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We investigate the question whether the p.q.-Baer center of a ring R can be extended to
R. We give several counterexamples to this question and consider some conditions under
which the answer may be affirmative. The concept of a generalized p.q.-Baer property
which is a generalization of Baer property of a ring is also introduced.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.
1. Introduction

In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator
ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer
if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent.
Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8]
called a ring R to be a right (resp., left) principally quasi-Baer (or simply right (resp., left)
p.q.-Baer) ring if the right (resp., left) annihilator of a principal right (resp., left) ideal is
generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-
Baer. The class of right or left p.q.-Baer rings is a nontrivial generalization of the class of
quasi-Baer rings. For example, if R is a commutative von Neumann regular ring which is
not complete, then R is p.q.-Baer but not quasi-Baer. Observe that every biregular ring is
also a p.q.-Baer ring.

A ring satisfying a generalization of Rickart’s condition (i.e., every right annihilator of
any element is generated (as a right ideal) by an idempotent) has a homological charac-
terization as a right PP-ring which is also another generalization of a Baer ring. A ring
R is called a right (resp., left) PP-ring if every principal right (resp., left) ideal is pro-
jective (equivalently, if the right (resp., left) annihilator of an element of R is generated
(as a right (resp., left) ideal) by an idempotent of R). R is called a PP-ring (also called
a Rickart ring [3, page 18]) if it is both right and left PP. Baer rings are clearly right
(left) PP-rings, and von Neumann regular rings are also right (left) PP-rings by Good-
earl [10, Theorem 1.1]. Note that the conditions right PP and right p.q.-Baer are distinct
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2 Generalized Baer rings

[8, Examples 1.3 and 1.5], but R is an abelian PP-ring if and only if R is a reduced p.q.-
Baer ring [8, Corollary 1.15].

Throughout this paper, R denotes an associative ring with identity. For a nonempty
subset X of R, we write rz(X) = {a € R| Xa =0} and €x(X) = {a € R | aX = 0}, which
are called the right and left annihilators of X in R, respectively.

2. Principally quasi-Baer centers

As a motivation for this section, we recall the following results.
(1) The center of a Baer ring is Baer [15, Theorem 7].
(2) The center of a quasi-Baer ring is quasi-Baer [7, Proposition 1.8].
(3) The center of a right p.q.-Baer ring is PP (hence p.q.-Baer) [8, Proposition 1.12].
(4) Every reduced PI-ring with the Baer center is a Baer ring [1, Theorem D].

It is natural to ask if the p.q.-Baer center of a ring R can be extended to R. In this
section, we show that this question has a negative answer, and so we investigate the class
of rings with some conditions under which the answer to this question is affirmative.

Let C(R) denote the center of a ring R.

Example 2.1. (1) Let K be a field. We consider the ring R = K[X,Y,Z] with XY = XZ =
ZX =YX =0and YZ # ZY. Then R is reduced and C(R) = K[X] is Baer and so p.q-Baer.
But r(Y) has no idempotents. Thus R is not right p.q.-Baer. Note that

I={f(Y,Z) €K[Y,Z]| f(0,0) = 0} (2.1)
is a two-sided ideal of R and I n C(R) = 0.
(2) Let

R= | x,y,2,u,v € R + < Mat;(R), (2.2)

o o R
S R
= | N

where R denotes the set of real numbers. Then R is a PI-ring which is not semiprime.
Then we see that

01 0 0 b
| {0 0 0|R|{=1[0 0 |b,ce R} (2.3)
00 0 0 0

S O 0

But this cannot be generated by an idempotent. Hence R is not right p.q.-Baer. On the
other hand,

2
=

0 0
x 0]llxeR (2.4)
0 x

2

&

Il
o o R

Therefore C(R) is Baer.
Observe that Example 2.1(2) also shows that there exists a PI-ring R with the Baer
center, but R is not right p.q.-Baer.
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However, we have the following results.

LemMA 2.2 [8, Proposition 1.7]. R is a right p.q.-Baer ring if and only if the right annihi-
lator of any finitely generated right ideal is generated (as a right ideal) by an idempotent.

ProrosITION 2.3. Let R be a ring with the p.q.-Baer center C(R). If R satisfies any of the
following conditions for any nonzero two-sided ideal I of R, then R is quasi-Baer (and hence
right p.q.-Baer):

(1) I n C(R) is a nonzero finitely generated right ideal of C(R);

(2) I N C(R) # 0 and every central idempotent of R is orthogonal;

(3) In C(R) # 0 and every right ideal of R generated by a central element contains C(R).

