑∞

k=0uk(x, t)= 1 + t+
∑∞

k=1(xk+1/(k+ 1)!)= t+ ex − x, as required. Also, for ob-
taining the ADM partial t-solution, one can use directly the recursive relation (2.9) for
problem (4.29) and (4.30) to obtain u0(x, t)=g0(x)=ex − x, u1(x, t)=G−1

1 (F2−F1)u0(x,
t)= t, uk(x, t)= 0 for k ≥ 2. Thus (2.11) gives the exact solution u= u0 + u1 = ex − x + t
in only two terms. From this, it can be seen that directly applying the ADM to (4.29)
produces a faster convergent series solution than (4.35) and (4.36).

4.3. The wave equation (N =M = 2). Consider the linear wave equation

∂2u

∂t2
(x, t)= β2

∂2u

∂x2
(x, t), (x, t)∈Ω, (4.37)

where β2 > 0 is the square of the wave speed, which corresponds to the case N =M = 2,
α2 = 1 in (3.1).

If (4.37) is solved subject to the initial conditions

u(x,0)= g0(x),
∂u

∂t
(x,0)= g1(x), x ∈R, (4.38)

then (3.4) gives the ADM partial t-solution, (see [42])

u(x, t)=
∞∑

k=0

βk2

[
g(2k)

0 (x)
t2k

(2k)!
+ g(2k)

1 (x)
t2k+1

(2k+ 1)!

]
, (x, t)∈R× [0,∞), (4.39)

whilst if (4.37) is solved subject to the boundary conditions (4.16), then (3.5) gives the
partial x-solution

u(x, t)=
∞∑

k=0

1

βk2

[
f (2k)
0 (t)

x2k

(2k)!
+ f (2k)

1 (t)
x2k+1

(2k+ 1)!

]
, (x, t)∈ [0,∞)×R. (4.40)

Particular examples of problem (4.37) and (4.38) solved using the ADM can be found
in [14, 17, 45, 48]. Note that if we take β2 =−1 in (4.37), we obtain the two-dimensional
Laplace equation, which has been dealt with using the ADM elsewhere, see [12].

4.3.1. The telegraph equation. Consider the linear wave (telegraph) equation

α1
∂u

∂t
(x, t) +

∂2u

∂t2
(x, t)= β2

∂2u

∂x2
(x, t) + f (x, t), (x, t)∈Ω, (4.41)

which corresponds to the case N =M = 2, α0 = β1 = 0, α2 = 1 in (1.1).
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If (4.41) is solved subject to the initial conditions (4.38), then (2.9) gives

u0(x, t)= g0(x) + tg1(x) +G−1
2 f (x, t), uk+1(x, t)=G−1

2

[
β2F2−α1G1

]
uk(x, t), k ≥ 0,

(4.42)

whilst if (4.41) is solved subject to the boundary conditions (4.16), then (2.10) gives

u0(x, t)= ft + x f1(t)−F−1
2

(
f (x, t)
β2

)
, uk+1(x, t)=F−1

2

(
1
β2
G2 +

α1

β2
G1

)
uk(x, t), k ≥ 0.

(4.43)

Example 4.3. Take β2 = 1, α1 = 3, f (x, t)= 3(x2 + t2 + 1) in (4.41) to yield

3
∂u

∂t
(x, t) +

∂2u

∂t2
(x, t)= ∂2u

∂x2
(x, t) + 3

(
x2 + t2 + 1

)
, (x, t)∈Ω, (4.44)

and consider the initial and boundary conditions

u(x,0)= x = g0(x),
∂u

∂t
(x,0)= 1 + x2 = g1(x), x ∈R, (4.45)

u(0, t)= t+
t3

3
= f0(t),

∂u

∂x
(0, t)= t = f1(t), t ∈R. (4.46)

Calculating the initial term (4.42), we obtain

u0(x, t)= x+ t
(
1 + x2)+

3t2

2

(
x2 + 1

)
+
t4

4
. (4.47)

Observing that the starting term (4.47) can be decomposed into two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= x+ t
(
1 + x2), z2(x, t)= 3t2

2

(
x2 + 1

)
+
t4

4
,

(4.48)

then a slightly modified recursive algorithm can be used instead of (4.42) (see [43]),
namely,

u0(x, t)= z1(x, t)= x+ t
(
1 + x2),

u1(x, t)= z2(x, t) +G−1
2

[
F2− 3G1

]
u0(x, t)= t3

3
+
t4

4
,

u2(x, t)=G−1
2

[
F2− 3G1

]
u1(x, t)= −t

4

4
− 3t5

20
,

u3(x, t)=G−1
2

[
F2− 3G1

]
u2(x, t)= 3t5

20
+

3t6

40
,

(4.49)

and so forth. Then (2.11) gives the ADM partial t-solution

u(x, t)= u0 +u1 +u2 +u3 + ··· = x+ t
(
1 + x2)+

t3

3
, (x, t)∈R× [0,∞), (4.50)
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which can be verified through substitution to be the exact solution of (4.44) and (4.45).
The solution (4.50) was also previously obtained in [29] using the classical ADM based
on (4.42) with the starting term (4.47), but the calculus in [29] is more complicated.

