
IRREDUCIBLE MORPHISMS, THE GABRIEL-VALUED QUIVER
AND COLOCALIZATIONS FOR COALGEBRAS

DANIEL SIMSON

Received 22 December 2005; Revised 7 May 2006; Accepted 9 May 2006

Given a basic K-coalgebra C, we study the left Gabriel-valued quiver (CQ,Cd) of C by
means of irreducible morphisms between indecomposable injective leftC-comodules and
by means of the powers radm of the radical rad of the category C-inj of the socle-finite
injective left C-comodules. Connections between the valued quiver (CQ,C d) of C and the
valued quiver (CQ,Cd) of a colocalization coalgebra quotient fE : C→ C of C are estab-
lished.
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1. Introduction

Throughout this paper we fix a field K . Given a K-coalgebra C we denote by C-Comod
andC-comod the categories of leftC-comodules and leftC-comodules of finiteK-dimen-
sion, respectively. Given a left C-comodule M, we denote by socCM the socle of M, that
is, the sum of all simple C-subcomodules of M. We call M socle-finite (or finitely copre-
sented) if dimK socM is finite. Following [17, page 404], a K-coalgebra C is called basic if
the left C-comodules CC and socC C have direct sum decompositions:

CC =
⊕

j∈IC
E( j), socC C =

⊕

j∈IC
S( j), (1.1)

where IC is a set, E( j) is an indecomposable injective comodule, S( j) is a simple co-
module, and E( j) is the injective envelope of S( j), for each j ∈ IC, E(i) �∼= E( j), and
S(i) �∼= S( j), for i �= j. It was shown in [22] that a K-coalgebra C is basic if and only if
dimK S= dimK EndC S, for any simple left C-comodule S.

Throughout this paper we assume that C is a basic K-coalgebra, the decompositions
(1.1) are fixed, and we set

Fj = EndC S( j), (1.2)
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2 Irreducible morphisms and the Gabriel-valued quiver

for each j ∈ IC. In this case {S( j)} j∈IC is a complete set of all pairwise nonisomorphic
simple left C-comodules.

We recall from [10, Definition 4.3] and [19, Definition 8.6] that the left Gabriel-valued
quiver of C is the valued quiver

(
CQ,C d

)= (CQ0,CQ1,C d
)
, (1.3)

where CQ0 = IC is the set of vertices, CQ1 is the set of valued arrows, and, given two
vertices i, j ∈ CQ0, there exists a unique valued arrow

i
(d′i j ,d

′′
i j )−−−−−→ j (1.4)

from i to j in CQ1 if and only if the Fj-Fi-bimodule Ext1
C(S(i),S( j)) is nonzero and

d′i j = dimExt1
C

(
S(i),S( j)

)
Fi

, d′′i j = dimFj Ext1
C

(
S(i),S( j)

)
. (1.5)

In other words, (CQ,Cd) is the opposite to the left valued Ext-quiver of C (see [4, 8, 14]),
which is the valued quiver (QC�xt,dC�xt) of the left Ext-species C�xt of C; see [10].

In practice, it is useful to work with an equivalent form of the valued quiver (CQ,Cd).
We define it in Section 2, by applying the well-known concepts of the Auslander-Reiten
theory for finite dimensional algebras, see [1], [2, Section 5.5], and [18, Section 11.1].
We introduce the notion of an irreducible morphism between left C-comodules, and we
give an equivalent description of the quiver (CQ,Cd) in terms of irreducible morphisms
between socle-finite injective C-comodules. Then we study the valued quiver (CQ,Cd)
by means of irreducible morphisms between the indecomposable injective C-comodules
E( j), by means of the K-species; see (2.10),

C�= (Fj , jNi
)
i, j∈IC (1.6)

of Fj-Fi-bimodules jNi = Irr(E(i),E( j)) of irreducible morphisms [10, equation (4.9)],
and by means of the powers radm(E(i),E( j)) of the radical rad of the full subcategory
C-inj of C-Comod formed by the socle-finite injective C-comodules. In particular, we
show that the existence of a valued arrow (1.4) in the quiver (CQ,Cd) is equivalent to the
existence of an irreducible morphism E( j)→ E(i) in the category C-inj.

One of the main results of this paper is Theorem 2.3 of Section 2. It asserts that, for
each pair of indices i, j ∈ IC, we have

(i)
⋂
m≥1 radm(E( j),E(i))= 0;

(ii) for each noninvertible nonzero homomorphism f ∈HomC(E( j),E(i)), there is
m≥ 1 such that f ∈ radm(E( j),E(i)) \ radm+1(E( j),E(i));

(iii) if rad(E( j),E(i)) is nonzero, then there exist an integer mij ≥ 1 and a path

E( j)
ϕ1−−→ E

(
j1
) ϕ2−−→ E

(
j2
) ϕ3−−→ ···

ϕmi j−−−→ E(i) (1.7)
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of irreducible morphisms ϕ1, . . . ,ϕmij in C-inj such that the composition ϕmij ···ϕ1 is
nonzero. If, in addition, the vector space HomC(E( j),E(i)) is of finite K-dimension, then
there exists a finite set Uij ⊆ IC such that radmij (E( j),E(i)) �= 0 and rad1+mij (E( j),E(i))=
0, and every noninvertible nonzero C-comodule homomorphism f : E( j)→ E(i) is a fi-
nite K-linear combination f =∑t

s=1 λs fsrs ··· fs2 fs1 of compositions

E( j)
fs1−−→ E

(
js1
) fs2−−→ E

(
js2
) fs3−−→ ··· fsrs−−→ E

(
jsrs
)= E(i) (1.8)

of irreducible morphisms fs1, fs2, fs3, . . . , fsrs in C-inj, where λs ∈ K , λs �= 0, rs ≤mij , for
s= 1, . . . , t, and jsa ∈Uij , for all a= 1, . . . ,rs and s= 1, . . . , t.

