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A Taylor matrix method is developed to find an approximate solution of the most general
linear Fredholm integrodifferential-difference equations with variable coefficients under
the mixed conditions in terms of Taylor polynomials. This method transforms the given
general linear Fredholm integrodifferential-difference equations and the mixed condi-
tions to matrix equations with unknown Taylor coefficients. By means of the obtained
matrix equations, the Taylor coefficients can be easily computed. Hence, the finite Taylor
series approach is obtained. Also, examples are presented and the results are discussed.
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1. Introduction

An important problem in function theory is the problem of expanding a function in a se-
ries of polynomials. Several extensions of the classical theory of Taylor series to differen-
tial, differential-difference operators on the real line have shown up recently. Boundary-
value problems involving integrodifferential-difference equations arise in studying varia-
tional problems of control theory where the problem is complicated by the effect of time
delays [4, 5], signal transmission [9], biological problems as the problem of determin-
ing the expected time for the generation of action potentials in nerve cells by random
synaptic inputs in the dendrites [1–3].

Taylor methods to find the approximate solutions of differential equations have been
presented in many papers [6, 8, 10, 11]. In this paper, the basic ideas of these methods are
developed and applied to the high-order general linear differential-difference equation
with variable coefficients, which is given in [7, page 229],

m∑

k=0

p∑

j=0

Pk j(x)y(k)(x− τk j
)

= f (x) +
∫ b

a

q∑

i=0

s∑

l=0

Kil(x, t)y(i)(t− τil
)
dt, τk j ≥ 0, τil ≥ 0,

(1.1)
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with the mixed conditions

m−1∑

k=0

R∑

r=1

crlk y
(k)(cr

)= λl, l = 1,2, . . . ,m, a≤ cr ≤ b, (1.2)

and the solution is expressed as the Taylor polynomial

y(x)=
N∑

n=0

y(n)(c)
n!

(x− c)n, a≤ x, c ≤ b. (1.3)

Here Pk j(x), Kil(x, t), and f (x) are functions that have suitable derivatives on a≤ x, t ≤
b; and crlk, cr , c and τk j , τil are suitable coefficients; y(n)(c) are Taylor coefficients to be
determined.

2. Fundamental matrix relations

Let us convert the expressions defined in (1.1), (1.2), and (1.3) to matrix forms. We first
consider the solution y(x) defined by the truncated Taylor series (1.3) and then we can
put it in the matrix form

[
y(x)

]=XM0Y, (2.1)

where,

X=
[

1 (x− c) (x− c)2 ··· (x− c)N
]

,

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0!

0 0 ··· 0

0
1
1!

0 ··· 0

0 0
1
2!

··· 0

...
...

...
...

0 0 0 ··· 1
N !

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)(c)

y(1)(c)

y(2)(c)

...

y(N)(c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(2.2)

Now we substitute quantities (x− τk j) instead of x in (1.3) and differentiate it N times
with respect to x. Then we obtain

y(0)(x− τk j
)=

N∑

n=0

y(n)(c)
n!

(
x− τk j − c

)n
,

y(1)(x− τk j
)=

N∑

n=1

y(n)(c)
(n− 1)!

(
x− τk j − c

)n−1
,
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y(2)(x− τk j
)=

N∑

n=2

y(n)(c)
(n− 2)!

(
x− τk j − c

)n−2
,

...

y(N)(x− τk j
)=

N∑

n=N

y(n)(c)
(n−N)!

(
x− τk j − c

)n−N

(2.3)

and the matrix form, for x = c,

Y
(
τk j
)=X

(
τk j
)

Y, (2.4)

where

X
(
τk j
)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0!

(− τk j
)1

1!

(− τk j
)2

2!
···

(− τk j
)N

N !

0
1
0!

(− τk j
)1

1!
···

(− τk j
)N−1

(N − 1)!

0 0
1
0!

···
(− τk j

)N−2

(N − 2)!

...
...

...
...