Calculating now the initial term in (4.43), we obtain

u0(x, t)= t+
t3

3
+ x− x4

4
− 3x2

(
t2 + 1

)

2
. (4.51)

Similarly as before, by observing that the starting term (4.51) can be decomposed into
two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= t+
t3

3
+ x, z2(x, t)= −x

4

4
− 3x2

(
t2 + 1

)

2
,

(4.52)

we use

u0(x, t)=z1(x, t)= t+
t3

3
+ x, u1(x, t)=z2(x, t) +F−1

2

(
G2 + 3G1

)
u0(x, t)=x2t− x4

4
,

u2(x, t)= F−1
2

(
G2 + 3G1

)
u1(x, t)= x4

4
, u3(x, t)= F−1

2

(
G2 + 3G1

)
u2(x, t)= 0,

(4.53)

and thus uk+1 = F−1
2 (G2 + 3G1)uk(x, t)= 0 for all k ≥ 2. Then the exact solution (4.50) of

(4.44) and (4.46) is obtained with only three terms u = u0 + u1 + u2 in the decomposi-
tion series (2.11). Note that if we take β2 =−1 in (4.41), we obtain the two-dimensional
steady-state diffusion equation with advection in the t-direction.

4.3.2. The linear Klein-Gordon equation. Consider the linear Klein-Gordon equation

α0u(x, t) +
∂2u

∂t2
(x, t)= β2

∂2u

∂x2
(x, t) + f (x, t), (x, t)∈Ω, (4.54)

which corresponds to the caseN =M = 2, α1 = β1 = 0, α2 = 1 in (1.1) especially when the
linear term α0u in (4.54) is replaced by a nonlinear function, the Klein-Gordon equation
plays an important role in the study of solutions in condensed matter physics, (see [16])
and in quantum mechanics and relativistic physics; see [46].

If (4.54) is solved subject to the initial conditions (4.38), then (2.9) gives

u0(x, t)= g0(x) + tg1(x) +G−1
2 f (x, t),uk+1(x, t)=G−1

2

[
β2F2−α0I

]
uk(x, t), k ≥ 0,

(4.55)

whilst if (4.54) is solved subject to the boundary conditions (4.16), then (2.10) gives

u0(x, t)= f0(t) + x f1(t)−F−1
2

(
f (x, t)
β2

)
,

uk+1(x, t)= F−1
2

(
1
β2
G2 +

α0

β2
I
)
uk(x, t), k ≥ 0.

(4.56)
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Example 4.4. Take β2 = 1, α0 =−1, f = 0 in (4.54) to yield

∂2u

∂t2
(x, t)−u(x, t)= ∂2u

∂x2
(x, t), (x, t)∈Ω, (4.57)

and consider the initial and boundary conditions

u(x,0)= 1 + sin(x)= g0(x),
∂u

∂t
(x,0)= 0= g1(x), x ∈R, (4.58)

u(0, t)= cosh(t)= f0(t),
∂u

∂x
(0, t)= 1= f1(t), t ∈R. (4.59)

Applying (4.55), we obtain

u0(x, t)= 1 + sin(x), u1(x, t)=G−1
2

[
F2 + I

]
u0(x, t)= t2

2!
, (4.60)

and in general (see [22])

uk+1(x, t)=G−1
2

[
F2 + I

]
uk(x, t)= t2k+2

(2k+ 2)!
, ∀k ≥ 0. (4.61)

Then (2.11) gives the ADM partial t-solution

u(x, t)= sin(x) +
∞∑

k=0

t2k

(2k)!
= sin(x) + cosh(t), (x, t)∈R× [0,∞), (4.62)

which can be verified through substitution to be the exact solution of (4.57) and (4.58).
Applying now (4.56), we obtain

u0(x, t)= cost(t) + x, u1(x, t)= F−1
2

[
G2− I

]
u0(x, t)= −x

3

3!
, (4.63)

and in general we observe that

uk+1(x, t)= F−1
2

[
G2− I

]
uk(x, t)= (−1)k+1x2k+3

(2k+ 3)!
, ∀k ≥ 0. (4.64)

Then (2.11) gives the ADM partial x-solution of problem (4.57) and (4.59) as

u(x, t)= cosh(t) +
∞∑

k=0

(−1)k
x2k+1

(2k+ 1)!
= cosh(t) + sin(x), (x, t)∈ [0,∞)×R, (4.65)

as required; see (4.62).

Example 4.5. Take β2 = 1, α0 =−2, f (x, t)=−2sin(x)sin(t) in (4.54) to yield

∂2u

∂t2
(x, t)− 2u(x, t)= ∂2u

∂x2
(x, t)− 2sin(x)sin(t), (x, t)∈Ω, (4.66)
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and consider the initial and boundary conditions

u(x,0)= 0= g0(x),
∂u

∂t
(x,0)= sin(x)= g1(x), x ∈R, (4.67)

u(0, t)= 0= f0(t),
∂u

∂x
(0, t)= sin(t)= f1(t), t ∈R. (4.68)

Calculating the first term in (4.55), we obtain

u0(x, t)= t sin(x) +G−1
2

(− 2sin(x)sin(t)
)=−t sin(x) + 2sin(x)sin(t). (4.69)

As in Example 4.3, by observing that the starting term (4.69) can be decomposed into
two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= sin(x)sin(t), z2(x, t)=−t sin(x) + sin(x)sin(t),
(4.70)

we use a slightly modified ADM instead of (4.55), namely, u0(x, t)=z1(x, t)=sin(x)sin(t),
u1(x, t)=−t sin(x) + sin(x)sin(t) + G−1

2 (F2 + 2I)u0(x, t)= 0, and in general uk+1(x, t) =
G−1

2 (F2 + 2I)uk(x, t)= 0 for all k ≥ 0. Then (2.11) gives the ADM partial t-solution

u(x, t)= u0(x, t)= sin(x)sin(t), (x, t)∈R× [0,∞), (4.71)

with only one term. It can easily be verified that (4.71) is the exact solution of (4.66)
and (4.67). The solution (4.71) was previously obtained in [21] using the classical ADM
based on (4.55) with the starting term (4.69), but the calculus employed in [21] is more
complicated.