Hence we conclude, in Corollary 2.4, that the coalgebra C is a direct sum of two
nonzero subcoalgebras if and only if the valued quiver (CQ,Cd) is disconnected. In par-
ticular, this implies a new proof of [14, Corollary 2.2].

In Section 3, we study a relationship between the valued quiver (CQ,Cd) of the coalge-
bra C and the valued quiver (CQ,Cd) of a colocalisation coalgebra quotient

fE : C −→ C = CE ∼= eECeE ∼= C/�E (1.9)

of C with respect to an injective comodule

E =
⊕

j∈U
E( j), (1.10)

where U is a subset of IC; see Section 3 for details. We show in Theorem 3.2 that if E is as
above and, for each j ∈U , the comodule E( j)/S( j) is E-copresented then the left Gabriel-
valued quiver (CQ,Cd) of the coalgebra C = CE has CQ0 = U and is isomorphic to the
restriction of the left Gabriel-valued quiver (CQ,Cd) of C to the subset U ⊆ IC = CQ0.

Throughout, we use the coalgebra representation theory notation and terminology
introduced in [19–21]. In particular, given a coalgebraC and a pair of leftC-comodulesM
and N , we denote by HomC(M,N) the vector space of all C-comodule homomorphisms
f :M→N , and by EndCM the algebra of all C-comodule endomorphisms g :M→M of
M.

Given a K-coalgebra C, we denote by C∗ =HomK (C,K) the K-dual algebra with re-
spect to the convolution product (see [6, 13, 23]) viewed as a pseudocompact K-algebra
(see [7, 19]). The category of pseudocompact left C∗-modules is denoted by C∗-PC.

Given a ring R with an identity element, we denote by J(R) the Jacobson radical of R,
and by mod(R) the category of finitely generated right R-modules.

The reader is referred to [3, 6, 13, 23] for the coalgebra and comodule terminology,
and to [1, 2, 18] for the standard representation theory terminology and notation.

2. The Gabriel-valued quiver of a coalgebra and irreducible morphisms

Assume that K is an arbitrary field and C is a basic K-coalgebra. We fix the decompo-
sitions (1.1), and we set Fj = EndC S( j), for each j ∈ IC, as in (1.2). Let (CQ,Cd) be the
Gabriel-valued quiver (CQ,Cd) of C defined in (1.3).



4 Irreducible morphisms and the Gabriel-valued quiver

In this section we present an equivalent form of the valued quiver (CQ,Cd) in terms
of irreducible morphisms between injective C-comodules. One of the applications of this
new description is to compute the left Gabriel-valued quiver (CEQ,CEd) of the coalgebra
CE = eECeE in terms of the left Gabriel-valued quiver (CQ,Cd) of C, given in Section 3.

We denote by C-inj the full subcategory of C-Comod formed by the socle-finite injec-
tive C-comodules. Note that a comodule E′ lies in C-inj if and only if E′ is isomorphic
with a finite direct sum of the comodules E( j), with j ∈ IC.

Following the Auslander-Reiten theory for finite dimensional algebras, we introduce
the notion of an irreducible morphism between left C-comodules as follows; see [1], [2,
Section 5.5], and [18, Section 11.1].

Definition 2.1. (a) A C-comodule homomorphism f : E′ → E′′ in C-inj is an irreducible
morphism if f is not an isomorphism and given a factorization

E′
f

f ′

E′′

Z

f ′′

(2.1)

of f with Z in C-inj, f ′ is a section, or f ′′ is a retraction, that is, f ′ has a left inverse or
f ′′ has a right inverse; see [1, Section I.5]. Irreducible morphisms in any full subcategory
of C-Comod are defined analogously.

(b) Given two comodules E′ and E′′ in C-inj, define the radical of HomC(E′,E′′) to be
the K-subspace

rad(E′,E′′)⊆HomC(E′,E′′) (2.2)

of HomC(E′,E′′) generated by all nonisomorphisms ϕ : E(i)→ E( j) between indecom-
posable summands E(i) of E′ and E( j) of E′′, respectively.

(c) The square of rad(E′,E′′) is defined to be the K-subspace

rad2(E′,E′′)⊆ rad(E′,E′′)⊆HomC(E′,E′′) (2.3)

of rad(E′,E′′) generated by all composite homomorphisms of the form E′
f ′j−−→ E( j)

f ′′j−−→
E′′, where j ∈ IC, f ′j ∈ rad(E′,E( j)), and f ′′j ∈ rad(E( j),E′′).

(d) The mth power radm(E′,E′′) of rad(E′,E′′) is defined analogously, for each m≥ 2.
Finally, set

rad∞(E′,E′′)=
∞⋂

m=1

radm(E′,E′′), (2.4)

and call it the infinite radical of HomC(E′,E′′).
Then the chain of vector spaces is defined:

HomC(E′,E′′)⊇ rad(E′,E′′)⊇ rad2(E′,E′′)⊇ ··· ⊇ radm(E′,E′′)⊇ ··· ⊇ rad∞(E′,E′′).
(2.5)
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The following simple lemma is very useful.