Proof. Let I be a nonzero two-sided ideal of R. If rg(I) = 0, then we are done. Thus we
assume that rg(I) # 0.

(1) By hypothesis and Lemma 2.2, I N C(R) # 0 and r¢r)(I N C(R)) = eC(R) for some
e? = e € C(R). We claim that rg(I) = eR. If Ie # 0, then Ie is a nonzero two-sided ideal
of R. Thus, by hypothesis, 0 # Ien C(R) = I N C(R). Let 0 # x € Ie " C(R). Then x =
ye € InC(R) for some y € I, and so x = xe = 0; which is a contradiction. Hence eR <
rr(I), and then rg(I) = RN rr(I) = (eR® (1 —e)R) Nnrr(I) =eR & ((1 —e)RNrr(I)). We
show that (1 —e)RN rg(I) = 0. Suppose that 0 # (1 —e)R N rg(I). Then (1 —e)RN C(R)
is a nonzero two-sided ideal of R. Thus, by hypothesis, 0 # (1 —e)R N rg(I) N C(R) =
(I1-e)RNrery(I) € (1—-e)RNrery(INC(R)) € (1-e)RNeC(R) (1 —-e)RNeR=0;
which is also a contradiction. Therefore rr(I) = eR, and thus R is quasi-Baer.

(2) There exists 0 # a € C(R) such that a € I, and so r¢r)(aC(R)) = eC(R) for some
e? = e € C(R) by hypothesis. Then rz(aR) = eR. Since rr(aR) N C(R) = r¢r)(aC(R)) =
eC(R), e € rr(aR), and so eR < rg(aR), and thus rg(aR) = eR by the similar method to
(1). Hence rr(I) < eR. Now, we claim that eR < rg(I). If not, there exists 0 # x € R such
that x € I N C(R) by the same arguments as in (1). Then rcr)(xC(R)) = fC(R) for some
f*=f € C(R),andso rg(xR) = fR.Hencerg(I) € fRN eR = 0; which 1sac0ntradiction.
Thus rg(I) = eR for some e*> = e € R, and therefore R is a quasi-Baer ring.

(3) By hypothesis, there exists 0 # a € I N C(R), and so r¢r)(aC(R)) = eC(R) for some
e? = e € C(R). Then rg(aR) = eR, and this implies that r(I) < eR by the same method
as in (2). Now, we claim that eR < rg(I). If not, there exists 0 # x € [eNC(R) €I NnaR <
aR, by hypothesis. We put x = ye € C(R) for some y € I. Since rr(x) 2 rr(aR) = eR, we
obtain x = xe = 0; which is a contradiction. Thus eR < rz(I), and consequently rz(I) =
eR. Therefore R is a quasi-Baer ring. O

COROLLARY 2.4. Let R be a semiprime PI-ring with the p.q.-Baer center C(R). If either every
central idempotent of R is orthogonal or every right ideal of R generated by a central element
contains C(R), then R is quasi-Baer.

The proof follows from [18, Theorem 6.1.28] and Proposition 2.3.

Part (1) of the following example shows that the condition “I N C(R) is a nonzero
finitely generated right ideal of C(R)” and the condition “every central idempotent of R is
orthogonal” in Proposition 2.3(1) and (2) are not superfluous, respectively, and parts (2)
and (3) show that in Proposition 2.3, the condition (1) is not equivalent to the condition

(2).
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Example 2.5. (1) LetR = {{a;) € Hfil T; | a; is eventually constant}, where T; = Mat, (F)
for all i and F is a field. For a two-sided ideal I = {(a;) € R | a; = 0ifiis even}, rr(I) =
{{b;) € R| bj = 0ifiis odd}. Since

Q0 9ED-Der s

rr(I) cannot be generated by an idempotent of R. Thus R is not quasi-Baer. Note that

C(R) = {(a,’) ER|a;= (](; 2) for some k € F} (2.6)

is p.q.-Baer. Now,

IﬂC(R)={(a,’)ERIai=0ifiiseven, a; = (g 2

) € Mat,(F) if i is odd} (2.7)

is not finitely generated. Moreover,

G 6016 o) 660606 0)-)

(2.8)

are idempotents, but they are not orthogonal.