0 0 0 ··· 1
0!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y
(
τk j
)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)
(
c− τk j

)

y(1)
(
c− τk j

)

y(2)
(
c− τk j

)

...

y(N)
(
c− τk j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y=
[
y(0)(c) y(1)(c) ··· y(N)(c)

]T
.

(2.5)

On the other hand, we consider terms Pk j(x)y(k)(x− τk j), k = 0,1, . . . ,m, j = 0,1, . . . , p, in
(1.1) and can write them as the truncated series expansions of degree N at x = c in the
form

Pk j(x)y(k)(x− τk j
)=

N∑

n=0

1
n!

[
Pk j(x)y(k)(x− τk j

)](n)
x=c(x− c)n. (2.6)

By means of Leibnitz’s rule we have

[
Pk j(x)y(k)(x− τk j

)](n)
x=c =

n∑

i=0

(
n

i

)
P(n−i)
k j (c)y(k+i)(c− τk j

)
(2.7)

and substitute in expression (2.6). Thus expression (2.6) becomes

Pk j(x)y(k)(x− τk j
)=

N∑

n=0

n∑

i=0

1
n!

(
n

i

)
P(n−i)
k j (c)y(k+i)(c− τk j

)
(x− c)n (2.8)
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and its matrix form

[
Pk j(x)y(k)(x− τk j

)]=XPk jY
(
τk j
)

(2.9)

or from (2.4)

[
Pk j(x)y(k)(x− τk j

)]=XPk jX
(
τk j
)

Y, (2.10)

where

Pk j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ··· 0
P(0)
k j (c)

0!0!
0 0 ··· 0 0

0 ··· 0
P(1)
k j (c)

1!0!

P(0)
k j (c)

0!1!
0 ··· 0 0

0 ··· 0
P(2)
k j (c)

2!0!

P(1)
k j (c)

1!1!

P(0)
k j (c)

0!2!
··· 0 0

...
...

...
...

...
...

...

0 ··· 0
P(N−k)
k j (c)

(N − k)!0!

P(N−k−1)
k j (c)

(N − k− 1)!1!

P(N−k−2)
k j (c)

(N − k− 2)!2!
··· A1 A5

0 ··· 0
P(N−k+1)
k j (c)

(N − k+ 1)!0!

P(N−k)
k j (c)

(N − k)!1!

P(N−k−1)
k j (c)

(N − k− 1)!2!
A2 A6

...
...

...
...

...
...

...

0 ··· 0
P(N−1)
k (c)

(N − 1)!0!

P(N−2)
k (c)

(N − 2)!1!

P(N−3)
k (c)

(N − 3)!2!
··· A3 A7

0 ··· 0
P(N)
k j (c)

N !0!

P(N−1)
k j (c)

(N − 1)!1!

P(N−2)
k j (c)

(N − 2)!2!
··· A4 A8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.11)

where

A1 =
P(1)
k j (c)

1!(N − k− 1)!
, A2 =

P(2)
k j (c)

2!(N − k− 1)!
, A3 = P(k)

k (c)

k!(N − k− 1)!
,

A4 =
P(k+1)
k j (c)

(k+ 1)!(N − k− 1)!
, A5

P(0)
k j (c)

0!(N − k)!
, A6 =

P(1)
k j (c)

0!(N − k)!
,

A7 = P(k−1)
k (c)

(k− 1)!(N − k)!
, A8 =

P(k)
k j (c)

k!(N − k)!
.

(2.12)



M. Sezer and M. Gülsu 5

Let the function f (x) be approximated by a truncated Taylor series

f (x)=
N∑

n=0

f (n)(c)
n!