Calculating now the first term in (4.56), we obtain

u0(x, t)= x sin(t)−F−1
2

(− 2sin(x)sin(t)
)= 3x sin(t)− 2sin(x)sin(t). (4.72)

As before, we decompose this term into two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= sin(x)sin(t), z2(x, t)= 3x sin(t)− 3sin(x)sin(t),
(4.73)

and use a slightly modified ADM instead of (4.56), namely, u0(x, t)=z1(x, t)=sin(x)sin(t),
u1(x, t)=3x sin(t)− 3sin(x)sin(t) + F−1

2 (G2 − 2I)u0(x, t)=0, and in general uk+1(x, t) =
F−1

2 (G2 − 2I)uk(x, t) = 0 for all k ≥ 0. Again (2.11) gives the ADM partial x-solution of
(4.66) and (4.68) in only one term u(x, t)= u0(x, t)= sin(x)sin(t), as required; see (4.71).

Note that if we take β2 =−1 in (4.54) then for α0 > 0 we obtain the two-dimensional
Schrodinger (modified Helmholtz) equation, which was investigated using the ADM in
[18], whilst for α0 < 0 we obtain the two-dimensional Helmholtz equation, which was
investigated using the ADM in [4, 23].
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4.3.3. The linear dissipative wave equation. Consider the linear dissipative wave equation

α1
∂u

∂t
(x, t) +

∂2u

∂t2
(x, t)= β2

∂2u

∂x2
(x, t) +β1

∂u

∂x
(x, t) + f (x, t), (x, t)∈Ω, (4.74)

which corresponds to the case N =M = 2, α0 = 0, α2 = 1 in (1.1).
If (4.74) is solved subject to the initial conditions (4.38), then (2.9) gives

u0(x, t)= g0(x) + tg1(x) +G−1
2 f (x, t),

uk+1(x, t)=G−1
2

[
β2F2 +β1F1−α1G1

]
uk(x, t), k ≥ 0,

(4.75)

whilst if (4.74) is solved subject to the boundary conditions (4.16), then (2.10) gives

u0(x, t)= f0(t) + x f1(t)−F−1
2

(
f (x, t)
β2

)
,

uk+1(x, t)= F−1
2

(
1
β2
G2 +

α1

β2
G1− β1

β2
F1

)
uk(x, t), k ≥ 0.

(4.76)

Example 4.6. Take β2 = α1 = β1 = 1, f (x, t)= 2(t− x) in (4.74) to yield

∂u

∂t
(x, t) +

∂2u

∂t2
(x, t)= ∂2u

∂x2
(x, t) +

∂u

∂x
(x, t) + 2(t− x), (x, t)∈Ω, (4.77)

and consider the initial and boundary conditions

u(x,0)= x2 = g0(x),
∂u

∂t
(x,0)= 0= g1(x), x ∈R, (4.78)

u(0, t)= t2 = f0(t),
∂u

∂x
(0, t)= 0= f1(t), t ∈R. (4.79)

Calculating the first term in (4.75), we obtain

u0(x, t)= x2 +G−1
2

(
2(t− x)

)= x2 +
t3

3
− xt2, (4.80)

which can be decomposed into two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= x2, z2(x, t)= t3

3
− xt2, (4.81)

and use the modified ADM to give

u0(x, t)= z1(x, t)= x2, u1(x, t)= t3

3
− xt2 +G−1

2

[
F2 +F1−G1

]
u0(x, t)= t2 +

t3

3
,

u2(x, t)=G−1
2

[
F2 +F1−G1

]
u1(x, t)= t4

12
− t3

3
,

(4.82)
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and so on. We observe then that (2.11) gives the ADM partial t-solution

u(x, t)= u0(x, t) +u1(x, t) +u2(x, t) + ··· = x2 + t2. (4.83)

It is easy to verify that (4.83) is the exact solution of (4.77) and (4.78). The solution (4.83)
was previously obtained in [27] using the classical ADM based on (4.75) with the starting
term (4.80), but the calculus in [27] is more complicated.

Calculating now the first term in (4.76), we obtain

u0(x, t)= t2−F−1
2

(
2(t− x)

)= t2− tx2 +
x3

3
. (4.84)

As before, splitting u0 into two parts and replacing everywhere x with t and t with x in the
above equation, we obtain that the ADM partial x-solution of problem (4.77) and (4.79)
is equal to the exact solution (4.83).

Note that if we take β2 =−1 in (4.74), we obtain the steady-state advection-diffusion
equation.

