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Given a basic K-coalgebra C, we study the left Gabriel-valued quiver (¢cQ,cd) of C by
means of irreducible morphisms between indecomposable injective left C-comodules and
by means of the powers rad” of the radical rad of the category C-inj of the socle-finite
injective left C-comodules. Connections between the valued quiver (¢Q,cd) of C and the
valued quiver (¢Q,¢d) of a colocalization coalgebra quotient fr: C — C of C are estab-
lished.
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1. Introduction

Throughout this paper we fix a field K. Given a K-coalgebra C we denote by C-Comod
and C-comod the categories of left C-comodules and left C-comodules of finite K-dimen-
sion, respectively. Given a left C-comodule M, we denote by socc M the socle of M, that
is, the sum of all simple C-subcomodules of M. We call M socle-finite (or finitely copre-
sented) if dimg soc M is finite. Following [17, page 404], a K-coalgebra C is called basic if
the left C-comodules ¢C and socc C have direct sum decompositions:

cC= @E(j), socCC=@S(j), (1.1)

jele j€le

where I¢ is a set, E(j) is an indecomposable injective comodule, S(j) is a simple co-
module, and E(j) is the injective envelope of S(j), for each j € I, E(i) # E(j), and
S(i) # S(j), for i # j. It was shown in [22] that a K-coalgebra C is basic if and only if
dimg S = dimg End¢ S, for any simple left C-comodule S.

Throughout this paper we assume that C is a basic K-coalgebra, the decompositions
(1.1) are fixed, and we set

F; = EndcS(j), (1.2)
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2 Irreducible morphisms and the Gabriel-valued quiver

for each j € I¢. In this case {S(j)};cs. is a complete set of all pairwise nonisomorphic
simple left C-comodules.

We recall from [10, Definition 4.3] and [19, Definition 8.6] that the left Gabriel-valued
quiver of C is the valued quiver

(CQaCd) = (CQO)CQlaCd)a (13)

where ¢Qp = I¢ is the set of vertices, ¢Q; is the set of valued arrows, and, given two
vertices i, j € ¢Qy, there exists a unique valued arrow

(dijdiy)
i— (1.4)

fromito j in ¢Qq if and only if the F;-F;-bimodule Extlc(S(i),S(j)) is nonzero and
d;; = dimExt¢ (S(1),S(j)) ,» d;} = dimp;, Ext¢ (S(1),S(j)). (1.5)

In other words, (¢Q, cd) is the opposite to the left valued Ext-quiver of C (see [4, 8, 14]),
which is the valued quiver (Qc®¥,d<®*") of the left Ext-species c€xt of C; see [10].

In practice, it is useful to work with an equivalent form of the valued quiver (¢Q, cd).
We define it in Section 2, by applying the well-known concepts of the Auslander-Reiten
theory for finite dimensional algebras, see [1], [2, Section 5.5], and [18, Section 11.1].
We introduce the notion of an irreducible morphism between left C-comodules, and we
give an equivalent description of the quiver (¢Q,cd) in terms of irreducible morphisms
between socle-finite injective C-comodules. Then we study the valued quiver (¢Q,cd)
by means of irreducible morphisms between the indecomposable injective C-comodules
E(j), by means of the K-species; see (2.10),

c5> = (Fj’jNi)i,jEI(; (1.6)
of Fj-F;-bimodules ;N; = Irr(E(i), E(j)) of irreducible morphisms [10, equation (4.9)],
and by means of the powers rad™ (E(i),E(j)) of the radical rad of the full subcategory
C-inj of C-Comod formed by the socle-finite injective C-comodules. In particular, we
show that the existence of a valued arrow (1.4) in the quiver (¢Q, cd) is equivalent to the
existence of an irreducible morphism E(j) — E(i) in the category C-inj.

One of the main results of this paper is Theorem 2.3 of Section 2. It asserts that, for
each pair of indices i, j € I¢, we have

(i) Mm=1rad™(E(j),E(i)) = 0;
(ii) for each noninvertible nonzero homomorphism f € Hom¢(E(j),E(7)), there is
m > 1 such that f € rad™(E(j),E(i)) \ rad™"" (E(j), E(i));
(iii) if rad(E(j), E(i)) is nonzero, then there exist an integer 1;; > 1 and a path

E(j)ﬂ»E(jl)ﬂE(jz)ﬂ---ﬂE(i) (1.7)



Daniel Simson 3

of irreducible morphisms ¢1,...,¢, in C-inj such that the composition @, - - - ¢1 is
nonzero. If, in addition, the vector space Hom¢(E( ), E(i)) is of finite K-dimension, then
there exists a finite set U;j < I¢ such that rad™ (E(j),E(i)) # 0 and rad""™"1 (E(j),E(i)) =
0, and every noninvertible nonzero C-comodule homomorphism f : E(j) — E(i) is a fi-
nite K-linear combination f = 3 ;A fi. - - - fo fu1 of compositions

E() 25 B(a) 2 E(jo) 2~ -+ L2 E(jir) = EG) (1.8)

of irreducible morphisms f, fo, f3,..., for, in C-inj, where A € K, As # 0, r; < m;j, for
s=1,..,t,and j, € Ujj, foralla=1,...,r;and s = 1,...,t.