(x− c)n. (2.13)

Then we can put this series in the matrix form

[
f (x)

]=XM0F, (2.14)

where the matrices X and M0 are defined in (2.1); the matrix F is

F=
[
f (0)(c) f (1)(c) ··· f (N)(c)

]T
. (2.15)

2.1. Matrix relation for Fredholm integral part. The kernel functions Kil(x, t), (i = 0,
1, . . . ,q, l = 0,1, . . . ,s) can be approximated by the truncated Taylor series of degree N
about x = c, t = c in the forms

Kil(x, t)=
N∑

n=0

N∑

m=0

kilnm(x− c)n(t− c)m, (2.16)

where

kilnm =
1

n!m!
∂n+mKil(c,c)

∂xn∂tm
, n,m= 0,1, . . .,N. (2.17)

The expression (2.16) can be put in the matrix form [6]

[
Kil(x, t)

]=XKilTT , (2.18)

where

Kil =
⌊
kilnm

⌋
, i= 0,1, . . . ,q, l = 0,1, . . . ,s,

T=
[

1 (t− c) (t− c)2 ··· (t− c)N
]
.

(2.19)

On the other hand, we can obtain the matrix form of the function y(i)(t) as,

[
y(i)(t)

]= TMiY, i= 0,1, . . . ,q, (2.20)

and thereby the matrix form of y(i)(t− τil) as

[
y(i)(t− τil

)]= T
(
τil
)

MiY, l = 0,1, . . . ,s, (2.21)
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where

T
(
τil
)=

[
1

(
t− τil − c

) (
t− τil − c)2 ··· (

t− τil − c
)N] , (2.22)

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ··· 1
0!

0 ··· 0

0 0 ··· 0
1
1!

··· 0

...
...

...
...

...

0 0 ··· 0 0 ··· 1
(N − i)!

0 0 ··· 0 0 ··· 0

...
...

...
...

...

0 0 ··· 0 0 ··· 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)x(N+1)

. (2.23)

Substituting the matrix forms (2.18) and (2.21) into the integral part of (1.1), we have
the matrix relation

[
I(x)

]=
∫ b

a

q∑

i=0

s∑

l=0

XKilTTT
(
τil
)
MiYdt

=X
q∑

i=0

s∑

l=0

Kil

{∫ b

a
TTT

(
τil
)
dt
}

MiY=X
q∑

i=0

s∑

l=0

KilHilMiY,

(2.24)

where

Hil =
∫ b

a
TTT

(
τil
)
dt = [hilnm

]
,

if τil �= 0, hilnm =
n∑

k=0

(
n

k

)
(
τil
)k
(
b− τil − c

)n+m−k+1− (a− τil − c
)n+m−k+1

n+m− k+ 1
,

if τil = 0, hilnm =
(b− c)n+m+1− (a− c)n+m+1

n+m+ 1
, n,m= 0,1, . . . ,N.

(2.25)

Substituting the matrix forms (2.10), (2.14), and (2.24) corresponding to the expressions
in (1.1) and then simplifying the resulting equation, we have the fundamental matrix
equation

( m∑

k=0

p∑

j=0

Pk jX
(
τk j
)−

q∑

i=0

s∑

l=0

KilHilMi

)
Y=M0F, p,q,s < m. (2.26)

Next, let us form the matrix representation for the conditions (1.2) as follows [6].
The expression (1.3) and its derivatives are equivalent to the matrix equations

[
y(k)(x)

]=XMkY, k = 0,1, . . . ,m− 1, (2.27)
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where the matrix Mk is defined in the expressions (2.21). By using these equations, the
quantities y(k)(cr), k = 0,1, . . . ,m− 1, r = 1,2, . . . ,R, a≤ cr ≤ b, can be written as

[
y(k)(cr

)]= CrMkY, (2.28)

where

Cr =
[

1
(
cr − c

) (
cr − c

)2 ··· (
cr − c

)N]
. (2.29)

Substituting quantities (2.28) into (1.2) and then simplifying, we obtain the matrix forms
corresponding to the m mixed conditions as

UlY=
[
λl
]
, l = 1,2, . . . ,m, (2.30)

where

Ul =
m−1∑

k=0

R∑

r=1

crlkCrMk ≡
[
ul0 ul1 ··· uln

]
(2.31)

and the constants uln, n= 0,1, . . . ,N , l = 1,2, . . . ,m, are related to the coefficients crlk and
cr .