4.4. The Korteweg-de Vries equation (N = 1, M = 3). The linear Korteweg-de Vries
(KdV) equation

∂u

∂t
(x, t)= β3

∂3u

∂x3
(x, t) +β1

∂u

∂x
(x, t) + f (x, t), (x, t)∈Ω, (4.85)

governs long water waves, in water of relatively shallow depth, for very small amplitudes,
see [46]. Equation (4.85) corresponds to the case N = 1, M = 3, α0 = β2 = 0, α1 = 1 in
(1.1). When β1 = 0, (4.85) represents a third-order dispersive equation, see [44].

If (4.85) is solved subject to the initial condition (4.2), then (2.9) gives

u0(x, t)= g0(x) +G−1
1 f (x, t), uk+1(x, t)=G−1

1

[
β3F3 +β1F1

]
uk(x, t), k ≥ 0, (4.86)

whilst if (4.85) is solved subject to the lateral boundary conditions

u(0, t)= f0( f ),
∂u

∂x
(0, t)= f1(t),

∂2u

∂x2
(0, t)= f2(t), t ∈R, (4.87)

then (2.10) gives

u0(x, t)= f0(t) + x f1(t) +
x2

2
f2(t)−F−1

3

(
f (x, t)
β3

)
,

uk+1(x, t)= F−1
3

[
1
β3
G1− β1

β3
F1

]
uk(x, t), k ≥ 0.

(4.88)

Example 4.7. Taking β3 = β1 =−1, f = 0, then (4.85) becomes

∂u

∂t
(x, t)=−∂

3u

∂x3
(x, t)− ∂u

∂x
(x, t), (x, t)∈Ω, (4.89)
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and consider the initial and boundary conditions

u(x,0)= e−x = g0(x), x ∈R, (4.90)

u(0, t)= e2t = f0( f ),
∂u

∂x
(0, t)=−e2t = f1(t),

∂2u

∂x2
(0, t)= e2t = f2(t), t ∈R.

(4.91)

Applying (4.86), we obtain

u0(x, t)= e−x, u1(x, t)=G−1
1

[−F3−F1
]
e−x = 2te−x,

u2(x, t)=G−1
1

[−F3−F1
](

2te−x
)= 2t2e−x,

(4.92)

and in general we observe that uk(x, t)= ((2t)k/k!)e−x for all k ≥ 0. Then (2.11) gives the
ADM partial t-solution (see [28])

u(x, t)= e−x
∞∑

k=0

(2t)k

k!
= e2t−x, (x, t)∈R× [0,∞), (4.93)

which can be verified through substitution to be the exact solution of (4.89) and (4.90).
Applying now (4.88), we obtain

u0(x, t)=e2t
(

1− x+
x2

2

)
, u1(x, t)=F−1

3

(−G1−F1
)
u0(x, t)=e2t

(
− x3

3!
+
x4

4!
− 2x5

5!

)
,

u2(x, t)= F−1
3

(−G1−F1
)
u1(x, t)= e2t

(
x5

5!
+
x6

6!
+

4x8

8!

)
,

u3(x, t)= F−1
3

(−G1−F1
)
u2(x, t)= e2t

(
− x7

7!
− 3x8

8!
− 4x10

10!
− 8x11

11!

)
,

(4.94)

and so forth and in general we observe that based on (2.11), the ADM partial x-solution
of problem (4.89) and (4.91) is given by

u(x, t)= u0 +u1 +u2 +u3 + ···

= e2t
(

1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+
x6

6!
− x7

7!
+
x8

8!
−···

)

= e2t−x, (x, t)∈ [0,∞)×R,

(4.95)

as required; see also (4.93).

Example 4.8. Take β1 = 0, β3 = 1 and f (x, t)= 2et−x in (4.85) to obtain the linear third-
order dispersive, inhomogeneous equation

∂u

∂t
(x, t)= ∂3u

∂x3
(x, t) + 2et−x, (x, t)∈Ω, (4.96)
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and consider the initial and boundary conditions

u(x,0)= 1 + e−x = g0(x), x ∈R, (4.97)

u(0, t)= 1 + et = f0( f ),
∂u

∂x
(0, t)=−et = f1(t),

∂2u

∂x2
(0, t)= et = f2(t), t ∈R.

(4.98)

If (4.96) is solved subject to the initial condition (4.97), then (2.9) gives

u0(x, t)= g0(x) +G−1
1 f (x, t)= 1− e−x + 2et−x,

u1(x, t)=G−1
1 F3u0(x, t)= (t+ 2)e−x − 2et−x,

u2(x, t)=G−1
1 F3u1(x, t)=−

(
t2

2!
+ 2t+ 2

)
e−x + 2et−x,

u3(x, t)=G−1
1 F3u2(x, t)=

(
t3

3!
+ t2 + 2t+ 2

)
e−x − 2et−x,

(4.99)

and so on. It is clear that the self-cancelling “noise” terms appear between various com-
ponents, and keeping the noncancelled terms and using (2.11) lead immediately to the
ADM partial t-solution (see [28])

u(x, t)= u0 +u1 +u2 +u3 + ···

= 1 + e−x
(

1 + t+
t2

2!
+
t3

3!
+ ···

)

= 1 + et−x, (x, t)∈R× [0,∞),

(4.100)

which can be verified through substitution to be the exact solution of problem (4.96) and
(4.97).

If now (4.96) is solved subject to the boundary conditions (4.98), then (2.10) gives

u0(x, t)= f0(t) + x f1(t) +
x2

2
f2(t)−F−1

3 f (x, t)= 2et−x + 1 + et
(

1− x+
x2

2

)
,

u1(x, t)= F−1
3 G1u0(x, t)=−2et−x + 2et

(
1− x+

x2

2

)
+ et

(
x3

3!
− x4

4!
+
x5

5!