(2) Let R = F[x1,x2,...], where F is a field. Then R is a commutative quasi-Baer ring
whose only idempotents 0 and 1 are orthogonal, but the two-sided ideal (x3,x3,...) of R
is not finitely generated.

(3) Let R=7Z o Z. Then R is a commutative quasi-Baer ring. Since R is Noetherian,
every two-sided ideal of R is finitely generated. But the central idempotents (1,0) and
(1,1) are not orthogonal.

Related to the result of [1, Theorem D], we have the next example.

Example 2.6. (1) Let R = 6[0, 1] be the ring of all real-valued continuous functions on
[0,1]. Then R is commutative (and so PI) and reduced. But R is not p.q.-Baer. Let

f:[0,1] —R (2.9)
be defined by
0, 0<x< %,
flx)= 11 (2.10)
Xx—=, =—<x=1
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Then f € R, and so

rR(f)={geR|g<<%,l]>=O}#O. (2.11)

Suppose that rz(f) = eR for some nonzero idempotent e € R. Then e(x)? = e(x), for each
x € [0,1]. Thus e(x) = 0 or e(x) = 1. Since e € rr(f), e((1/2,1]) = {0}. But e is continu-
ous, and so e(x) = 0 for each x € [0,1]. Hence rg(f) = 0; which is a contradiction. Thus
Ris a reduced PI-ring which is not right p.q.-Baer.

(2) We take the ring in [12, Example 2(1)]. Let Z be the ring of integers and Mat,(Z)
the 2 X 2 full matrix ring over Z. Let

R= {(‘Z Z) €Mat,(Z) |a—d=b= c:O(modZ)}. (2.12)

Then R is right p.q.-Baer, but R is neither right PP nor left PP by [12, Example 2(1)].
Moreover, it can be easily checked that R is an abelian PI-ring with the PP center.

3. Generalized p.q.-Baer rings

Regarding a generalization of Baer rings as well as a PP-ring, recall that a ring R is called
a generalized right PP-ring if for any x € R, the right ideal xR is projective for some
positive integer n, depending on #, equivalently, if for any x € R, the right annihilator
of x" is generated by an idempotent for some positive integer 1, depending on . Left
cases may be defined analogously. A ring R is called a generalized PP-ring if it is both
generalized right and left PP-ring. Right PP-rings are generalized right PP obviously. A
number of papers have been written on generalized PP-rings. For basic and other results
on generalized PP-rings, see, for example, [11, 14, 16].

As a parallel definition to the generalized PP-property related to the p.q.-Baer prop-
erty, we define the following.

Definition 3.1. A ring Ris called a generalized right p.q.-Baer ring if for any x € R, the right
annihilator of x"R is generated by an idempotent for some positive integer 7, depending
on n. Left cases is defined analogously. A ring R is called a generalized p.q.-Baer ring if it
is both generalized right and left p.q.-Baer ring.

We have the following connections.

LEmMMA 3.2 [12, Lemma 1]. Let R be a reduced ring. The following are equivalent:
(1) R is right PP;
(2) Ris PP;
(3) Ris generalized right PP;
(4) R is generalized PP;
(5) Ris right p.q.-Baer;
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(6) R is p.q.-Baer;
(7) R is generalized right p.q.-Baer;
(8) Ris generalized p.q.-Baer;

Shin [19] defined that a ring R satisfies (SI) if for each a € R, rr(a) is a two-sided ideal
of R, and proved that R satisfies (SI) if and only if ab = 0 implies that aRb = 0 for a,b € R
[19, Lemma 1.2]. The (SI) property was studied in the context of near-rings by Bell, in
[2], where it is called the insertion of factors principle (IFP). It is well known that every
reduced ring has the IFP, and if R has the IFP then it is abelian, but the converses do not
hold, respectively.

Recall from [8, Corollary 1.15] that R is an abelian PP-ring if and only if R is a reduced
p-q.-Baer ring. Similarly, we have the following.

ProposiTiON 3.3. Let a ring R have the IFP. Then R is a generalized right PP-ring if and
only if R is a generalized right p.q.-Baer ring.

Proof. For any x € R and positive integer 1, rr(x") = rr(x"R) since R has the IFP. O

Every right p.q.-Baer rings is a generalized right p.q.-Baer, but the converse does not
hold, by the next example.

