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New Leray-Schauder results are presented for multivalued contractions defined on sub-
sets of a Fréchet space E. The proof relies on fixed point results in Banach spaces and on
viewing E as the projective limit of a sequence of Banach spaces.
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1. Introduction

In this paper, we present new fixed point results for nonlinear contractions (both single
and multivalued) defined on subsets X (which may have empty interior) of a Fréchet
space E. Some results for single-valued maps were presented in [2, 3] and the approach
in these papers was based on constructing a specific map Fn (for each n∈N= {1,2, . . .})
whose fixed points converge to a fixed point of the original operator F. In the approach
in this paper, the maps {Fn}n∈N only need to satisfy a closure property and are specified
in a completely different way. The advantage of this approach is that multivalued maps
can also be discussed. Our theory is based on results in Banach spaces and on viewing a
Fréchet space E as a projective limit of a sequence of Banach spaces {En}n∈N.

For the remainder of this section, we present some definitions and some known facts.
Let (X ,d) be a metric space and S a nonempty subset of X . For x ∈ X , let d(x,S) =
inf y∈S d(x, y). Also diamS = sup{d(x, y) : x, y ∈ S}. We let B(x,r) denote the open ball
in X centered at x of radius r and by B(S,r) we denote

⋃
x∈S B(x,r). For two nonempty

subsets S1 and S2 of X , we define the generalized Hausdorff distance H to be

H
(
S1,S2

)= inf
{
ε > 0 : S1 ⊆ B

(
S2,ε

)
, S2 ⊆ B

(
S1,ε

)}
. (1.1)

Now suppose G : S→ 2X ; here 2X denotes the family of nonempty subsets of X . Then G
is said to be hemicompact if each sequence {xn}n∈N in S has a convergent subsequence
whenever d(xn,G(xn))→ 0 as n→∞.

We now recall a result from the literature.
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Theorem 1.1. Let (X ,d) be a complete metric space,C⊆ X closed, and F : C→ X with F(C)
bounded (i.e., there exists M > 0 with d(z,w) ≤M for z,w ∈ F(C)). Suppose the following
condition is satisfied:

there exists a continuous nondecreasing function

φ : [0,∞)−→ [0,∞) satisfying φ(z) < z for z > 0

such that d(Fx,Fy)≤ φ(d(x, y)
)

for x, y ∈ C.
(1.2)

Then F is hemicompact.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally convex
spaces. For each α∈ I , β ∈ I for which α≤ β, let πα,β : Eβ → Eα be a continuous map. Then
the set

{

x = (xα
)∈

∏

α∈I
Eα : xα = πα,β

(
xβ
)∀α,β ∈ I , α≤ β

}

(1.3)

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is denoted
by lim←Eα (or lim←{Eα,πα,β} or the generalized intersection [5, page 439]

⋂
α∈I Eα).

Existence in Section 2 is based on the following fixed point results in the literature
[1, 6].

Theorem 1.2 [6, Theorem 3.9]. Let U be an open subset in a Banach space (X ,‖ · ‖) and
F : U → X . Assume 0 ∈ U and suppose there exists a continuous nondecreasing function
φ : [0,∞)→ [0,∞) satisfying φ(z) < z for z > 0 such that ‖Fx− Fy‖ ≤ φ(‖x− y‖) for all
x, y ∈U . In addition, assume F(U) is bounded and x 
= λFx for x ∈ ∂U and λ∈ (0,1). Then
F has a fixed point in U .

Theorem 1.3 [1, Theorem 2.3 (and Remark 2.1)]. Let U be an open subset in a Banach
space (X ,‖ · ‖) and F : U → C(X) a closed map (i.e., has closed graph); here C(X) denotes
the family of nonempty closed subsets of X . Assume 0 ∈ U and suppose there exists a con-
tinuous strictly increasing function φ : [0,∞)→ [0,∞) satisfying φ(z) < z for z > 0 such that
H(Fx,Fy)≤ φ(‖x− y‖) for all x, y ∈U . In addition, assume the following conditions hold:

Φ : [0,∞)−→ [0,∞), given by Φ(x)= x−φ(x), is strictly increasing, (1.4)

Φ−1(a) +Φ−1(b)≤Φ−1(a+ b) for a,b ≥ 0, (1.5)