)
,

u2(x, t)= F−1
3 G1u1(x, t)= 2et−x − 2et

(
1− x+

x2

2

)
+ 2et

(
x3

3!
− x4

4!
+
x5

5!

)

+ et
(
x6

6!
− x7

7!
+
x8

8!

)
,

u3(x, t)= F−1
3 G1u2(x, t)=−2et−x + 2et

(
1− x+

x2

2

)
− 2et

(
x3

3!
− x4

4!
+
x5

5!

)

+ 2et
(
x6

6!
− x7

7!
+
x8

8!

)
+ et

(
x9

9!
− x10

10!
+
x11

11!

)
,

(4.101)
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and so on. In the above, one obtains self-cancelling “noise” terms appearing between
various components of u0,u1,u2,u3, . . . , and keeping the noncancelled terms, and using
(2.11) lead to the ADM partial x-solution of problem (4.96) and (4.98) as

u(x, t)= u0 +u1 +u2 +u3 + ···

= 1 + et
(

1− x+
x2

2!
− x3

3!
+ ···

)

= 1 + et−x, (x, t)∈ [0,∞)×R,

(4.102)

as required; see also (4.100).
It is worth noting that noise terms between components of the decomposition series

will be cancelled, and the sum of these “noise” terms will vanish in the limit; see [10, 41].
Alternatively, since the starting term u0 in (4.101) can be decomposed into two parts,

namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= 1 + et−x, z2(x, t)= et−x + et
(

1− x+
x2

2

)
,

(4.103)

then a slightly modified recursive algorithm can be used (see [43]), namely,

u0(x, t)= z1(x, t)= 1 + et−x,

u1(x, t)= z2(x, t) +F−1
3 G1u0(x, t)= et−x + et

(
1− x+

x2

2

)
+F−1

3 G1
(
1 + et−x

)= 0,

(4.104)

and in general uk+1(x, t)=F−1
3 G1uk(x, t)=0 for all k ≥ 1. Then the exact solution (4.100)

of (4.96) and (4.98) is obtained with only one term u = u0 in the decomposition series
(2.11).

Example 4.9. We consider the example tested in [26] obtained by taking β1 = β3 = −1
and f (x, t)= 1 + (1 + t)ex + e2x, in which case (4.85) becomes

∂u

∂t
(x, t)=−∂

3u

∂x3
(x, t)− ∂u

∂x
(x, t) + 1 + (1 + t)ex + e2x, (x, t)∈Ω. (4.105)

At this stage, we note that the “exact” solution u(x, t)= ex + t obtained in [26] is incor-
rect since it does not satisfy (4.105). We remedy this mistake by taking the exact solution
of (4.105) as

u(x, t)= t
(

1 +
ex

2

)
+
ex

4
+
e2x

10
, (4.106)
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which generates the initial and boundary conditions

u(x,0)= ex

4
+
e2x

10
= g0(x), x ∈R, (4.107)

u(0, t)= 3t
2

+
7

20
= f0(t), t ∈R,

∂u

∂x
(0, t)= t

2
+

9
20
= f1(t), t ∈R,

∂2u

∂x2
(0, t)= t

2
+

13
20
= f2(t), t ∈R.

(4.108)

If (4.105) is solved subject to the initial condition (4.107), then (4.86) gives

u0(x, t)= ex

4
+
e2x

10
+ t+

(
t+

t2

2

)
ex + te2x, (4.109)

which can be decomposed into two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= ex

4
+
e2x

10
+ t, z2(x, t)=

(
t+

t2

2

)
ex + te2x,

(4.110)

and use the modified recursive algorithm

u0(x, t)= z1(x, t)= ex

4
+
e2x

10
+ t,

u1(x, t)= z2(x, t) +G−1
1

[−F3−F1
]
u0(x, t)= tex

2
+
t2ex

2
,

u2(x, t)=G−1
1

[−F3−F1
]
u1(x, t)=− t

2ex

2
− t3ex

3
,

u3(x, t)=G−1
1

[−F3−F1
]
u2(x, t)= t3ex

3
+
t4ex

6
,

(4.111)

and so on. We observe that terms in the second term of uk cancel with the first term of
uk+1 for k ≥ 1. Then (2.11) gives the exact solution (4.106), as required.

At this stage, we note that the decomposition of u0 in (4.110) is not unique, and for
example, if one selects a better decomposition such as

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= ex

4
+
e2x

10
+ t+

tex

2
, z2(x, t)=

(
t+ t2

)

2
ex + te2x,

(4.112)

then the exact solution (4.106) is obtained with only one term u = u0 in the the series
(2.11). Some idea about appropriate choices in the decomposition of u0 have been re-
cently discussed by Lesnic and Elliott [33] who proposed a two-step ADM in which var-
ious parts of u0 are tested if they satisfy the governing equation and/or the initial and/or
boundary conditions.
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If (4.105) is now solved subject to (4.108), then (4.88) gives

u0(x, t)= t

2

(
3 + x+

x2

2!

)
+

1
20

(
7 + 9x+

13x2

2!