Hence we conclude, in Corollary 2.4, that the coalgebra C is a direct sum of two
nonzero subcoalgebras if and only if the valued quiver (¢Q, cd) is disconnected. In par-
ticular, this implies a new proof of [14, Corollary 2.2].

In Section 3, we study a relationship between the valued quiver (¢Q, cd) of the coalge-
bra C and the valued quiver (¢Q,zd) of a colocalisation coalgebra quotient

fE:C—»C=CEEeECeEEC/OlLE (19)

of C with respect to an injective comodule

E=EPEG), (1.10)

jeu

where U is a subset of I¢; see Section 3 for details. We show in Theorem 3.2 that if E is as
above and, for each j € U, the comodule E(j)/S(j) is E-copresented then the left Gabriel-
valued quiver (¢Q,¢d) of the coalgebra C = Cr has ¢Qp = U and is isomorphic to the
restriction of the left Gabriel-valued quiver (¢Q,cd) of C to the subset U < I¢ = ¢Qp.

Throughout, we use the coalgebra representation theory notation and terminology
introduced in [19-21]. In particular, given a coalgebra C and a pair of left C-comodules M
and N, we denote by Hom¢ (M, N) the vector space of all C-comodule homomorphisms
f:M — N, and by Endc M the algebra of all C-comodule endomorphisms g: M — M of
M.

Given a K-coalgebra C, we denote by C* = Homg (C,K) the K-dual algebra with re-
spect to the convolution product (see [6, 13, 23]) viewed as a pseudocompact K-algebra
(see [7, 19]). The category of pseudocompact left C*-modules is denoted by C*-PC.

Given a ring R with an identity element, we denote by J(R) the Jacobson radical of R,
and by mod(R) the category of finitely generated right R-modules.

The reader is referred to [3, 6, 13, 23] for the coalgebra and comodule terminology,
and to [1, 2, 18] for the standard representation theory terminology and notation.

2. The Gabriel-valued quiver of a coalgebra and irreducible morphisms

Assume that K is an arbitrary field and C is a basic K-coalgebra. We fix the decompo-
sitions (1.1), and we set F; = Endc S(j), for each j € I, as in (1.2). Let (cQ,cd) be the
Gabriel-valued quiver (¢Q, ¢d) of C defined in (1.3).



4 Irreducible morphisms and the Gabriel-valued quiver

In this section we present an equivalent form of the valued quiver (¢Q,cd) in terms
of irreducible morphisms between injective C-comodules. One of the applications of this
new description is to compute the left Gabriel-valued quiver (¢, Q, ¢, d) of the coalgebra
Ck = egCeg in terms of the left Gabriel-valued quiver (¢Q, cd) of C, given in Section 3.

We denote by C-inj the full subcategory of C-Comod formed by the socle-finite injec-
tive C-comodules. Note that a comodule E’ lies in C-inj if and only if E" is isomorphic
with a finite direct sum of the comodules E(j), with j € Ic.

Following the Auslander-Reiten theory for finite dimensional algebras, we introduce
the notion of an irreducible morphism between left C-comodules as follows; see [1], [2,
Section 5.5], and [18, Section 11.1].

Definition 2.1. (a) A C-comodule homomorphism f : E' — E” in C-inj is an irreducible
morphism if f is not an isomorphism and given a factorization

E 4f>
N
VA
of f with Z in C-inj, f' is a section, or f’’ is a retraction, that is, f" has a left inverse or
f"" has a right inverse; see [1, Section I.5]. Irreducible morphisms in any full subcategory
of C-Comod are defined analogously.

(b) Given two comodules E" and E” in C-inj, define the radical of Hom¢(E',E"") to be
the K-subspace

E" (2.1)

rad(E',E"") < Hom¢(E',E") (2.2)

of Hom¢(E',E"") generated by all nonisomorphisms ¢ : E(i) — E(j) between indecom-
posable summands E(i) of E" and E(j) of E”, respectively.
(c) The square of rad(E’,E"") is defined to be the K-subspace

rad’(E,E") < rad(E',E"’) < Hom¢(E,E"") (2.3)

of rad(E’,E"") generated by all composite homomorphisms of the form E’ /N E(j) /.