Lemma 2.2. Assume that C is a basic K-coalgebra with fixed decompositions (1.1).
(a) For each j ∈ IC, the K-algebra EndC E( j) is local, the subset

JE =
{
f ∈ EndC E( j); f

(
S( j)

)= 0
}

(2.6)

of EndC E( j) is the unique maximal ideal of EndC E( j) and Fj = EndC S( j)∼= EndC E( j)/JE.
(b) Given i, j ∈ IC, the radical rad(E(i),E( j)) consists of all nonisomorphisms f ∈

HomC(E(i),E( j)). Moreover, a C-comodule homomorphism f : E(i)→ E( j) is an irreduci-
ble morphism in C-inj if and only if f ∈ rad(E(i),E( j)) \ rad2(E(i),E( j)).

Proof. (a) It is clear that JE is a two-sided ideal of the algebra EndC E( j), and that f ∈
EndC E( j) is noninvertible if and only if f (S( j)) = 0, that is, if and only if f ∈ JE. This
shows that EndC E( j) is a local algebra and JE is its unique maximal ideal. Since the map
EndC E( j)→ EndC S( j)= Fj that associates to f ∈ EndC E( j) the restriction of f to S( j)
is a K-algebra homomorphism with kernel JE, then (a) follows.

(b) The first statement is an immediate consequence of definition. To prove the second
one, we apply the standard Auslander-Reiten theory arguments; see [18, page 174]. For
the convenience of the reader we present a proof.

Assume, to the contrary, that f ∈HomC(E(i),E( j)) is irreducible and f ∈ rad2(E(i),
E( j)). Then f =∑t

s=1 f
′′
s f ′s , where f ′s ∈ rad(E(i),Zs), f ′′s ∈ rad(Zs,E( j)), and Z1, . . . ,Zt

are indecomposable in C-inj. Obviously, f has a factorization f = f ′′ f ′, where

E(i)
f ′−−→ Z1⊕Z2⊕···⊕Zt f ′′−−→ E( j) (∗)

are the homomorphisms f ′ = ( f ′1 , . . . , f ′t ) and f ′′ = ( f ′′1 , . . . , f ′′t ). Since f is irreducible,
then f ′ is a section or f ′′ is a retraction.

First, assume that f ′ is a section. Then there exists a C-comodule homomorphism

r = (r1, . . . ,rt
)

: Z1⊕Z2⊕···⊕Zt −→ E(i) (2.7)

such that 1E(i) = r f ′ = r1 f
′

1 + ···+ rt f ′t . Since f ′s ∈ rad(E(i),Zs) and Zs is indecompos-
able, then f ′s is not an isomorphism and, hence, rs f ′s is noninvertible, for any s∈{1, . . . , t}.
Since, by (a), the algebra EndC E(i) is local, then rs f ′s ∈ JE(i) = J EndC E(i), for each s ∈
{1, . . . , t}, and we get 1E(i) = r1 f

′
1 + ···+ rt f ′t ∈ J EndC E(i); a contradiction. Similarly, if

f ′′ is a retraction, we also get a contradiction. Consequently, if f ∈ HomC(E(i),E( j)),
then f ∈ rad(E(i),E( j)) \ rad2(E(i),E( j)).

Conversely, assume that f ∈ rad(E(i),E( j)) \ rad2(E(i),E( j)). To prove that f is irre-
ducible, assume that f has a factorization

f = f ′′ f ′ =
t∑

s=1

f ′′s f ′s (2.8)

in C-inj, where f ′ = ( f ′1 , . . . , f ′t ) and f ′′ = ( f ′′1 , . . . , f ′′t ) are as in (∗) and the comodules
Z1, . . . ,Zt are indecomposable. Since f �∈ rad2(E(i),E( j)), then, according to (a), there is
an index a∈ {1, . . . , t} such that the map f ′a is bijective or there is an index b ∈ {1, . . . , t}
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such that the map f ′′b is bijective. It follows that f ′ is a section or f ′′ is a retraction. This
shows that f is an irreducible morphism inC-inj and finishes the proof of the lemma. �

Following the finite-dimensional algebras terminology; see [1], [2, Section 5.5], [10],
and [18, Section 11.1], we call the K-vector space

Irr
(
E( j),E(i)

)= rad
(
E( j),E(i)

)
/ rad2 (E( j),E(i)

)
(2.9)

the bimodule of irreducible morphisms, for each pair i, j ∈ IC; see [10, 20].
It is easy to see that the K-vector space iNj = Irr(E( j),E(i)) is an Fi-Fj-bimodule,

where Fi = EndC S(i) and Fj = EndC S( j) are division K-algebras. Following [10, Defi-
nition 4.9], we consider the K-species

C�= (Fj , jNi
)
i, j∈IC (2.10)

of irreducible morphisms of C, where jNi=Irr(E(i),E( j)) is viewed as an Fj-Fi-bimodule.
One of the main results of this paper is the following useful theorem.

Theorem 2.3. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
set Fj = EndC S( j), for each j ∈ IC. Let (CQ,Cd) be the left Gabriel-valued quiver (1.3) of C.