)
+F−1

3

(
1 + (1 + t)ex + e2x)

= e2x

8
+ (1 + t)ex +

x3

3!
− 17x2 + 32x+ 31

40
+
t

2

(
1− x− x

2

)
,

u1(x, t)= F−1
3

[−G1−F1
]
u0(x, t)

=−e
2x

32
− (2 + t)ex +

975 + 990x+ 510x2 + 24x3 + 27x4− 2x5

480

+ t
(

1 + x+
x2

2
+
x3

12
+
x4

48

)
.

(4.113)

As the calculus becomes complicated, one can use MAPLE, or alternatively, one can de-
compose the initial term u0 given by (4.113) into two parts, namely,

u0(x, t)= z1(x, t) + z2(x, t), z1(x, t)= e2x

10
+
(
t+

1
2

)
ex

2
+ t,

z2(x, t)= x3

3!
− 17x2 + 32x+ 31

40
− t

2

(
1 + x+

x2

2

)
+
e2x

40
+
ex

2

(
t+

3
2

)
,

(4.114)

and use the modified recursive algorithm

u0(x, t)=z1(x, t)= e2x

10
+
(
t+

1
2

)
ex

2
+ t, u1(x, t)=z2(x, t) +F−1

3

[−G1−F1
]
u0(x, t)=0,

uk+1(x, t)= F−1
3

[−G1−F1
]
uk(x, t)= 0, ∀k ≥ 1,

(4.115)

to obtain the exact solution (4.106) of problem (4.105) and (4.108) with only one term
u= u0 in the series (2.11).

Since the case N = 1, M = 4 of (1.1) is not a model of any well-known physical situ-
ation, it is not considered here, although one may think of it as a fourth-order diffusion
process, see [25].

4.5. The Euler-Bernoulli equation (N = 2, M = 4). The Euler-Bernoulli equation

−∂
2u

∂t2
(x, t)= β4

∂4u

∂x4
(x, t) + f (x, t), (x, t)∈Ω, (4.116)

governs the deflection of an elastic beam under the action of a load f (x, t). In (4.116), the
solution u represents the deflection of the beam and β4 > 0 is its flexural rigidity. Equation
(4.116) corresponds to the case N = 2, M = 4, α0=α1=β1=β2=β3=0, α2 =−1 in (1.1).

If (4.116) is solved subject to the initial conditions (4.38), then (2.9) gives

u0(x, t)= g0(x) + tg1(x)−G−1
2 f (x, t), uk+1(x, t)=G−1

2

[−β4F4
]
uk(x, t), k ≥ 0,

(4.117)
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whilst if (4.116) is solved subject to the lateral boundary conditions

u(0, t)= f0(t),
∂u

∂x
(0, t)= f1(t),

∂2u

∂x2
(0, t)= f2(t),

∂3u

∂x3
(0, t)= f3(t), t ∈R,

(4.118)

then (2.10) gives

u0(x, t)= f0(t) + x f1(t) +
x2

2!
f2(t) +

x3

3!
f3(t)−F−1

4

(
f (x, t)
β4

)
,

uk+1(x, t)= F−1
4

(
− 1
β4
G2

)
uk(x, t), k ≥ 0.

(4.119)

When f (x, t)= 0, (4.116) becomes

−∂
2u

∂t2
(x, t)= β4

∂4u

∂x4
(x, t), (x, t)∈Ω, (4.120)

which is a particular case of (3.1) with N = 2, M = 4, and α2 =−1. Then (3.4) gives the
ADM partial t-solution of problem (4.38) and (4.120) as

u(x, t)=
∞∑

k=0

(−β4
)k
[
g(4k)

0 (x)
t2k

(2k)!
+ g(4k)

1 (x)
t2k+1

(2k+ 1)!

]
, (x, t)∈R× [0,∞),

(4.121)

whilst (3.5) gives the ADM partial x-solution of problem (4.118) and (4.120) as

u(x, t)=
∞∑

k=0

(
− 1
β4

)k 3∑

l=0

f (2k)
l (t)

x4k+l

(4k+ l)!
, (x, t)∈ [0,∞)×R. (4.122)

Example 4.10. Take β4 = 1 and f (x, t)=−xt− t2 in (4.116) to yield

−∂
2u

∂t2
(x, t)= β4

∂4u

∂x4
(x, t)− xt− t2, (x, t)∈Ω, (4.123)

and consider the initial and boundary conditions

u(x,0)= 0= g0(x),
∂u

∂t
(x,0)= x5

5!
= g1(x), x ∈R, (4.124)

u(0, t)= t4

12
= f0(t),

∂lu

∂xl
= 0= fl(t), l = 1,2,3, t ∈R. (4.125)

If (4.123) is solved subject to the initial conditions (4.124), then (4.117) gives

u0(x, t)= x5t

5!
+G−1

2

(
xt+ t2

)= x5t

5!
+
t4

12
+
xt3

6
,

u1(x, t)=G−1
2

(−F4
)
u0(x, t)=−xt

3

6
, u2(x, t)=G−1

2

(−F4
)
u1(x, t)= 0,

(4.126)
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and in general uk+1(x, t) = G−1
2 (−F4)uk(x, t) = 0 for all k ≥ 1. Thus the ADM partial

t-solution, via (2.11), gives the exact solution u = u0 + u1 = tx5/5! + t4/12 of problem
(4.123) and (4.124) in only two terms.