∞∑

i=0

φi(t) <∞ for t > 0, (1.6)

∞∑

i=1

φi
(
x−φ(x)

)≤ φ(x) for x > 0, (1.7)

F(U) is bounded, (1.8)

x /∈ λFx for x ∈ ∂U , λ∈ (0,1). (1.9)

Then F has a fixed point in U .
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Remark 1.4. In fact, the assumption that F is closed can be removed in Theorem 1.3. In
[1, Theorem 2.3], we assume a more general contractive condition and the map G : U ×
[0,1]→ C(X) (given byG(x,λ)= λFx in our situation) was assumed to be closed in order
to guarantee that if {xn}∞1 ⊆ U , {λ}∞1 ⊆ [0,1] with xn ∈ G(xn,λn) and (xn,λn)→ (x,λ),
then x ∈G(x,λ). However, this is automatically true in Theorem 1.3 since the contractive
condition and (1.8) guarantee that G is continuous in the Hausdorff metric and as a
result,

dist
(
x,G(x,λ)

)≤ d(x,xn
)

+H
(
G
(
xn,λn

)
,G(x,λ)

)
. (1.10)

Remark 1.5. If φ(t)= kt, 0≤ k < 1, then trivially (1.2)–(1.7) hold.

2. Fixed point theory in Fréchet spaces

Let E = (E,{| · |n}n∈N) be a Fréchet space with the topology generated by a family of
seminorms {| · |n : n∈N}. We assume that the family of seminorms satisfies

|x|1 ≤ |x|2 ≤ |x|3 ≤ ··· for every x ∈ E. (2.1)

A subset X of E is bounded if for every n∈N there exists rn > 0 such that |x|n ≤ rn for all
x ∈ X . To E we associate a sequence of Banach spaces {(En,| · |n)} described as follows.
For every n∈N, we consider the equivalence relation ∼n defined by

x ∼n y iff |x− y|n = 0. (2.2)

We denote by En = (E/∼n,| · |n) the quotient space, and by (En,| · |n) the completion of
En with respect to | · |n (the norm on En induced by | · |n and its extension to En are still
denoted by | · |n). This construction defines a continuous map μn : E→ En. Now since
(2.1) is satisfied, the seminorm | · |n induces a seminorm on Em for every m ≥ n (again
this seminorm is denoted by | · |n). Also (2.2) defines an equivalence relation on Em from
which we obtain a continuous map μn,m : Em→ En since Em/∼n can be regarded as a subset
of En. We now assume the following condition holds: for each n∈N, there exists a Banach
space (En,| · |n) and an isomorphism (between normed spaces) jn : En −→ En.

Remark 2.1. (i) For convenience, the norm on En is denoted by | · |n.
(ii) Usually in applications, En = En for each n∈N.
(iii) Note that if x ∈ En (or En), then x ∈ E. However, if x ∈ En, then x is not necessarily

in E and in fact, En is easier to use in applications (even though En is isomorphic to En).
For example, if E = C[0,∞), then En consists of the class of functions in E which coincide
on the interval [0,n] and En = C[0,n].

Finally, we assume

E1 ⊇ E2 ⊇ ··· and for each n∈N, |x|n ≤ |x|n+1 ∀x ∈ En+1. (2.3)

Let lim←En (or
⋂∞

1 En where
⋂∞

1 is the generalized intersection [5]) denote the projective
limit of {En}n∈N (note that πn,m = jnμn,m j−1

m : Em→ En form≥ n) and note that lim←En ∼=
E, so for convenience, we write E = lim←En.
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For each X ⊆ E and each n ∈N, we set Xn = jnμn(X) and we let Xn and ∂Xn denote,
respectively, the closure and the boundary of Xn with respect to | · |n in En. Also the
pseudo-interior of X is defined by [4]

pseudo-intt(X)= {x ∈ X : jnμn(x)∈ Xn\∂Xn for every n∈N}. (2.4)

Also, here Hn and diamn denote the Hausdorff metric and the diameter induced by | · |n
on En.

We begin with single-valued maps and present two results. The first was motivated by
Volterra type operators.