(a) There exists a unique valued arrow i
(d′i j ,d

′′
i j )−−−−→ j (1.4) in (CQ,Cd) if and only if the

Fi-Fj-bimodule Irr(E( j),E(i)) is nonzero and the numbers (1.5) have the forms

d′i j = dimIrr
(
E( j),E(i)

)
Fj

, d′′i j = dimFi Irr
(
E( j),E(i)

)
. (2.11)

(b) rad∞(E( j),E(i))=⋂∞m=1 radm(E( j),E(i))= 0, for each i, j ∈ IC.
(c) For each i, j ∈ IC and any noninvertible nonzero homomorphism f ∈HomC(E( j),

E(i)), there is an integer m≥ 1 such that

f ∈ radm
(
E( j),E(i)

) \ radm+1 (E( j),E(i)
)
. (2.12)

In this case there is a path

E( j)
ϕ1−−→ E

(
j1
) ϕ2−−→ E

(
j2
) ϕ3−−→ ··· ϕm−−→ E(i) (2.13)

of irreducible morphisms ϕ1, . . . ,ϕm in C-inj such that the composition ϕm ···ϕ2ϕ1 is
nonzero.

(d) If dimK HomC(E( j),E(i)) is finite and rad(E( j),E(i)) �= 0, then there exist an integer
mij ≥ 1 and a finite subset Uij of IC such that

radmij
(
E( j),E(i)

) �= 0, rad1+mij
(
E( j),E(i)

)= 0, (2.14)

and every noninvertible nonzero homomorphism f ∈HomC(E( j),E(i)) is a finite K-linear
combination f =∑t

s=1 λs fsrs ··· fs2 fs1 of compositions

E( j)
fs1−−→ E

(
js1
) fs2−−→ E

(
js2
) fs3−−→ ··· fsrs−−→ E

(
jsrs
)= E(i) (2.15)

of irreducible morphisms fs1, fs2, fs3, . . . , fsrs in C-inj, where λs ∈ K , λs �= 0, rs ≤mij , for s=
1, . . . , t, and jsa ∈Uij , for all a= 1, . . . ,rs and s= 1, . . . , t.
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Proof. The statement (a) follows from [10, Proposition 4.10(b)].
(b) We recall that the Yoneda map ϕ �→ ε ◦ϕ defines an isomorphism ΛC = EndC C ∼=

C∗ of pseudocompact algebras; see also [19, Sections 3 and 4]. Note that, given j ∈ IC,
the direct summand projection CC→ E( j) of leftC-comodules induces a direct summand
injection

E( j)∗ ∼=HomC
(
E( j),C

)
ΛC
∼= C∗ (2.16)

of left pseudocompact ΛC-modules and an isomorphism E( j)∗ ∼= C∗ej , where ej is the
primitive idempotent of ΛC defined by the direct summand injection HomC(E( j),C)↩
ΛC.

Then, in view of the duality C-Comod∼= (C∗-PC)op given by M �→M∗ (see [19, The-
orem 4.5]), for each pair i, j ∈ IC, we get Fj-Fi-bimodule dualities

rad
(
E(i),E( j)

)∼= radΛC

(
E( j)∗,E(i)∗

)∼= radΛC

(
C∗ej ,C∗ei

)∼= ejJ
(
ΛC
)
ei, (2.17)

and for each m≥ 2, we get Fj-Fi-bimodule dualities

radm
(
E(i),E( j)

)∼= radmΛC

(
E( j)∗,E(i)∗

)∼= radmΛC

(
C∗ej ,C∗ei

)∼= ejJ
(
ΛC
)m
ei. (2.18)

Since C =⋃∞m=0Cm, where {Cm}∞m is the coradical filtration of C, then

∞⋂

m=0

J
(
ΛC
)m = 0; (2.19)

see [11, 12] and [9, Section 4]. It then follows that
⋂∞
m=0 ejJ(ΛC)mei = 0 and consequently

rad∞(E( j),E(i))= 0.
(c) Assume that f ∈ HomC(E( j),E(i)) is a noninvertible nonzero homomorphism.

Then f ∈ rad(E( j),E(i)) and, since rad∞(E( j),E(i))= 0, then there is m≥ 1 such that

f ∈ radm
(
E( j),E(i)

) \ radm+1 (E( j),E(i)
)
. (2.20)

It follows that f is a finite sum f =∑t
s=1 λs fsm ··· fs2 fs1 of nonzero composite homo-

morphisms λs fsm ··· fs2 fs1 of the form (2.15), with λs ∈ K , r1 = ··· = rs =m and fsq ∈
rad(E( j),E(i)), for any s and q = 1, . . . ,m.

Since f �∈ radm+1(E( j),E(i)), then there is a nonzero summand λs fsm ··· fs2 fs1 such
that fsa �∈ rad2(E( j),E(i)), for any s and a = 1, . . . ,m. It follows from Lemma 2.2 that
fsm, . . . , fs2, fs1 are irreducible morphisms, and (c) follows.

(d) Assume that dimK HomC(E( j),E(i)) is finite and rad(E( j),E(i)) �= 0. Since, by (b),
rad∞(E( j),E(i)) = 0, then there exists a minimal integer mij ≥ 1 such that radmij (E( j),
E(i)) �= 0, and radm(E( j),E(i))= 0, for m≥ 1 +mij .