If (4.123) is now solved subject to the boundary conditions (4.125), then (4.119) gives

u0(x, t)= t4

12
+F−1

4

(
xt+ t2

)= x5t

5!
+
t4

12
+
t2x4

4!
,

u1(x, t)= F−1
4

(−G2
)
u0(x, t)=− t

2x4

4!
− 2x8

8!
,

u2(x, t)= F−1
4

(−G2
)
u1(x, t)= 2x8

8!
, u3(x, t)= F−1

4

(−G2
)
u2(x, t)= 0,

(4.127)

and in general uk+1(x, t) = F−1
4 (−G2)uk(x, t) = 0 for all k ≥ 2. Thus the ADM partial x-

solution, via (2.11), gives the exact solution u= u0 + u1 + u2 = tx5/5! + t4/12 of problem
(4.123) and (4.125) in only three terms.

Since the case N = 1, M = 5 of (1.1) is not a model of any well-known physical situ-
ation, it is not considered here, although one may think of it as a linear fifth-order KdV
equation, see [30]. Finally, we mention that the caseN = 1,M = 6 of (1.1) may be thought
of as a model equation for linear seismic waves, see [7]. The ADM described in this study
can also be applied to these equations.

5. Extension to systems of linear PDEs

The ADM can easily be extended to systems of linear PDEs of the form

N∑

n=0

αn(x, t)
∂nu

∂tn
(x, t)= β0(x, t)v(x, t) +

M∑

m=1

βm(x, t)
∂mu

∂xm
(x, t) + f (x, t), (x, t)∈Ω,

N1∑

n=0

γn(x, t)
∂nv

∂tn
(x, t)= δ0(x, t)u(x, t) +

M1∑

m=1

δm(x, t)
∂mv

∂xm
(x, t) + g(x, t), (x, t)∈Ω,

(5.1)

where f , g, (αi)i=0,N , (βi)i=0,M , (γi)i=0,N1
, (δi)i=0,M1

are given coefficients, αN �= 0, βM �= 0,
γN1 �= 0, δM1 �= 0, and N , M, N1, M1 are positive integers. The system of PDEs (5.1) has
then to be solved subject to the initial conditions (1.2) and

∂nv

∂tn
(x,0)= hn(x), n= 0,

(
N1− 1

)
, x ∈R, (5.2)

or to the lateral boundary conditions (1.3) and

∂mv

∂xm
(0, t)= im(t), m= 0,

(
M1− 1

)
, t ∈R. (5.3)

Then, similarly as in (2.9) and (2.10), the ADM partial t-solution of problem (1.2),
(5.1), and (5.2), and the ADM partial x-solution of problem (1.3), (5.1), and (5.3) will be
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given by the decomposition series (2.11), where the components of the series are calcu-
lated recursively from the following relationships:

u0(x, t)=
N−1∑

l=0

tl

l!
gl(x) +G−1

N

(
f (x, t)
αN (x, t)

)
, v0(x, t)=

N1−1∑

l=0

tl

l!
hl(x) +G−1

N1

(
g(x, t)
γN1 (x, t)

)
,

uk+1(x, t)=
[ M∑

m=1

G−1
N

(
βm
αN

Fm

)
−

N−1∑

n=0

G−1
N

(
αn
αN

Gn

)]
uk(x, t) +G−1

N

(
β0

αN
vk(x, t)

)
, k ≥ 0,

vk+1(x, t)=
[ M1∑

m=1

G−1
N1

(
δm
γN1

Fm

)
−

N1−1∑

n=0

G−1
N1

(
γn
γN1

Gn

)]
vk(x, t) +G−1

N1

(
δ0

γN1

uk(x, t)
)

, k ≥ 0,

u0(x, t)=
M−1∑

l=0

xl

l!
fl(t)−F−1

M

(
f (x, t)
βM(x, t)

)
, v0(x, t)=

M1−1∑

l=0

xl

l!
il(t)−F−1

M1

(
g(x, t)
δM1 (x, t)

)
,

uk+1(x, t)=
[ N∑

n=0

F−1
M

(
αn
βM

Gn

)
−

M−1∑

m=1

F−1
M

(
βm
βM

Fm

)]
uk(x, t)−F−1

M

(
β0

βM
vk(x, t)

)
, k ≥ 0,

vk+1(x, t)=
[ N1∑

n=0

F−1
M1

(
γn
δM1

Gn

)
−

M1−1∑

m=1

F−1
M1

(
δm
δM1

Fm

)]
vk(x, t)−F−1

M1

(
δ0

δM1

uk(x, t)
)

, k ≥ 0,

(5.4)

respectively.

6. Extension to nonlinear PDEs

The ADM can also be extended to solving initial or boundary value problems for nonlin-
ear, one-dimensional, time-dependent PDEs of the form

N∑

n=1

αn
∂nu

∂tn
(x, t) +A

(
u,∂tu, . . . ,∂N−1

t u
)

=
M∑

m=1

βm
∂mu

∂xm
(x, t) +B

(
∂xu, . . . ,∂M−1

x u
)

+ f (x, t), (x, t)∈Ω,

(6.1)

where ∂nt u = ∂nu/∂tn for n = 0,(N − 1), and ∂mx u = ∂mu/∂xm for m = 1,(M− 1). Equa-
tion (6.1) has to be solved subject to the initial conditions (1.2), or to the lateral bound-
ary conditions (1.3). Then, similarly as in (2.9) and (2.10), the ADM partial t-solution
of problem (1.2) and (6.1), and the ADM partial x-solution of problem (1.3) and (6.1)
will be given by the decomposition series (2.11), where the components of the series are
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calculated recursively from the following relationships:

u0(x, t)=
N−1∑

l=0

tl

l!
gl(x) +G−1

N

(
f (x, t)
αN (x, t)