Given a ring R and an (R,R)-bimodule M, the trivial extension of R by M is the ring
T(R,M) = R& M with the usual addition and the following multiplication:

(a1,my) (a2, mz) = (ar1a2,a1mz + myay). (3.1)

This is isomorphic to the ring of all matrices (§ 7 ), where a € Rand m € M and the usual
matrix operations are used.

Example 3.4 [14, Example 2]. Let D be a domain and let R = T(D, D) be the trivial ex-
tension of D. Then R has the IFP and R is a generalized right PP-ring, but it is not a right
PP-ring. Thus R is a generalized right p.q.-Baer ring by Proposition 3.3, but it is not right
p-q.-Baer by [8, Proposition 1.14].

Recall from [5] that an idempotent e € R is called left (resp., right) semicentral if xe =
exe (resp., ex = exe) for all x € R. The set of left (resp., right) semicentral idempotents of
Ris denoted by S¢(R) (resp., S;(R)). Note that S¢(R) N S,(R) = B(R), where B(R) is the set
of all central idempotents of R, and if R is semiprime then S¢(R) = S,(R) = B(R). Some of
the basic properties of these idempotents are indicated in the following.

LEMMA 3.5 [7, Lemma 1.1]. For an idempotent e € R, the following are equivalent:
(1) e € Se(R);
(2) 1-e€ S:(R);
(3) (1—e)Re=0;
(4) eR is a two-sided ideal of R;
(5) R(1 —e) is a two-sided ideal of R.

The following example shows that the condition “R has the IFP” in Proposition 3.3
cannot be dropped.
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Example 3.6 [8, Example 1.6]. For a field F, take F, = F for n = 1,2,..., and let

[

[1E.  DFE
n=1

n=1

R=|"" N , (3.2)
D (Drn)
n=1 n=1

which is a subring of the 2 X 2 matrix ring over the ring [];,_, F,, where < @, _, F,,1 > is
the F-algebra generated by @,_,F, and 1. Then R is a regular ring by [10, Lemma 1.6],
and so R is a generalized PP-ring.

Let a € (a,) € [1,_, F, such that a, = 1 if nis odd and a, = 0 if n is even, and let & =
(&9) € R. Now we assume that there exists an idempotent e € R such that rz(a*R) = eR
for a positive integer k. Then e is left semicentral, and so e is central since R is semiprime,
but this is impossible. Thus R is not generalized right p.q.-Baer. Similarly R is not gener-

alized left p.q.-Baer.

ProrosITION 3.7. Let R be a ring. The following are equivalent:
(1) Ris generalized right p.q.-Baer;
(2) for any principal ideal I of the form Ra"R of R, where n is a positive integet, there
exists e € S,(R) such that I < Re and rr(I) " Re = (1 — e)Re.

Proof. The proof is an adaptation from [8, Proposition 1.9]. (1)=(2). Assume (1) holds.
Then rr(I) = rr(Ra"R) = rr(a"R) = fR with f € S¢(R). So I < €r(rr(I)) = R(1 — f). Let
e=1- f,thene e S,(R). Hence rr(I) N Re = (1 —e)RN Re = (1 —e)Re.

(2)=(1). Assume (2) holds. Clearly (1 —e)R < rg(I) for any ideal I of the form Ra"R.
Let o € rg(I), then ae = eae + (1 — e)ae € rr(I) N Re = (1 — e)Re. So eax = eae = 0. Hence
a=(l—e)ae (1—-e)R. Thus rr(I) = (1 —e)R, and therefore R is generalized right p.q.-
Baer. ([l

CoROLLARY 3.8. Let R be a generalized right p.q.-Baer ring. If I is a principal ideal of the
form Ra"R of R, then there exists e € S;(R) such that I = Re, (1 — e)Re is an ideal of R, and
I+ (1 —e)Re is left essential in Re.

As a parallel result to [8, Proposition 1.12], we have the following whose proof is also
an adaptation from [8].

ProrosITION 3.9. If R is a generalized right p.q.-Baer ring, then the center C(R) of R is a
generalized PP-ring.