Assume that f∈HomC(E( j),E(i)) is a nonzero non-isomorphism. Then f∈rad(E( j),
E(i)) and there is an integer q = q( f )∈ {1, . . . ,mij} such that

f ∈ radq
(
E( j),E(i)

) \ radq+1 (E( j),E(i)
)
. (2.21)
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We show, by induction on mij − q( f )≥ 0 that f is a K-linear combination of composi-
tions of irreducible morphisms between indecomposable injective comodules.

First, assume that mij − q( f )= 0, that is, q( f )=mij and f ∈ rad
mij

C (E( j),E(i)). Then
f is a finite sum:

f =
t∑

s=1

λs fsq ··· fs2 fs1, (∗′)

of nonzero composite homomorphisms

E( j)
fs1−−→ E

(
js1
) fs2−−→ E

(
js2
)−→ ··· fsq−−→ E(i) (2.22)

of length q = mij and with λs ∈ K and fsa ∈ rad(E( j),E(i)), for any s and a = 1, . . . ,q.
Since radq+1(E( j),E(i)) = 0, then each fsa is an irreducible morphism, by Lemma 2.2,
and we are done.

Next, assume that m = mij − q( f ) ≥ 1 and (d) is proved, for all h ∈ rad(E( j),E(i))
such that mij − q(h)≤m− 1. Let f ′′ be the sum of all nonzero summands λs fsq ··· fs2 fs1
in (∗′) such that fsa ∈ rad2(E( j),E(i)), for some 1≤ a≤ q. Then f ′ = f − f ′′ is the sum
of all nonzero summands λs fsq ··· fs2 fs1 in (∗′) such that

fsa ∈ rad
(
E( j),E(i)

) \ rad2 (E( j),E(i)
)
, (2.23)

for all 1 ≤ a ≤ q. It follows that each such a homomorphism fsa is an irreducible mor-
phism. By the choice of f ′′, we get f ′′ ∈ rad1+q( f )(E( j),E(i)) and therefore q( f ′′) ≥
q( f ) + 1. Since, by induction hypothesis, f ′′ is a K-linear combination of compositions
of irreducible morphisms, then so is f = f ′ + f ′′, and we are done.

Let ψ1, . . . ,ψb be a K basis of rad(E( j),E(i)). By applying the above to each of the basis
elementψ1, . . . ,ψb, we find a finite subsetUij of IC such that each f ∈ {ψ1, . . . ,ψb} is a finite
K-linear combination f =∑t

s=1 λs fsrs ··· fs2 fs1 (∗′) of compositions (2.15) of irreducible
morphisms fsrs , . . . , fs2, fs1 in C-inj, where λs ∈ K and rs ≤mij , for s = 1, . . . , t, and jsa ∈
Uij , for all a = 1 . . . ,rs and s = 1, . . . , t. It follows that the same holds, for any nonzero
element f ∈ rad(E( j),E(i)). This finishes the proof of the theorem. �

As a consequence of the properties of irreducible morphisms proved in Lemma 2.2
and Theorem 2.3, we get the following important corollary. We note that the second part
of it was proved in [19, Corollary 8.7], by applying the Ext-quiver of C and [14, Corollary
2.2].

Corollary 2.4. Assume that C is a basic K-coalgebra with fixed decompositions (1.1). Let
(CQ,Cd) be the left Gabriel-valued quiver (1.4) of C.

(a) There exists a valued arrow i
(d′i j ,d

′′
i j )−−−−→ j from i to j in CQ1 if and only if there is an

irreducible morphism E( j)→ E(i) in C-inj.
(b) The coalgebra C is indecomposable (i.e., C is not a direct sum of two nonzero subcoal-

gebras) if and only if the Gabriel-valued quiver (CQ,Cd) is connected.
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Proof. Statement (a) is an immediate consequence of Lemma 2.2 and Theorem 2.3(a).
(b) Assume that C is basic and C =⊕ j∈IC E( j) is the decomposition (1.1). In view of

the coalgebra isomorphism

(
EndC C

)◦ ∼= (C∗)◦ ∼= C; (2.24)

see [17, page 404] and [19, Lemma 4.9 and Theorem 3.6], there are nonzero subcoalge-
bras C′ and C′′ of C such that C = C′ ⊕C′′ if and only if there are nonzero injective left
subcomodules E′ and E′′ of C such that

(i) CC = E′ ⊕E′′,
(ii) HomC(E′,E′′)= 0, and

(iii) HomC(E′′,E′)= 0.
By the unique decomposition property, the former statement is equivalent to the exis-
tence of two disjoint nonempty subsets I′ and I′′ of IC such that

(i) IC = I′ ∪ I′′,
(ii) HomC(E(a),E(b))= 0, for all a∈ I′ and b ∈ I′′, and

(iii) HomC(E(b),E(a))= 0, for all a∈ I′ and b ∈ I′′.
It follows that C is not a direct sum of two nonzero subcoalgebras if and only if, for each
pair i, j ∈ IC, there exists a path

E( j) E
(
j1
)

E
(
j2
) ··· E(i) , (2.25)

where E( js) E( js+1) means HomC(E( js),E( js+1)) �= 0 or HomC(E( js+1),E( js)) �= 0. In

view of (a), the former condition is satisfied, if the valued quiver (CQ,Cd) is connected.
The converse implication follows from the fact that HomC(E(a),E(b)) �= 0 implies the

existence of a path E(a)
ϕ1−→ E( j1)

ϕ2−→ ··· ϕm−→ E(b) of irreducible morphisms ϕ1, . . . ,ϕm in
C-inj; see Theorem 2.3(c). The proof is complete. �

Corollary 2.5. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
assume that C is left computable, that is, dimK HomC(E( j),E(i)) is finite, for all i, j ∈ IC;
see [22].