E", where j € I, fj' € rad(E',E(j)), and fj” erad(E(j),E").
(d) The mth power rad” (E’,E"") of rad(E’,E") is defined analogously, for each m > 2.
Finally, set

[eY]

rad®(E',E") = () rad"(E',E"), (2.4)

m=1

and call it the infinite radical of Hom¢(E',E”).
Then the chain of vector spaces is defined:

Homc(E',E") 2 rad(E,E") 2 rad*(E,E")2 - - - 2 rad™(E,E") 2 - - - 2 rad™(E',E").
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The following simple lemma is very useful.

LemMA 2.2. Assume that C is a basic K-coalgebra with fixed decompositions (1.1).
(a) For each j € I¢, the K-algebra Endc E(j) is local, the subset

Je = {f € EndcE(j); f(S(j)) =0} (2.6)

of Endc E(j) is the unique maximal ideal of Endc E(j) and F; = Endc S(j) = Endc E(j)/JE.

(b) Given i,j € I¢, the radical rad(E(i),E(j)) consists of all nonisomorphisms f €
Homc(E(i),E(f)). Moreover, a C-comodule homomorphism f : E(i) — E(j) is an irreduci-
ble morphism in C-inj if and only if f € rad(E(i),E(j)) \ radz(E(i),E(j)).

Proof. (a) It is clear that Jg is a two-sided ideal of the algebra End¢ E(j), and that f €
EndcE(j) is noninvertible if and only if f(S(j)) = 0, that is, if and only if f € Jg. This
shows that End¢ E(j) is a local algebra and Jg is its unique maximal ideal. Since the map
EndcE(j) — Endc S(j) = F; that associates to f € Endc E(j) the restriction of f to S(j)
is a K-algebra homomorphism with kernel Jg, then (a) follows.

(b) The first statement is an immediate consequence of definition. To prove the second
one, we apply the standard Auslander-Reiten theory arguments; see [18, page 174]. For
the convenience of the reader we present a proof.

Assume, to the contrary, that f € Hom¢(E(i),E(j)) is irreducible and f € rad®(E(i),
E(j)). Then f = Zi:lfs”fs’, where f] € rad(E(i),Z;), f’ € rad(Z,,E(j)), and Z,,...,Z;
are indecomposable in C-inj. Obviously, f has a factorization f = f” f’, where

B0 L R
i) — 21028 - &Z — E(j) ()
are the homomorphisms f' = (f/,..., /) and f” = (f{’,..., f{"). Since f is irreducible,
then f” is a section or f” is a retraction.
First, assume that f’ is a section. Then there exists a C-comodule homomorphism

r=(r,...,11): 21 ®2Z,® - ®Z — E(i) (2.7)

such that 1gg) =rf" =rfi +---+rf/. Since f, € rad(E(i),Z;) and Z; is indecompos-
able, then f; is not an isomorphism and, hence, 7, f; is noninvertible, for any s {1,...,t}.
Since, by (a), the algebra End¢ E(i) is local, then r,f; € Jgi) = JEndc E(i), for each s €
{1,...,t}, and we get 1p) =11 f{ + - - - + 1 f{ € JEndcE(i); a contradiction. Similarly, if
f"" is a retraction, we also get a contradiction. Consequently, if f € Hom¢(E(i),E(f)),
then f € rad(E(i),E(j)) \ radz(E(i),E(j)).

Conversely, assume that f € rad(E(i),E(j)) \radz(E(i),E(j)). To prove that f is irre-
ducible, assume that f has a factorization

t
f _ f//f/ _ Z_fs”f;, (28)
s=1
in C-inj, where f" = (f{,..., f{) and f” = (f{’,..., f{") are as in () and the comodules

Z\,...,Z; are indecomposable. Since f ¢ radz(E(i),E(j)), then, according to (a), there is
an index a € {1,...,t} such that the map f, is bijective or there is an index b € {1,...,¢}
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such that the map f,” is bijective. It follows that f’ is a section or f’ is a retraction. This
shows that f is an irreducible morphism in C-inj and finishes the proof of the lemma. [J

Following the finite-dimensional algebras terminology; see [1], [2, Section 5.5], [10],
and [18, Section 11.1], we call the K-vector space

Irr (E(j),E(i)) = rad (E(j),E(i))/rad” (E(j),E(i)) (2.9)

the bimodule of irreducible morphisms, for each pair i, j € I¢; see [10, 20].

It is easy to see that the K-vector space ;N; = Irr(E(j),E(i)) is an F;-F;-bimodule,
where F; = Endc S(i) and F; = End¢ S(j) are division K-algebras. Following [10, Defi-
nition 4.9], we consider the K-species

C'-g> = (Fj:jNi),',jEIC (2.10)

of irreducible morphisms of C, where ;N;=Irr(E(i), E(j)) is viewed as an F;-F;-bimodule.
One of the main results of this paper is the following useful theorem.