)
,

uk+1(x, t)=
[ M∑

m=1

G−1
N

(
βm
αN

Fm

)
−

N−1∑

n=1

G−1
N

(
αn
αN

Gn

)]
uk(x, t) +G−1

N

(
Bk −Ak

)
, k ≥ 0,

(6.2)

u0(x, t)=
M−1∑

l=0

xl

l!
fl(t)−F−1

M

(
f (x, t)
βM(x, t)

)
,

uk+1(x, t)=
[ M∑

n=1

F−1
M

(
αn
βM

Gn

)
−

M−1∑

m=1

F−1
M

(
βm
βM

Fm

)]
uk(x, t) +F−1

M

(
Ak −Bk

)
, k ≥ 0,

(6.3)

respectively. In (6.2) and (6.3), Ak and Bk are called the Adomian polynomials. These
polynomials can be calculated for all forms of analytical nonlinearities, according to spe-
cific algorithms given, for example, in [6, 37] as

Ak = 1
k!

[
dk

dλk
A

( k∑

j=0

λjG0uj , . . . ,
k∑

j=0

λjGN−1uj

)]

λ=0

, k ≥ 0, (6.4)

Bk = 1
k!

[
dk

dλk
B

( k∑

j=0

λjF1uj , . . . ,
k∑

j=0

λjFM−1uj

)]

λ=0

, k ≥ 0. (6.5)

For example, if A(u)= u2, then Ak =
∑k

l=0ulul−k.

6.1. An application to a nonlinear PDE. Let us investigate the advection equation with
a nonlinear term considered in [11] of the form

∂u

∂t
(x, t)=−∂u

∂x
(x, t)−u2(x, t), (x, t)∈Ω, (6.6)

which corresponds to the case N =M = 1, α1 = 1, β1 =−1, f = 0, A(u)= u2 in (6.1).
If (6.6) is solved subject to the initial condition

u(x,0)= 1
2x
= g0(x), x ∈R−{0}, (6.7)

then on using the ADM given by (6.2) and (6.4), we obtain

u0(x, t)= 1
2x

, A0 = u2
0 =

1
4x2

,

u1(x, t)=−G−1
1 F1u0−G−1

1

(
A0
)= t

2x2
− t

4x2
= t

4x2
, A1 = 2u0u1 = t

4x3
,

u2(x, t)=−G−1
1 F1u1−G−1

1

(
A1
)= t2

4x3
− t2

8x3
= t2

8x3
,

(6.8)
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and in general one obtains uk(x, t) = tk/(2x)k+1 for k ≥ 0. Then using (2.11), we obtain
the ADM partial t-solution of problem (6.6) and (6.7) as given by

u(x, t)=
∞∑

k=0

tk

(2x)k+1
, (x, t)∈ (R−{0})× [0,∞), (6.9)

which, for 0≤ t/2|x| < 1, converges to the exact solution u(x, t)= 1/(2x− t).
If (6.6) is now solved subject to the boundary condition

u(0, t)=−1
t

, t ∈R−{0}, (6.10)

then on using the ADM given by (6.3) and (6.4), we obtain

u0(x, t)=−1
t

, A0 = u2
0 =

1
t2

,

u1(x, t)=−F−1
1 G1u0−F−1

1

(
A0
)=−2x

t2
, A1 = 2u0u1 = 4x

t3
,

u2(x, t)=−F−1
1 G1u1−F−1

1

(
A1
)=−4x2

t3
, A2 = 2u0u2 +u2

1 =
12x2

t4
,

u3(x, t)=−F−1
1 G1u2−F−1

2

(
A1
)=−8x3

t4
,

(6.11)

and in general one obtains uk(x, t)=−(2x)k/tk+1 for k ≥ 0. Then using (2.11), we obtain
the ADM partial x-solution of problem (6.6) and (6.10) as given by

u(x, t)=−
∞∑

k=0

(2x)k

tk+1
, (x, t)∈ [0,∞)× (R−{0}), (6.12)

which, for 0≤ 2x/|t| < 1, converges to the exact solution u(x, t)= 1/(2x− t).
It can be seen that the series (6.9) and (6.12) are quite different since they have different

domains of convergence. Thus, the ADM partial t-solution (6.9) and partial x-solution
(6.1) are not generally equivalent, but rather formally equivalent. In this sense, the equiv-
alence of the ADM partial solutions considered in [9, 31, 40] should be understood .

More physical examples of nonlinear PDEs will be investigated in a future work.

7. Conclusions

In this study, the ADM has been reviewed for solving initial or lateral boundary value
problems for linear, one-dimensional, time-dependent PDEs given by (1.1). Further-
more, if the PDEs are homogeneous and have constant coefficients, see, for example,
(3.1), (4.8), (4.18), and (4.24), then analytical solutions have been derived. Otherwise,
the ADM gives the solution in the form of a series which in most cases is rapidly conver-
gent, if slight modifications are also implemented, such as the phenomenon of cancelling
“noise” terms, and the splitting of the initial term into two appropriate parts.
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