(a) For each pair i, j ∈ IC, there exists a minimal integer mij ≥ 0 such that rad1+mij (E( j),
E(i))= 0.

(b) If rad(E( j),E(i)) �= 0, then mij ≥ 1, radmij (E( j),E(i)) �= 0, and rad(E( j),E(i)) has a
K-linear basis f1, . . . , fbi j , where each fs is the composed homomorphism fs = fsrs ··· fs2 fs1
of the form (2.15) and fsrs , . . . , fs2, fs1 are irreducible morphisms in C-inj.

(c) Every nonzero non-isomorphism f : E( j)→ E(i) between the indecomposable injec-
tive comodules E( j) and E(i) is aK-linear combination of the compositions fs = fsrs ··· fs2 fs1
of irreducible morphisms fsrs , . . . , fs2, fs1 in C-inj.

Proof. Since dimK HomC(E( j),E(i)) is finite, for all i, j ∈ IC, then Theorem 2.3 applies
and the corollary follows. �
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3. The Gabriel-valued quiver of a colocalization coalgebra CE

One of the main aims of this section is to compute the left Gabriel-valued quiver (CEQ,

CEd) of the colocalisation coalgebra CE = eECeE (defined below) in terms of the left
Gabriel-valued quiver (CQ,Cd) of C.

Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and that E is an
injective left C-comodule of the form

E =
⊕

j∈IE
E( j), (3.1)

where IE is a subset of IC. In [22], we associate to E the coalgebra surjection

fE : C −→ CE, (3.2)

where CE is the topological K-dual coalgebra to the pseudocompact K-algebra EndC E,
called the colocalisation coalgebra quotient of C at E. More precisely, the topological K-
dual vector space

CE =
(

EndC E
)◦

(3.3)

of EndC E is equipped with a natural coalgebra structure induced by the pseudocompact
K-algebra structure of EndC E; see [19, 22] for details, compare with [16]. It is shown in
[22] that there is a coalgebra isomorphism CE ∼= eECeE, and the kernel of the coalgebra
surjection fE : C→ CE is the coideal

�E =
(
1− eE

)
C+C

(
1− eE

)
(3.4)

of C, where eE is the idempotent of C∗ defined by the direct summand embedding E↩C.
We know from [5, 22, 24] that the restriction functor

resE : C-Comod−→ CE-Comod, (3.5)

given by M �→MeE, is exact and has a right adjoint

�E : CE-Comod−→ C-Comod (3.6)

and the kernel Ker�E of �E is a localizing subcategory of C-Comod in the sense of
Gabriel [7]. Conversely, every localizing subcategory of C-Comod is of this form; see
[15, 24].

Now we show that, under a suitable assumption on E, the left Gabriel-valued quiver
(CQ,Cd) of the coalgebra C is the restriction to the subset IE = CQ0 of IC = CQ0 of the
valued quiver (CQ,Cd) of the colocalisation coalgebra quotient homomorphism

fE : C −→ C = CE ∼= eECeE ∼= C/�E (3.7)

of C at the injective comodule E =⊕ j∈IE E( j).
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To formulate the main result of this section we need some notation. We define a co-
module M in C-Comod to be E-copresented, if M admits an E-injective copresentation,
that is, that there is a short exact sequence

0−→M −→ E0 −→ E1, (3.8)

where E0 and E1 are direct sums of direct summands of the comodule E.
If, in addition, the comodules E0 and E1 are socle-finite, we say that the sequence

0−→M −→ E0 −→ E1 (3.9)

is a socle-finite E-injective copresentation, and then M is called a finitely E-copresented co-
module.

We denote by

C-ComodE ⊇ C-Comod
f
E (3.10)

the full subcategories of C-Comod consisting of the E-copresented comodules and the
finitely E-copresented comodules, respectively. We set

C-comodE = C-comod
⋂(

C-Comod
f
E

)
. (3.11)

Definition 3.1. A valued subquiver (U ,d) of (CQ,Cd) is defined to be a full convex valued
subquiver if (U ,d) is connected and the following two conditions are satisfied.

(a) For each pair of points a,b ∈U , the valued arrows from a to b in (CQ,Cd) and in
(U ,d) coincide.

(b) If a,b ∈U , then any valued path

a
(d′1,d′′1 )−−−−−→ a1

(d′2,d′′2 )−−−−−→ a2 −→ ··· −→ am−1
(d′m,d′′m)−−−−−→ b (3.12)

in (CQ,Cd) belongs to (U ,d).

Theorem 3.2. Assume that C is a basic K-coalgebra with fixed decompositions (1.1), and
let E be an injective left C-comodule of the form (3.1), where IE is a subset of IC.

(a) If, for each j ∈ IE, the comodule E( j)/S( j) is E-copresented, then the left Gabriel-
valued quiver (CQ,Cd) of the coalgebra C = CE has CQ0 = IE and is isomorphic to the re-
striction of the valued quiver (CQ,Cd) (1.4) of C to the subset IE ⊆ IC = CQ0.