THEOREM 2.3. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
set F; = Endc S(j), for each j € Ic. Let (cQ, cd) be the left Gabriel-valued quiver (1.3) of C.

&l , . .
(a) There exists a unique valued arrow i ) j (1.4) in (cQ,cd) if and only if the
F;-F;-bimodule Irr(E(j), E(i)) is nonzero and the numbers (1.5) have the forms
dij = dimlIrr (E(j),E(D)) g, dij = dimg, Irr (E(j), E(7)). (2.11)

(b) rad™ (E(j),E(i)) = N,o—; rad™(E(j),E(i)) = 0, for each i, j € Ic.
(c) For each i, j € Ic and any noninvertible nonzero homomorphism f € Homc(E(jf),
E(i)), there is an integer m > 1 such that

f € rad” (B(j),E(i) \ rad"™! (E(j),E(). (2.12)

In this case there is a path

E() 2 E(j) 2 E(jy) & - 22 E) (2.13)
of irreducible morphisms @i,...,¢, in C-inj such that the composition @ - - Q2@ is
nonzero.

(d) If dimg Homc(E(f), E(7)) is finite and rad(E(j), E(i)) # 0, then there exist an integer
m;; = 1 and a finite subset U;; of I¢ such that

rad™ (E(j),E(i)) # 0, rad""™ (E(), E(i) = 0, (2.14)

and every noninvertible nonzero homomorphism f € Homc(E(j),E(i)) is a finite K-linear
combination f = 3! Asfu. - - faa fa of compositions

EG) 25 E(ja) 22 E(jo) 22 -+ 22 E(jun) = EG) (2.15)

of irreducible morphisms f1, fa, f»..., fo, in C-inj, where A; € K, A; # 0, 1o < myj, for s =
L,....t, and j, € Uyj, foralla=1,...,r;and s = 1,...,t.
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Proof. The statement (a) follows from [10, Proposition 4.10(b)].

(b) We recall that the Yoneda map ¢ — ¢ o ¢ defines an isomorphism A¢ = End¢C =
C* of pseudocompact algebras; see also [19, Sections 3 and 4]. Note that, given j € I,
the direct summand projection ¢C — E(j) of left C-comodules induces a direct summand
injection

E(j)* = Homc (E(j),C) &= Ac = C* (2.16)

of left pseudocompact Ac-modules and an isomorphism E(j)* = C*ej, where e; is the
primitive idempotent of A¢ defined by the direct summand injection Hom¢(E(j),C) —
Ac.

Then, in view of the duality C-Comod = (C*-PC)°P given by M — M* (see [19, The-
orem 4.5]), for each pair i, j € I¢, we get F;-F;-bimodule dualities

rad (E(i),E(j)) = rada, (E(j)*,E(i)*) = rada. (C*ej,C*e;) = e;] (Ac)ei, (2.17)
and for each m > 2, we get F ;-Fi-bimodule dualities
rad” (E(i),E(j)) = rady. (E(j)*,E(i)*) =rad}_ (C*e;,C*e;) = e;J(Ac) e (2.18)

Since C = U,,_y Cin, where {C,,} is the coradical filtration of C, then

[

(J(Ac)" =0; (2.19)

m=0

see [11, 12] and [9, Section 4]. It then follows that (,,_, ejJ(Ac)™e; = 0 and consequently
rad™ (E(j),E(i)) = 0.

(c) Assume that f € Homc(E(j),E(i)) is a noninvertible nonzero homomorphism.
Then f € rad(E(j),E(i)) and, since rad™ (E(j), E(i)) = 0, then there is m > 1 such that

f € rad” (E(j),E(i)) \ rad™" (E(j), E(i)). (2.20)

It follows that f is a finite sum f = 3! | Asfun- - - fio fu of nonzero composite homo-
morphisms A fo - - - fo fa of the form (2.15), with A, € K, ry = --- =rg=mand f, €
rad(E(j),E(i)), foranysand g = 1,...,m.

Since f ¢ rade(E(j),E(i)), then there is a nonzero summand A fy, - - * fo fo1 such
that f;, ¢ radz(E(j),E(i)), for any s and a = 1,...,m. It follows from Lemma 2.2 that
fams-- > fs2> fo1 are irreducible morphisms, and (c) follows.

(d) Assume that dimx Homc(E(j), E(i)) is finite and rad(E(j), E(i)) # 0. Since, by (b),
rad”(E(j),E(i)) = 0, then there exists a minimal integer m;; > 1 such that rad™ (E(}),
E(i)) # 0, and rad™(E(j),E(i)) = 0, for m = 1+ m;;.