3. Method of solution

The fundamental matrix equation (2.26) for the high-order general linear Fredholm
integrodifferential-difference equation with variable coefficients corresponds to a system
of (N + 1) algebraic equations for the (N + 1) unknown coefficients y(0)(c), y(1)(c), . . . ,
y(N)(c).

Briefly we can write (2.26) in the form

WY=M0F or
[

W;M0F
]
, (3.1)

where

W= [whn
]=

( m∑

k=0

p∑

j=0

Pk jX
(
τk j
)−

q∑

i=0

s∑

l=0

KilHilMi

)
, h,n= 0,1, . . . ,N. (3.2)

The augmented matrix of (3.1) becomes

[
W;M0F

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 ··· w0N ;
f (0)(c)

0!

w10 w11 ··· w1N ;
f (1)(c)

1!
...

...
...

...

wN0 wN1 ··· wNN ;
f (N)(c)
N !

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)
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Consequently, to find the unknown Taylor coefficients y(n)(c), n= 0(1)N , related with the
approximate solution of the problem consisting of (1.1) and conditions (1.2), by replacing
the m row matrices (2.30) by the last m rows of augmented matrix (3.3), we have a new
augmented matrix

[
W∗;F∗

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 ··· w0N ;
f (0)(c)

0!

w10 w11 ··· w1N ;
f (1)(c)

1!

··· ··· ··· ; ···

wN−m,0 wN−m,1 ··· wN−m,N ;
f (N−m)(c)
(N −m)!

u00 u01 ··· u0N ; μ0

u10 u11 ··· u1N ; μ1

··· ··· ··· ; ···
um−1,0 um−1,1 ··· um−1,N ; μm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

or the corresponding matrix equation

W∗Y= F∗. (3.5)

If detW∗ �= 0, we can write (2.14) as

Y= (W∗)−1
F∗ (3.6)

and the matrix Y is uniquely determined. Thus our problem has a unique solution.This
solution is given by the truncated Taylor series (1.3).

Also we can easily check the accuracy of the obtained solutions as follows [6, 8].
Since the Taylor polynomial (1.3) is an approximate solution of (1.1), when the func-

tion y(x) and its derivatives are substituted in (1.1), the resulting equation must be satis-
fied approximately; that is, for x = xi ∈ [a,b], i= 0,1,2, . . .,

D
(
xi
)=

∣∣∣∣∣

m∑

k=0

p∑

j=0

Pk j(x)y(k)(x− τk j
)−

∫ b

a

q∑

i=0

s∑

l=0

Kil(x, t)y(i)(t− τil
)
dt− f (x)

∣∣∣∣∣
∼= 0 (3.7)

or

D
(
xi
)≤ 10−ki

(
ki is any positive integer

)
. (3.8)

If max |10−ki| = 10−i (i is any positive integer) is prescribed, then the truncation limit
N is increased until the difference D(xi) at each of the points becomes smaller than the
prescribed 10−i.
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4. Illustrations

The method of this study is useful in finding the solutions of general linear Fredholm
integrodifferential-difference equations in terms of Taylor polynomials. We illustrate it
by the following examples.

Example 4.1. Let us first consider the third-order linear Fredholm integrodifferential-
difference equation

y′′′(x)− xy′′
(
x− π

2

)
− y′(x−π)= x sin(x) +

∫ π/2

−π/2

[
xy′(t)− ty(t) + ty′′(t−π)

]
dt

(4.1)

with the conditions

y(0)= 1, y′(0)= 0, y′′(0)=−1, (4.2)

and approximate the solution y(x) by the polynomial

y(x)=
6∑

n=0

y(n)(0)
n!