(b) Let (U ,d) be a finite full convex valued subquiver of the valued quiver (CQ,Cd) of
the coalgebra C. Given j ∈U , denote by ej ∈ RE the primitive idempotent defined by the left
ideal HomC(E( j),E)⊆ RE, which is a direct summand of RE. If the algebra

RE = EndC E, with E = EU =
⊕

j∈U
E( j), (3.13)

has finite K-dimension, then

(b1) the equivalence of categories HE : C-Comod
f
E
�−→modRE [22, equation (3.4)] de-

fined by the formulaHEN =HomC(N ,E)∗, forN inC-Comod
f
E , carries the indecomposable
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injective left comodule E( j) to the indecomposable injective right RE-module Ě( j)=HEE( j),
induces a division ring isomorphism

Fj ∼= ejREej/eiJ
(
RE
)
ej , (3.14)

and induces Fi-Fj-bimodule isomorphisms

Irr
(
E( j),E(i)

)∼= Irr
(
Ě( j), Ě(i)

)∼= ei
[
J
(
RE
)
/J2(RE

)]
ej , (3.15)

for all i, j ∈U , and
(b2) the right Gabriel-valued quiver (QRE ,d) of the algebra RE is isomorphic with (U ,d).

Proof. (a) Assume that, for each j ∈ IE, the comodule E( j)/S( j) is E-copresented, and
consider the pair of adjoint functors

CE-Comod
E

C-Comod
resE

, (3.16)

defined by the formulae resE(−) = (−)eE and E(−) = eECCE(−). By [22, Proposition 2.7
and Theorem 2.10], the K-coalgebra CE is basic, E is a full and faithful K-linear functor
such that resE◦E ∼= id. The functor E is right adjoint to resE, the functor resE is exact, and E

is left exact and restricts to the functor E : CE-comod→ C-comod. Moreover, for each j ∈
IE, the left CE-comodule Š( j) = resE S( j) is simple, socCE ∼=

⊕
j∈IE Š( j), and Š(i) �∼= Š( j),

for i �= j, i, j ∈ IE.
Since, for each j ∈ IE, the comodule E( j)/S( j) is E-copresented, then the left C-como-

dule socE( j)/S( j) is (up to isomorphism) a direct sum of copies of simple comodules
S(i), with i ∈ IE. Then, according to [22, Corollary 2.14], for each j ∈ IC, there are iso-
morphisms S( j) ∼= �E resE S( j) ∼= Š( j), the simple C-comodule S( j) lies in C-ComodE,
and the minimal injective three-term copresentation

0−→ S( j)−→ E0
ϕ1−−→ E1

ϕ2−−→ E2 (3.17)

of S( j) lies in the category C-ComodE, where E0 = E( j). By [22, Theorem 2.10], for each
m≤ 2, the CE-comodule Ěm = resE Em is injective and

0−→ Š( j)−→ Ě0
ϕ̌1−−→ Ě1

ϕ̌2−−→ Ě2 (3.18)

is an injective copresentation of Š( j) = resE S( j), because the functor resE is exact and
[22, Proposition 2.7] applies. Moreover, since resE : C-ComodE → CE-Comod is an equiv-
alence of categories, by [22, Theorem 2.10], then resE induces an isomorphism of the
complexes

0−→HomC
(
S(i),E( j)

) ϕ̃1−−→HomC
(
S(i),E1

) ϕ̃2−−→HomC
(
S(i),E2

)−→ 0,

0−→HomCE

(
Š(i), Ě( j)

) ˜̌ϕ1−−→HomCE

(
Š(i), Ě1

) ˜̌ϕ2−−→HomCE

(
Š(i), Ě2

)−→ 0,
(3.19)
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and an isomorphism of their first homology groups. Hence we get an Fj-Fi-bimodule
isomorphism

Ext1
CE

(
Š(i), Š( j)

)∼= Ext1
C

(
S(i),S( j)

)
. (3.20)

Since CQ = IC and CQ = IE, it follows from the definition (1.4) of the Gabriel-valued

quiver of a colagebra that there exists a unique valued arrow i
(d′i j ,d

′′
i j )−−−−→ j from i to j in

the left Gabriel-valued quiver (CQ,Cd) of C if and only if there is a unique valued arrow

i
(d′i j ,d

′′
i j )−−−−→ j in the left Gabriel-valued quiver (CQ,Cd) of C. This finishes the proof of (a).

(b) Assume that dimK RE is finite. We recall from Lemma 2.2 that rad(E( j),E(i)) con-
sists of all nonisomorphisms f : E( j)→ E(i). Hence

(i) rad(E(i),E(i))= J EndC E(i), and
(ii) rad(E( j),E(i))=HomC(E( j),E(i)), for i �= j.