Assume that fe Homc(E(j),E(i)) is a nonzero non-isomorphism. Then ferad(E(j),
E(i)) and there is an integer g = q(f) € {1,...,m;;} such that

f € rad® (E(j),E(i)) \ rad™"" (E(j), E(i)). (2.21)
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We show, by induction on m;; — g(f) = 0 that f is a K-linear combination of composi-
tions of irreducible morphisms between indecomposable injective comodules.

First, assume that m;; — q(f) = 0, that is, q(f) = m;j and f € radi” (E(j),E(i)). Then
f is a finite sum:

f=2Afq o fafas (x)
s=1

of nonzero composite homomorphisms

E() 2 E(ja) 22 E(jo) — -+ 22 E() (2.22)

of length g = m;; and with A, € K and f,, € rad(E(j),E(i)), for any s and a = 1,...,q.
Since rad?™ (E( 7),E(i)) = 0, then each f;, is an irreducible morphism, by Lemma 2.2,
and we are done.

Next, assume that m = m;; — q(f) = 1 and (d) is proved, for all h € rad(E(}),E(i))
such that m;; —q(h) < m — 1. Let f” be the sum of all nonzero summands A, fy; - - - fo2 fo1
in (*") such that f,, € radz(E(j),E(i)), forsome 1 <a <gq.Then f" = f — f" is the sum
of all nonzero summands A f; - - - fia f1 in (") such that

fua € rad (E(j),E(i)) \ rad® (E(j),E()), (2.23)

for all 1 < a < q. It follows that each such a homomorphism f;, is an irreducible mor-
phism. By the choice of f”, we get ' € rad”q(f)(E(j),E(i)) and therefore g(f"') =
q(f)+ 1. Since, by induction hypothesis, " is a K-linear combination of compositions
of irreducible morphisms, then sois f = f'+ f”’, and we are done.

Let y1,...,yp be a K basis of rad(E(j), E(i)). By applying the above to each of the basis
element y1,..., s, we find a finite subset Uj; of I¢ such that each fef{y,....yp} isafinite
K-linear combination f = Zﬁzl)ts S fa2fa (k") of compositions (2.15) of irreducible
morphisms f.,..., fo, fa in C-inj, where A; € K and ry < my;j, for s = 1,...,t, and jg, €
Uij, for all a = 1...,r; and s = 1,...,¢. It follows that the same holds, for any nonzero
element f € rad(E(j),E(7)). This finishes the proof of the theorem. O

As a consequence of the properties of irreducible morphisms proved in Lemma 2.2
and Theorem 2.3, we get the following important corollary. We note that the second part
of it was proved in [19, Corollary 8.7], by applying the Ext-quiver of C and [14, Corollary
2.2].

COROLLARY 2.4. Assume that C is a basic K-coalgebra with fixed decompositions (1.1). Let
(cQ,cd) be the left Gabriel-valued quiver (1.4) of C.

. C
(a) There exists a valued arrow i

irreducible morphism E(j) — E(i) in C-inj.
(b) The coalgebra C is indecomposable (i.e., C is not a direct sum of two nonzero subcoal-
gebras) if and only if the Gabriel-valued quiver (cQ, cd) is connected.

j fromito j in ¢Qy if and only if there is an
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Proof. Statement (a) is an immediate consequence of Lemma 2.2 and Theorem 2.3(a).
(b) Assume that C is basic and C = EBjelcE(j) is the decomposition (1.1). In view of
the coalgebra isomorphism

(EndcC)” = (C*)° =G (2.24)

see [17, page 404] and [19, Lemma 4.9 and Theorem 3.6], there are nonzero subcoalge-
bras C" and C” of C such that C = C’ ® C" if and only if there are nonzero injective left
subcomodules E and E” of C such that
(i) cC=E ®E",
(ii) Hom¢(E',E"") = 0, and
(iii) Hom¢(E",E') = 0.
By the unique decomposition property, the former statement is equivalent to the exis-
tence of two disjoint nonempty subsets I and I'" of I such that
@) Ic=Tvl",
(ii) Homc(E(a),E(b)) =0,forallae I’ and b € I"’, and
(iii) Homc(E(b),E(a)) = 0,forallae I’ and b e I"”.
It follows that C is not a direct sum of two nonzero subcoalgebras if and only if, for each
pair i, j € I, there exists a path

E(j) — E(j1) E(j2) e E(i) (2.25)

where E(js) — E(js+1) means Homc(E(js),E(js+1)) # 0 or Homc(E(js+1),E(js)) # 0.1In
view of (a), the former condition is satisfied, if the valued quiver (¢Q, cd) is connected.
The converse implication follows from the fact that Hom¢(E(a), E(b)) # 0 implies the

existence of a path E(a) LR E(j1) LR (R E(b) of irreducible morphisms ¢,...,¢,, in
C-inj; see Theorem 2.3(c). The proof is complete. O

COROLLARY 2.5. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
assume that C is left computable, that is, dimx Homc¢(E(j),E(7)) is finite, for all i,j € I¢;
see [22].