(x− c)n, (4.3)

where P00(x)= 0, P10(x)=−1, P20(x)=−x, P30(x)= 1, τ00 = 0, τ10 = π, τ20 = π/2, τ30 =
0, −π/2≤ x ≤ π/2, c = 0, N = 6, p = 1, m= 3, f (x)= x sin(x).

We first reduce this equation, from (2.26) to the matrix form

{ 3∑

k=0

0∑

j=0

Pk jX
(
τk j
)−

2∑

i=0

0∑

l=0

KilHilMi

}
Y=M0F (4.4)

or clearly

{(
P00X

(
τ00
)

+P10X
(
τ10
)

+P20X
(
τ20
)

+P30X
(
τ30
))

− (K00H00M0 +K10H10M1 +K20H20M2
)}

Y=M0F.
(4.5)

From (2.30), the matrices for conditions are computed as

U0 =
[

1 0 0 0 0 0 0
]

, λ0 = 1,

U1 =
[

0 1 0 0 0 0 0
]

, λ1 = 0,

U2 =
[

0 0 1 0 0 0 0
]

, λ2 =−1.

(4.6)
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Substituting the above matrices into the fundamental matrix equation and using the sim-
ple computations, we have the augmented matrix based on conditions which is

[
W∗;F∗

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 +
π3

12
π

−π2

2
+ 1 +

π5

480
− π3

12
π3

6
+
π4

12
B1 B5 ; 0

0 −π −2
3π
2
− π3

24
−5π2

8
+ 1 B2 B6 ; 0

0 0 0
−3
2

π B3 B7 ; 1

0 0 0 0
−2
3

B4 B8 ; 0

1 0 0 0 0 0 0 ; 1

0 1 0 0 0 0 0 ; 0

0 0 1 0 0 0 0 ; −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.7)

where

B1 = −π
4

24
+

π7

53760
− π5

160
, B2 = 3π3

16
− π5

1920
, B3 = −3π2

8
+

1
2

,

B4 = 5π
12

, B5 = π5

120
+

23π6

1440
, B6 = −17π4

384
,

B7 = 5π3

48
, B8 = −7π2

48
+

1
6
.

(4.8)

Solving this system, Taylor coefficients are obtained as y(0)(0)= 1, y(1)(0)= 0, y(2)(0)=
−1, y(3)(0)=−0.2181409971, y(4)(0)=0.4585894230, y(5)(0)=0.06597637009, y(2)(0)=
−0.1723673475.

Thereby the solution of the given problem under the condition (1.2) becomes

y(x)= 1− 1
2
x2− 0.036356832x3 + 0.019107892x4

+ 0.00054980308x5− 0.00023939909x6.

(4.9)

We use the absolute error to measure the difference between the numerical and exact
solutions. In Table 4.1 the errors obtained for N = 6,7,8 are given with the exact solution
y(x)= cos(x).
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Table 4.1. Error analysis of Example 4.1 for the x value.

x
Exact N = 6 N = 7 N = 8

solution E(xi) E(xi) E(xi)

−π/2 0.000000 0.256620 0.102547 0.015526

−2π/5 0.309016 0.122302 0.049204 0.008451

−3π/10 0.587785 0.047036 0.019549 0.003843

−π/5 0.809016 0.012410 0.005450 0.001241

−π/10 0.951056 0.001344 0.000637 0.000169

0 1.000000 0.000000 0.000000 0.000000

π/10 0.951056 0.000906 0.000541 0.000201

π/5 0.809016 0.005518 0.003914 0.001728

3π/10 0.587785 0.013019 0.011765 0.006151

2π/5 0.309016 0.018544 0.024459 0.015087

π/2 0.000000 0.014686 0.041279 0.029890

Example 4.2. Second we can study the following first-order linear differential-difference
equation with variable coefficients:

y′′′(x)− xy′′
(
x− π

2

)
+ y

(
x+

π

2

)

= 2− xcos(x) +
∫ π/2

−π/2

[
xy′(t)− ty(t) + ty′′

(
t+

π

2

)
+ xy

(
t− π

2

)]
dt

(4.10)

with the conditions

y(0)= 0, y′(0)= 1, y′′(0)= 0, (4.11)

and approximate the solution y(x) by the polynomial

y(x)=
5∑

n=0

y(n)(0)
n!