Theorem 2.2. Let E and En be as described above and let F : X → E with X ⊆ E and for
each n∈N assume that F : Xn→ En. Suppose the following conditions are satisfied:

(a) 0∈ pseudo- intt(X),
(b) for each n∈N, F(Xn) is bounded,
(c) for each n ∈ N, F : Xn → En and there exists a continuous nondecreasing function

φn : [0,∞)→ [0,∞) satisfying φn(z) < z for z > 0 such that |Fx− Fy|n ≤ φn(|x−
y|n) for all x, y ∈ Xn for each n∈N, y 
= λFy, in En for all λ∈ (0,1), y ∈ ∂Xn,

(d) for each n∈{2,3, . . .}, if y∈Xn solves y = Fy in En, then y∈Xk for k∈{1, . . . ,n− 1}.
Then F has a fixed point in E.

Remark 2.3. If F(X) is bounded, then clearly Theorem 2.2(b) holds.

Proof. Fix n ∈N. From Theorem 1.2, there exists yn ∈ Xn with yn = Fyn (note that 0 ∈
Xn\∂Xn and F(Xn) is bounded). Let us look at {yn}n∈N. Notice that y1 ∈ X1 and yk ∈
X1 for k ∈ N\{1} from Theorem 2.2(d). As a result, yn ∈ X1 for n ∈ N, yn = Fyn in En
together with Theorem 1.1 implies there is a subsequence N�1 of N and a z1 ∈ X1 with
yn → z1 in E1 as n→∞ in N�1 . Let N1 =N�1 \{1}. Now yn ∈ X2 for n∈N1 together with
Theorem 1.1 guarantees that there exists a subsequence N�2 of N1 and a z2 ∈ X2 with
yn → z2 in E2 as n→∞ in N�2 . Note from (2.3) that z2 = z1 in E1 since N�2 ⊆ N1. Let
N2 =N�2 \{2}. Proceed inductively to obtain subsequences of integers

N�1 ⊇N�2 ⊇ ··· ,

N�k ⊆ {k,k+ 1, . . .},
(2.5)

and zk ∈ Xk with yn→ zk in Ek as n→∞ inN�k . Note that zk+1 = zk in Ek for k ∈ {1,2, . . .}.
Also let Nk =N�k \{k}.

Fix k ∈ N. Let y = zk in Ek. Notice that y is well defined and y ∈ lim←En = E. Now
yn = Fyn in En for n∈Nk and yn → y in Ek as n→∞ in Nk (since y = zk in Ek) together
with the fact that F : Xk → Ek is continuous (note that yn ∈ Xk for n∈Nk) implies y = Fy
in Ek. We can do this for each k ∈N, so y = Fy in E. �

Our next result was motivated by contractions considered in [3]. In this case, the map
Fn will be related to F by the closure property Theorem 2.4(f).
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Theorem 2.4. Let E and En be as described in the beginning of Section 2 and let F : X → E
with X ⊆ E. Also for each n ∈ N assume there exists Fn : Xn → En. Suppose the following
conditions are satisfied:

(a) 0∈ pseudo- intt(X),
(b) X1 ⊇ X2 ⊇ ··· ,
(c) for each n∈N, Fn(Xn) is bounded, for each n∈N, Fn : Xn → En and there exists a

continuous nondecreasing function φn : [0,∞)→ [0,∞) satisfying φn(z) < z for z >
0 such that |Fnx−Fny|n ≤ φn(|x− y|n) for all x, y ∈ Xn for each n∈N, y 
= λFny
in En for all λ∈ (0,1), y ∈ ∂Xn,

(d) for each n∈N, the map �n : Xn→ 2En given by �n(y)=⋃∞m=n Fm(y) (see Remark
2.5) satisfies Hn(�n(x),�n(y))≤ ψn(|x− y|n) for all x, y ∈ Xn; here ψn : [0,∞)→
[0,∞) is continuous, ψn(z) < z for z > 0 with the map Ψn : [0,∞)→ [0,∞), defined
by Ψn(x)= x−ψn(x), strictly increasing,

(e) for each k ∈N, for every ε > 0, and sequence {xn}n∈S, S= {k,k+ 1,k+ 2, . . .}, with
xn ∈ Xn and xn ∈�nxn in En, there exists nk ∈ S such that diamk(�kxn) < ε for
each n∈ S with n≥ nk,

(f) if there exists w ∈ E and a sequence {yn}n∈N with yn ∈ Xn and yn = Fnyn in En
such that for every k ∈ N with yn → w in Ek as n→∞ in S = {k + 1,k + 2, . . .},
then w = Fw in E.