(a) For each pair i, j € Ic, there exists a minimal integer m;; = 0 such that rad! "™ (E(),
E(i)) =0.

(b) Ifrad(E(j),E(i)) # 0, then m;j = 1, rad™ (E(j),E(i)) # 0, and rad(E(j),E(i)) has a
K-linear basis fi,..., f,, where each f; is the composed homomorphism f, = fo. -+ fafa
of the form (2.15) and fi.,..., fa, fa are irreducible morphisms in C-inj.

(c) Every nonzero non-isomorphism f : E(j) — E(i) between the indecomposable injec-
tive comodules E(j) and E(i) is a K-linear combination of the compositions f; = fo. -+ - fafa
of irreducible morphisms fi.,..., fo, fa in C-inj.

Proof. Since dimg Homc(E(j),E(7)) is finite, for all 4,j € I¢, then Theorem 2.3 applies
and the corollary follows. O
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3. The Gabriel-valued quiver of a colocalization coalgebra Cg

One of the main aims of this section is to compute the left Gabriel-valued quiver (¢, Q,
c;d) of the colocalisation coalgebra Cr = egCer (defined below) in terms of the left
Gabriel-valued quiver (¢Q, ¢d) of C.

Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and that E is an
injective left C-comodule of the form

E=PEG), (3.1)

jEIE
where I is a subset of I¢. In [22], we associate to E the coalgebra surjection
fe:C— Cg, (3.2)

where C is the topological K-dual coalgebra to the pseudocompact K-algebra EndcE,
called the colocalisation coalgebra quotient of C at E. More precisely, the topological K-
dual vector space

CE = (I‘j‘;l’lch)0 (3.3)

of End¢ E is equipped with a natural coalgebra structure induced by the pseudocompact
K-algebra structure of Endc E; see [19, 22] for details, compare with [16]. It is shown in
[22] that there is a coalgebra isomorphism Cg = egCeg, and the kernel of the coalgebra
surjection fz : C — Cg is the coideal

O]LE=(1—€E)C+C(1—€E) (3.4)

of C, where e is the idempotent of C* defined by the direct summand embedding E — C.
We know from [5, 22, 24] that the restriction functor

resg : C-Comod — Cg-Comod, (3.5)
given by M — Meg, is exact and has a right adjoint
Og : Cg-Comod — C-Comod (3.6)

and the kernel Ker(g of O is a localizing subcategory of C-Comod in the sense of
Gabriel [7]. Conversely, every localizing subcategory of C-Comod is of this form; see
(15, 24].

Now we show that, under a suitable assumption on E, the left Gabriel-valued quiver
(cQ,cd) of the coalgebra C is the restriction to the subset Ir = Qo of Ic = ¢Qy of the
valued quiver (¢Q,¢d) of the colocalisation coalgebra quotient homomorphism

fE :C— 6 = CE = eECeE = C/OU,E (3.7)

of C at the injective comodule E = D ¢, E(j).
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To formulate the main result of this section we need some notation. We define a co-
module M in C-Comod to be E-copresented, it M admits an E-injective copresentation,
that is, that there is a short exact sequence

0— M — Ey— Ej, (3.8)

where Ey and E; are direct sums of direct summands of the comodule E.
If, in addition, the comodules Ej and E; are socle-finite, we say that the sequence

0—M—E)— E (3.9)

is a socle-finite E-injective copresentation, and then M is called a finitely E-copresented co-
module.
We denote by

C-Comodg 2 C-Comod£ (3.10)

the full subcategories of C-Comod consisting of the E-copresented comodules and the
finitely E-copresented comodules, respectively. We set

C-comodg = C—comodﬂ (C—Comodf;). (3.11)

Definition 3.1. A valued subquiver (U,d) of (¢Q, cd) is defined to be a full convex valued
subquiver if (U,d) is connected and the following two conditions are satisfied.

(a) For each pair of points a,b € U, the valued arrows from a to b in (¢Q, cd) and in
(U,d) coincide.

(b) If a,b € U, then any valued path

(dpdy) (dydy) (i)
a ay Ay — " — Ay

b (3.12)

in (¢Q, cd) belongs to (U,d).

THEOREM 3.2. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
let E be an injective left C-comodule of the form (3.1), where Ig is a subset of I¢.

(a) If, for each j € I, the comodule E(j)/S(j) is E-copresented, then the left Gabriel-
valued quiver (cQ,cd) of the coalgebra C = Cg has cQo = Ig and is isomorphic to the re-
striction of the valued quiver (cQ,cd) (1.4) of C to the subset Iy < Ic = ¢Qo.