(x− c)n, (4.12)

where −π/2≤ x, t ≤ π/2, λ= 1, μ= 1, m= 3, N = 5, P00(x)= 1, P20(x)=−x, P30(x)= 1,
τ00 = −π/2, τ01 = 2, τ20 = π/2, τ30 = 0, K00(x, t) = −t, K01(x, t) = x, K10(x, t) = x, K20(x,
t) = π/2, c = 0, N = 6, m = 1, p = 1, τ∗00 = 0, τ∗01 = π/2, τ∗10 = 0, τ∗20 = π/2, f (x) = 2−
xcos(x).

Then for N = 5, the fundamental matrix equation from (2.26) becomes

{ 3∑

k=0

0∑

j=0

Pk jX
(
τk j
)−

2∑

i=0

1∑

l=0

KilHilMi

}
Y=M0F. (4.13)



12 Taylor matrix method

Following the previous procedures, the augmented matrix [W∗;F∗] based on the con-
ditions is obtained as

[
W∗;F∗

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
π

2
+
π3

12
π2

8
1− π3

16
+

π5

480
C1 C4 ; 2

−π 1−π +
π2

2
−1 +

π

2
− π3

6
π

2
+
π2

8
− π3

24
+
π4

24
C2 C5 ; −1

0 0
1
2

−1 +
π

4
C3 C6 ; 0

1 0 0 0 0 0 ; 0

0 1 0 0 0 0 ; 1

0 0 1 0 0 0 ; 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.14)

where

C1 = −5π4

128
, C2 = 1− π2

8
+
π3

48
− π5

120
, C3 = π

2
+
π2

16
,

C4 = −47π5

3840
+

π7

53760
, C5 = π3

48
+

π4

384
− π5

1920
+

π6

720
, C6 = 1

2
− π2

8
+
π3

96
.

(4.15)

Solving this system, Taylor coefficients are obtained as y(0)(0)= 0, y(1)(0)= 1, y(2)(0)= 0,
y(3)(0)=−0.9034070707, y(4)(0)= 0.02918158630, y(5)(0)= 0.6274658043.

Thereby the solution of the given problem under the condition (1.2) becomes

y(x)= x− 0.1505678451x3 + 0.001215899429x4 + 0.005228881702x5. (4.16)

We use the absolute error to measure the difference between the numerical and exact
solutions. In Table 4.2 the solutions obtained for N = 5,7 are compared with the exact
solution y(x)= sin(x).

Example 4.3. Our last example is the second-order linear differential-difference equation

y′′(x)− xy′(x− 1) + y(x− 2)=−x2− 2x+ 5 (4.17)

with the conditions

y(0)=−1, y′(−1)=−2, −2≤ x ≤ 0, (4.18)

and approximate the solution y(x) by the polynomial

y(x)=
7∑

n=0

y(n)(0)
n!

(x− c)n, (4.19)
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Table 4.2. Error analysis of Example 4.2 for the x value.

x N = 5 N = 7

Exact Num. Sol. E(xi) Num. Sol. E(xi)

−π/2 −1.000000 −1.029829 0.029829 −1.005851 0.005851

−2π/5 −0.951056 −0.971203 0.020146 −0.955063 0.004006

−3π/10 −0.809016 −0.819355 0.010338 −0.811113 0.002096

−π/5 −0.587785 −0.591292 0.003507 −0.588510 0.000724

−π/10 −0.309016 −0.309494 0.000477 −0.309117 0.000100

0 0.000000 0.000000 0.000000 0.000000 0.000000

π/10 0.309016 0.309518 0.000501 0.309125 0.000108

π/5 0.587785 0.591671 0.003886 0.588632 0.000847

3π/10 0.809016 0.821274 0.012257 0.811726 0.002709

2π/5 0.951056 0.977267 0.026210 0.956973 0.005916

π/2 1.000000 1.044634 0.044634 1.010431 0.010431

where −2≤ x ≤ 0, m= 2, p = 1, c = 0, N = 7, P00(x)= 1, P10(x)=−x, P20(x)= 1, τ00 =
2, τ10 = 1, τ20 = 0, f (x)=−x2− 2x+ 5.