Then F has a fixed point in E.

Remark 2.5. The definition of �n in Theorem 2.4(d) is as follows. If y ∈ Xn and y /∈ Xn+1,
then �n(y) = Fn(y), whereas if y ∈ Xn+1 and y /∈ Xn+2, then �n(y) = Fn(y)∪ Fn+1(y),
and so on.

Proof. Fix n ∈ N. From Theorem 1.2 there exists yn ∈ Xn with yn = Fnyn in En. Let us
look at {yn}n∈N. From Theorem 2.4(b) we know that yn ∈ X1 for n∈N. Note as well that
yn ∈�1yn for n∈N since |x|1 ≤ |x|n for all x ∈ En and yn = Fnyn in En. We claim

∃z1 ∈ E1 with yn −→ z1 in E1, n−→∞ in N. (2.6)

To see this, let ε > 0 be given. Let m,n ∈ N. It is easy to see, since yn ∈�1yn and ym ∈
�1ym, that

∣
∣yn− ym

∣
∣

1 ≤H1
(
�1yn,�1ym

)
+ diam1

(
�1yn

)
+ diam1

(
�1ym

)
, (2.7)

so Theorem 2.4(d) yields

∣
∣yn− ym

∣
∣

1 ≤Ψ−1
1

(
diam1

(
�1yn

)
+ diam1

(
�1ym

))
. (2.8)

Now Theorem 2.4(e) guarantees that there exists n1 ∈N such that

∣
∣yn− ym

∣
∣

1 ≤Ψ−1
1 (2ε) for m,n≥ n1. (2.9)

Consequently, {yn}n∈N is Cauchy, so (2.6) holds. Let N1 =N\{1}.
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Now yn ∈ �2yn for n ∈ N1. Let m,n ∈ N1 and since yn ∈ �2yn and ym ∈ �2ym we
have

∣
∣yn− ym

∣
∣

2 ≤Ψ−1
2

(
diam2

(
�2yn

)
+ diam2

(
�2ym

))
. (2.10)

This together with Theorem 2.4(e) guarantees that {yn}n∈N1 is Cauchy, so there exists a
z2 ∈ E2 with yn→ z2 in E2 as n→∞ in N1. Note that z2 = z1 in E1 since N1 ⊆N. Let N2 =
N1\{2}. Proceed inductively to obtain zk ∈ Ek with yn → zk in Ek as n→∞ in Nk−1 =
{k,k+ 1, . . .}. Note that zk+1 = zk in Ek for k ∈N. Also let Nk =Nk−1\{k}.

Fix k ∈ N. Let y = zk in Ek. Notice that y is well defined and y ∈ lim←En = E. Now
yn = Fnyn in En for n∈Nk and yn→ y in Ek as n→∞ in Nk (since y = zk in Ek) together
with Theorem 2.4(f) implies y = Fy in E. �

Our next two results are for multivalued maps.

Theorem 2.6. Let E and En be as described above and let F : X → 2E with X ⊆ E and for
each n∈N, assume F : Xn→ C(En). Suppose the following conditions are satisfied:

(a) 0∈ pseudo- intt(X),
(b) for each n∈N, F(Xn) is bounded,
(c) for each n ∈ N, F : Xn → C(En), and there exists a continuous strictly increasing

function φn : [0,∞)→ [0,∞) satisfying φn(z) < z for z > 0 such that Hn(Fx,Fy)≤
φn(|x− y|n) for all x, y ∈ Xn,

(d) for each n∈N, the map Φn : [0,∞)→ [0,∞) given by Φn(x)= x−φn(x) is strictly
increasing, Φ−1

n (a) +Φ−1
n (b)≤Φ−1

n (a+ b) for a,b ≥ 0, with
∑∞

i=0φ
i
n(t) <∞ for t >

0 and
∑∞

i=1φ
i
n(x−φ(x))≤ φn(x) for x > 0,

(e) for each n∈N, y /∈ λFy in En for all λ∈ (0,1), y ∈ ∂Xn,
(f) for each n∈ {2,3, . . .}, if y ∈ Xn solves y∈Fy in En, then y∈Xk for k∈{1, . . . ,n− 1},
(g) for each k ∈N, for every ε > 0 and sequence {xn}n∈S, S= {k,k+ 1,k+ 2, . . .}, with

xn ∈ Xn and xn ∈ Fxn in En there exists nk ∈ S such that diamk(Fxn) < ε for each
n∈ S with n≥ nk.