(b) Let (U,d) be a finite full convex valued subquiver of the valued quiver (¢Q,cd) of
the coalgebra C. Given j € U, denote by e; € Rg the primitive idempotent defined by the left
ideal Homc¢ (E(j),E) € Rg, which is a direct summand of Rg. If the algebra

Rp =EndcE, with E=Ey=E()), (3.13)
jeU

has finite K-dimension, then
(b1) the equivalence of categories Hg : C—Com0d£ — modRg [22, equation (3.4)] de-
fined by the formula HiN = Hom¢(N,E)*, for N in C —Comodlfg, carries the indecomposable



12 Irreducible morphisms and the Gabriel-valued quiver

injective left comodule E( ) to the indecomposable injective right Rg-module E"(j) = HgE(j),
induces a division ring isomorphism

Fj = ejREej/ei](RE)ej, (3.14)
and induces F;-F;-bimodule isomorphisms

Irr (E(j),E(i)) = Irr (E(j),E(i)) = ei] (Re)/J* (Re) Jej, (3.15)

foralli,j e U, and
(b2) the right Gabriel-valued quiver (Qg,,d) of the algebra R, is isomorphic with (U,d).

Proof. (a) Assume that, for each j € I, the comodule E(j)/S(j) is E-copresented, and
con51der the pair of adjoint functors

B
Cg-Comod ____ C-Comod » (3.16)

rESE

defined by the formulae resg(—) = (—)eg and g(—) = egCc,(—). By [22, Proposition 2.7
and Theorem 2.10], the K-coalgebra Cg is basic, g is a full and faithful K-linear functor
such that resgor = id. The functor g is right adjoint to resg, the functor res is exact, and g
is left exact and restricts to the functor g : Cg-comod — C-comod. Moreover, for each j €
Ig, the left Cg-comodule §(j) = resg S(j) is simple, socCg = EBJ-EIE §(]‘), and S(i) # §(]‘),
fori+# j,i,j € Ig.

Since, for each j € I, the comodule E(7)/S(j) is E-copresented, then the left C-como-
dule socE(j)/S(j) is (up to isomorphism) a direct sum of copies of simple comodules
S(i), with i € Ig. Then, according to [22, Corollary 2.14], for each j € I, there are iso-
morphisms S(j) = Ogresg S(j) = S(]) the simple C-comodule S(j) lies in C-Comodg,
and the minimal injective three-term copresentation

0— S(j) — Eg 2~ E, 2~ F, (3.17)

of §(j) lies in the category C-Comodg, where Ey = E(j). By [22, Theorem 2.10], for each
m < 2, the Cg-comodule Em = resg E,, is injective and

v

0—$(j) — Eo 2 By 2 By (3.18)

is an injective copresentation of §( j) = resgS(j), because the functor resg is exact and
[22, Proposition 2.7] applies. Moreover, since resg : C-Comodg — Cg-Comod is an equiv-
alence of categories, by [22, Theorem 2.10], then resg induces an isomorphism of the
complexes

0 — Home (S(i),E(j)) 2 Home (S(i),E1) 2~ Home (S(i),Es) — 0, 1o
i . 3.19

0 — Homg, (S(i),E(j)) - Homg, ($(i),E1) = Homg, ($(i),E,) — 0,
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and an isomorphism of their first homology groups. Hence we get an F;-F;-bimodule
isomorphism

Ext, (8(1),8())) = Extg (S(i),S(j)). (3.20)

Since ¢Q = I¢ and ¢Q = I, it follows from the definition (1.4) of the Gabriel-valued
(dijdi)

quiver of a colagebra that there exists a unique valued arrow i j fromito j in

the left Gabriel-valued quiver (¢Q, cd) of C if and only if there is a unique valued arrow

(dijpdi) . . . — .
i —— j in the left Gabriel-valued quiver (zQ,zd) of C. This finishes the proof of (a).

(b) Assume that dimg R is finite. We recall from Lemma 2.2 that rad(E(j), E(i)) con-
sists of all nonisomorphisms f : E(j) — E(7). Hence
(i) rad(E(i),E(i)) = JEndc E(i), and
(if) rad(E(j), E(i)) = Home (E(j), E(i)), for i # j.
It follows that the equivalence of categories

Hg: C—Comodé — mod Rg (3.21)