Proof. Let a € C(R). For any positive integer 7, there exists e € S¢(R) such that £z(a") =
€r(Ra") = rr(a") = rr(a"R) = eR. Observe that £g(Ra") = €rrrfr(Ra") = €rrr(eR). Let
rr(eR) = rr(e"R) = fR with f € S¢(R), then 1 — f € §,(R). Hence eR = €g(Ra") =
errr(eR) = €r(fR) = R(1 — f). So there exists x € R such that e = x(1 — f), and hence
ef =x(1—-f)f =0. Now fe=efe =0 because e € S;(R), and so ef = fe = 0. Since
eR=R(1— f), thereis yc Rsuchthat 1 - f =ey,andsoe=¢e(l1— f)=ey=1-f.
Thus e € S¢(R) N S;(R) = B(R). Consequently, r¢c(R)(a") = rr(a") N C(R) = eRN C(R) =
eC(R). Therefore the center C(R) of R is a generalized PP-ring. O
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The following example shows that there exists a semiprime ring %R whose center is a
generalized PP, but R is not a generalized right p.q.-Baer.

Example 3.10. Let R = R® Mat,(Z[x]), where
[1F.  DF

_ n=1 n=1
PE, <€9&J>
n=1 n=1

in Example 3.6. Then the center of R is generalized PP. Since R is not a generalized right
p.q.-Baer by Example 3.6, R is not a generalized right p.q.-Baer either. Furthermore, due
to [14, Example 4], Mat,(Z[x]) is not a generalized right PP. Thus R is not generalized
right PP.

Note that given a reduced ring R, the trivial extension of R (by R) has the IFP by simple
computations. However, the trivial extension of a ring R which has the IFP does not have
the IFP by [13, Example 11]. We give examples of generalized right p.q.-Baer rings, which
are extensions of the trivial extension, as in the following.

R , (3.3)

Lemma 3.11. Let S be a ring and for n = 2,

a app aiz -t din
0 a ay --- au

R,=1(0 0 4 @n | | a,a; €St (3.4)
0 0 0O -+ a

If S has the IFP, then for any A € R, and any E*> = E € R,, AE = 0 implies that AR,E = 0,
where 0 is the zero matrix in R,,.

Proof. Note that every idempotent E in R, is of the form

e 0 O 0
0 e O 0
0 0 e 0 (3.5)
00 0 --- e

with e? = e € S by [14, Lemma 2]. Suppose that AE = 0 for any

a ap aiz - dip
0 a ay -+ aun
A=|0 0 a - am|cp, (3.6)
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Then we have the following: ae = 0 and a;je = 0 for i< j, 1 <iand 2 < j. Since $ has the
IFP, aSe = 0 and g;;Se = 0 for i < j, 1 <iand 2 < j. These imply that AR,E = 0. O

ProrosITION 3.12. Let a ring S have the IFP and let R, for n = 2 be the ring in Lemma 3.11.
Then the following are equivalent:

(1) S is generalized right p.q.-Baer;

(2) R, is generalized right PP;

(2) R, is generalized right p.q.-Baer.

Proof. (1)=(2). Suppose that S is generalized right p.q.-Baer. By Proposition 3.3, S is a
generalized right PP. Hence R, is also a generalized right PP by [14, Proposition 3].
(2)=(3). Suppose that R, is a generalized right PP. Then for any

a ap aiz -t dip
0 a ay -+ aun

A=|0 0 a - am|cp, (3.7)
0 0 0 a

and a positive integer k, there exists an idempotent

e 0 0 0
0 e 0 0

E=|0 0 e - Ofcp (3.8)
0 0 0 e

with e? = e € S such that rg,(A¥) = ER,. Note that rz (A*R,) < ER,. From ry (AF) =
ER,, AKE = 0, and so A*R,E = 0 by Lemma 3.11. Thus we have E € rg (A*R,), and so
ER, < r,(A*R,). Consequently, rr, (A*R,) = ER,, and therefore R, is generalized right
p-q.-Baer.

(3)=(1). Suppose that R, is a generalized right p.q.-Baer. Let a € S and consider

a 0 0 0
0 a 0 0
A=|0 0 a - O)cp. (3.9)
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Since R, is a generalized right p.q.-Baer, rg, (A*R,) = ER, for some E* = E € R, and a
positive integer k. Then by [14, Lemma 2], there is ? = e € S such that

e 0 O 0
0 e O 0
E=|0 0 e -+ 0]cp, (3.10)
o0 0 --- e
Hence eS < r5(akS). Let b € rg(akS), then
b 00 --- 0
O b 0 --- 0
00b 0| er, (3.11)
0O 0 0 --- b

is contained in rg,(A*R,) = ER,, so b € eS. Thus S is also a generalized right p.q.-Baer
ring. O
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