Then F has a fixed point in E.

Proof. Fix n∈N. From Theorem 1.3 (and Remark 1.4) there exists yn ∈ Xn with yn ∈ Fyn
in En. Let us look at {yn}n∈N. Notice that yn ∈ X1 for n ∈ N from Theorem 2.6(f). Let
ε > 0 be given and m,n∈N. Now since yn ∈ Fyn and ym ∈ Fym, we have

∣
∣yn− ym

∣
∣

1 ≤H1
(
Fyn,Fym

)
+ diam1

(
Fyn

)
+ diam1

(
Fym

)
(2.11)

so

∣
∣yn− ym

∣
∣

1 ≤Φ−1
1

(
diam1

(
Fyn

)
+ diam1

(
Fym

))
. (2.12)

This, together with Theorem 2.6(g), guarantees that {yn}n∈N is Cauchy, so there exists a
z1 ∈ E1 with yn→ z1 in E1 as n→∞ in N. Let N1 =N\{1}. Proceed inductively to obtain
zk ∈ Ek with yn→ zk in Ek as n→∞ in Nk−1 = {k,k+ 1, . . .}. Note that zk+1 = zk in Ek for
k ∈N. Also let Nk =Nk−1\{k}.
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Fix k ∈N. Let y = zk in Ek. Notice that yn ∈ Fyn in En for n∈Nk and yn→ y in Ek as
n→∞ in Nk together with Remark 1.4 (note that F : Xk → C(Ek)) implies y ∈ Fy in Ek.
We can do this for each k ∈N, so y ∈ Fy in E. �

Theorem 2.7. Let E and En be as described in the beginning of Section 2 and let F : X → 2E

with X ⊆ E. Also for each n∈N assume there exists Fn : Xn→ C(En). Suppose the following
conditions are satisfied:

(a) 0∈ pseudo- intt(X),
(b) X1 ⊇ X2 ⊇ ··· ,
(c) for each n∈N, Fn(Xn) is bounded,
(d) for each n ∈ N, Fn : Xn → C(En) and there exists a continuous strictly increasing

function φn : [0,∞)→ [0,∞) satisfying φn(z) < z for z > 0 such thatHn(Fnx,Fny)≤
φn(|x− y|n) for all x, y ∈ Xn,

(e) for each n∈N, the map Φn : [0,∞)→ [0,∞) given by Φn(x)= x−φn(x) is strictly
increasing, Φ−1

n (a) +Φ−1
n (b)≤Φ−1

n (a+ b) for a,b ≥ 0, with
∑∞

i=0φ
i
n(t) <∞ for t >

0 and
∑∞

i=1φ
i
n(x−φ(x))≤ φn(x) for x > 0,

(f) for each n∈N, y /∈ λFny in En for all λ∈ (0,1) and y ∈ ∂Xn,
(g) for each n ∈ N, the map �n : Xn → 2En given by �n(y) = ⋃∞m=n Fm(y) satisfies

Hn(�n(x),�n(y))≤ ψn(|x− y|n) for all x, y ∈ Xn; hereψn : [0,∞)→ [0,∞) is con-
tinuous, ψn(z) < z for z > 0 with the map Ψn : [0,∞)→ [0,∞) defined by Ψn(x)=
x−ψn(x) is strictly increasing,

(h) for each k ∈N, for every ε > 0 and sequence {xn}n∈S, S= {k,k+ 1,k+ 2, . . .}, with
xn ∈ Xn and xn ∈ �nxn in En there exists nk ∈ S such that diamk(�kxn) < ε for
each n∈ S with n≥ nk,

(i) if there exists a w ∈ E and a sequence {yn}n∈N with yn ∈ Xn and yn ∈ Fnyn in En
such that for every k ∈N with yn→w in Ek as n→∞ in S= {k+ 1,k+ 2, . . .}, then
w ∈ Fw in E.

Then F has a fixed point in E.

Proof. The proof is essentially the same as in Theorem 2.4 (except that here we use Theo-
rem 1.3 (and Remark 1.4) instead of Theorem 1.2). �
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