[22, (3.4)] defined by the formula HgN = Hom¢(N, E)*, for N in C-Comodé, induces
isomorphisms

rad (E(j),E(i)) = radg, (HgE(j), HE(i)) = radg, (E(j),E(i)),

2 i e e g2 , , e (3.22)
rad” (E(j),E(i)) = rady, (HEE(j), HeE(i)) = rady, (E(j),E(i))

of Endc¢ E(i)-Endc E(j)-bimodules. The first isomorphism is obvious, but the second one
follows from the convexity of (U,d) in (¢Q,cd). To show it, take a nonzero homomor-
phism f € rad®(E(j),E(i)). Then

f=AH++f"1 (3.23)

where E(j) £, E(ry) £, E(i), rs € Ic, and f, € rad(E(j),E(rs)), f" € rad(E(rs),E(i)) are
nonzero homomorphisms. It follows from Theorem 2.3(c) that, for each s € {1,...,¢},
there is a path

E(j)ﬂ»E(jl)ﬁ»---ﬂE(rS)LE(j{)ﬁ»---ﬂ»E(i) (3.24)

of irreducible morphisms @1,..., @, ¢}, .., ¢, in C-inj. Since (U, d) is a full convex valued
subquiver of (¢Q,cd) and i,j € U, then the vertices ji,..., jm = 75 ji>-..> ju_1 belong to
U. Tt follows that the homomorphisms E(j) £, E(rs) £ E(i) are in C—C0m0d£ and the
image

Hy(f) = He(f{")He(fy) + - - - + He (f")He (f/), (3.25)

of f under Hg belongs to radﬁE(H £E(j),HgE(i)). Consequently, the functor Hg induces
an isomorphism

rad® (E(j),E(i)) = radg, (HzE(j), HpE(i)) = radg, (E(j),E()), (3.26)
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and division ring isomorphisms
Fj = Endc E(j)/JEndcE(j) = EnchE(j)/]EndCE E(]) = ejREej/ej](RE)ej. (3.27)

Here we apply the Nakayama functor v : mod Rg — mod Rg; see [1, Chapter III, Definition
2.8, Lemma 2.9, and Proposition 2.10]. Note also that, given j € U, the idempotent e;

of Rg = End¢E is the composite endomorphism E 5K j) = E, where 7; is the direct
summand projection.
Hence we derive F;-F;-bimodule isomorphisms:

Irr (E(j), E(i)) = rad (E(j), E(i))/rad” (E(j), E(i))
= Homg, (HgE(j), HE(i))/radg, (HEE(j), HEE(i)) 58)
3.28
= Homg, (E(j), (E(i))/radg, (E(j),E(i))
= Irr (E(j), (E(i)).
Note also that, in view of [1, Chapter III, Proposition 2.10], the Nakayama functor »:

modRg — modRg carries the injective right Rg-module E(j) to projective right Rg-
module e;Rg and induces the isomorphisms

radg, (E(j),E(i)) = e (Rp)e;,

o ] (3.29)
radRE (E(]))E(l)) = ei]2 (RE)eJ

of Endc, E(i)-Endc, E( j)-bimodules, compare with the proof of [1, Lemmas IV.2.12 and
VIL1.6]. Hence we derive F;-F;-bimodule isomorphisms:

11

Homyp, (E(j),(E(i))/radg, (E(j),E(i))
e (Rp)ej/ei]” (Rg)e; (3.30)
= ¢;[J(Re)/J*(Re) le;s

Irr (E(j), E(i))

11

for all 4, j € U. This finishes the proof of (b1).

This also shows that the right Gabriel-valued quiver of the K-algebra Rg (see (3.31)
below, [1, Section IL.3], and [2]) is isomorphic with the valued quiver (U,d), because
the algebra Ry is basic, the modules E(j) = HgE(j), with j € U, form a complete set of
pairwise non-isomorphic indecomposable injective right Rg-modules, and hence {e;} jeu
is a complete set of primitive orthogonal idempotents of Rg. This proves the statement
(b2) and completes the proof of the theorem. O

For the convenience of the reader, we recall that the right Gabriel-valued quiver

(Qs,d) = ((Qs)y> (Q5),,d) (3.31)
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of a basic-finite dimensional algebra B is defined as follows. Fix a complete set {e;} jcy of
primitive orthogonal idempotents of B such that B = <y e;B. Note that, given j € U,
the algebra D; = e;jBe;/e;J(B)e; is a division ring. Moreover, given i, j € U, the vector
space

eiJ (Rp)ej/ei]* (Rp)e; = e[ ] (Re)/J* (Re) Je; (3.32)

is a D;-Dj-bimodule.
The set (Qp)o of vertices of B is defined to be the set (Qg)o = U. Given two vertices
i,j € (Qp)o = U of Qp, there exists a unique valued arrow
(dijdi})
i— (3.33)

fromito j in (Qp); if and only if e;[J(Rg)/J*(Rg)]e; # 0 and
dij = dimp, (ei[J (Re)/J*(Re) lej),  dif = dim (e:i[J (Re)/J*(Re)Jej) p s (3.34)

compare with [1, Chapter II, Definition 3.1].
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