Then for N = 7, the fundamental matrix equation from (2.26) becomes

2∑

k=0

0∑

j=0

Pk jX
(
τk j
)

Y=M0F. (4.20)

To find a Taylor polynomial solution of the problem above, we first take c = 0, N = 7 and
then proceed as before. Then we obtain the desired augmented matrix

[
W∗;F∗

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 3 −4
3

2
3

− 4
15

4
45

− 8
315

; 5

0 0 −1
5
2

−7
6

5
8

− 31
120

7
80

; −2

0 0 −1
2

0 1 −1
2

7
24

−1
8

; −1

0 0 0 −1
3

1
6

1
4

− 5
36

13
144

; 0

0 0 0 0 −1
8

1
12

1
24

− 1
36

; 0

0 0 0 0 0 − 1
30

1
40

1
240

; 0

1 0 0 0 0 0 0 0 ; −1

0 1 −1
1
2

−1
6

1
24

− 1
120

1
720

; −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.21)
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From the solution of this system, the coefficients y(n)(0) (n= 0,1, . . . ,7) are uniquely de-
termined as

Y=
[
−1 0 2 0 0 0 0

]T
. (4.22)

By substituting the obtained coefficients (4.22) the solution of (4.17) becomes

y(x)= x2− 1 (4.23)

which is an exact solution.

5. Conclusions

The method presented in this study is useful in finding approximate and also exact solu-
tions of general linear Fredholm integrodifferential-difference equations. Equation (1.1)
can be reduced to differential equations, difference equations, integral equations, inte-
grodifferential equations, and also the given method can be applied to all these equations.

Differential-difference equations with variable coefficients are usually difficult to be
solved analytically. In this case, the presented method is required for the approximate so-
lutions. On the other hand, it is observed that the method has the best advantage when
the known functions in equation can be expanded to Taylor series with rapid conver-
gence. In addition, an interesting feature of this method is to find the analytical solutions
if the equation has an exact solution that is a polynomial of degree N or less than N .

A considerable advantage of the method is that Taylor coefficients of the solution are
found very easily by using the computer programs. We can use the symbolic algebra pro-
gram, Maple, to find the Taylor coefficients of the solution.

Also, the method can be developed and applied to system of linear integrodifferential-
difference equations, but some modifications are required.
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[8] Ş. Nas, S. Yalçınbaş, and M. Sezer, A Taylor polynomial approach for solving high-order linear Fred-

holm integro-differential equations, International Journal of Mathematical Education in Science
and Technology 31 (2000), no. 2, 213–225.

[9] T. L. Saaty, Modern Nonlinear Equations, Dover, New York, 1981.
[10] M. Sezer, Taylor polynomial solutions of Volterra integral equations, International Journal of

Mathematical Education in Science and Technology 25 (1994), no. 5, 625–633.
[11] , A method for approximate solution of the second order linear differential equations in

terms of Taylor polynomials, International Journal of Mathematical Education in Science and
Technology 27 (1996), no. 6, 821–834.

Mehmet Sezer: Department of Mathematics, Faculty of Science, Mugla University,
48000 Mugla, Turkey
E-mail address: msezer@mu.edu.tr

Mustafa Gülsu: Department of Mathematics, Faculty of Science, Mugla University,
48000 Mugla, Turkey
E-mail address: mgulsu@mu.edu.tr

mailto:msezer@mu.edu.tr
mailto:mgulsu@mu.edu.tr