It follows that the equivalence of categories

HE : C-Comod
f
E

�−−→mod RE (3.21)

[22, (3.4)] defined by the formula HEN =HomC(N ,E)∗, for N in C-Comod
f
E , induces

isomorphisms

rad
(
E( j),E(i)

)∼= radRE
(
HEE( j),HEE(i)

)= radRE
(
Ě( j), Ě(i)

)
,

rad2 (E( j),E(i)
)∼= rad2

RE

(
HEE( j),HEE(i)

)= rad2
RE

(
Ě( j), Ě(i)

) (3.22)

of EndC E(i)-EndC E( j)-bimodules. The first isomorphism is obvious, but the second one
follows from the convexity of (U ,d) in (CQ,Cd). To show it, take a nonzero homomor-
phism f ∈ rad2(E( j),E(i)). Then

f = f ′′1 f ′2 + ···+ f ′′t f ′t , (3.23)

where E( j)
f ′s−→ E(rs)

f ′′s−→ E(i), rs ∈ IC, and f ′s ∈ rad(E( j),E(rs)), f ′′s ∈ rad(E(rs),E(i)) are
nonzero homomorphisms. It follows from Theorem 2.3(c) that, for each s ∈ {1, . . . , t},
there is a path

E( j)
ϕ1−−→ E

(
j1
) ϕ2−−→ ··· ϕm−−→ E

(
rs
) ϕ′1−−→ E

(
j′1
) ϕ′2−−→ ··· ϕ′n−−→ E(i) (3.24)

of irreducible morphisms ϕ1, . . . ,ϕm,ϕ′1, . . . ,ϕ′n inC-inj. Since (U ,d) is a full convex valued
subquiver of (CQ,Cd) and i, j ∈ U , then the vertices j1, . . . , jm = rs, j′1, . . . , j′n−1 belong to

U . It follows that the homomorphisms E( j)
f ′s−→ E(rs)

f ′′s−→ E(i) are in C-Comod
f
E and the

image

HE( f )=HE
(
f ′′1

)
HE
(
f ′2
)

+ ···+HE
(
f ′′t
)
HE
(
f ′t
)
, (3.25)

of f under HE belongs to rad2
RE(HEE( j),HEE(i)). Consequently, the functor HE induces

an isomorphism

rad2 (E( j),E(i)
)∼= rad2

RE

(
HEE( j),HEE(i)

)= rad2
RE

(
Ě( j), Ě(i)

)
, (3.26)
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and division ring isomorphisms

Fj ∼= EndC E( j)/J EndC E( j)∼= EndCE Ě( j)/J EndCE Ě( j)∼= ejREej/e j J
(
RE
)
ej . (3.27)

Here we apply the Nakayama functor ν : modRE →modRE; see [1, Chapter III, Definition
2.8, Lemma 2.9, and Proposition 2.10]. Note also that, given j ∈ U , the idempotent ej

of RE = EndC E is the composite endomorphism E
πj−→ E( j)↩ E, where πj is the direct

summand projection.
Hence we derive Fi-Fj-bimodule isomorphisms:

Irr
(
E( j),E(i)

)= rad
(
E( j),E(i)

)
/ rad2 (E( j),E(i)

)

∼=HomRE

(
HEE( j),HEE(i)

)
/ rad2

RE

(
HEE( j),HEE(i)

)

∼=HomRE

(
Ě( j),

(
Ě(i)

)
/ rad2

RE

(
Ě( j), Ě(i)

)

= Irr
(
Ě( j),(Ě(i)

)
.

(3.28)

Note also that, in view of [1, Chapter III, Proposition 2.10], the Nakayama functor ν :
modRE → modRE carries the injective right RE-module Ě( j) to projective right RE-
module ejRE and induces the isomorphisms

radRE
(
Ě( j), Ě(i)

)∼= eiJ
(
RE
)
ej ,

rad2
RE

(
Ě( j), Ě(i)

)∼= eiJ2(RE
)
ej

(3.29)

of EndCE Ě(i)-EndCE Ě( j)-bimodules, compare with the proof of [1, Lemmas IV.2.12 and
VII.1.6]. Hence we derive Fi-Fj-bimodule isomorphisms:

Irr
(
E( j),E(i)

)∼=HomRE

(
Ě( j),(Ě(i)

)
/ rad2

RE

(
Ě( j), Ě(i)

)

∼= eiJ
(
RE
)
ej/eiJ

2(RE
)
ej

∼= ei
[
J
(
RE
)
/J2(RE

)]
ej ,

(3.30)

for all i, j ∈U . This finishes the proof of (b1).
This also shows that the right Gabriel-valued quiver of the K-algebra RE (see (3.31)

below, [1, Section II.3], and [2]) is isomorphic with the valued quiver (U ,d), because
the algebra RE is basic, the modules Ě( j) =HEE( j), with j ∈ U , form a complete set of
pairwise non-isomorphic indecomposable injective right RE-modules, and hence {ej} j∈U
is a complete set of primitive orthogonal idempotents of RE. This proves the statement
(b2) and completes the proof of the theorem. �

For the convenience of the reader, we recall that the right Gabriel-valued quiver

(
QB,d

)= ((QB
)

0,
(
QB
)

1,d
)

(3.31)
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of a basic-finite dimensional algebra B is defined as follows. Fix a complete set {ej} j∈U of
primitive orthogonal idempotents of B such that B =⊕ j∈U ejB. Note that, given j ∈U ,
the algebra Dj = ejBej/e j J(B)ej is a division ring. Moreover, given i, j ∈ U , the vector
space

eiJ
(
RE
)
ej/eiJ

2(RE
)
ej ∼= ei

[
J
(
RE
)
/J2(RE

)]
ej (3.32)

is a Di-Dj-bimodule.
The set (QB)0 of vertices of B is defined to be the set (QB)0 = U . Given two vertices

i, j ∈ (QB)0 =U of QB, there exists a unique valued arrow

i
(d′i j ,d

′′
i j )−−−−−→ j (3.33)

from i to j in (QB)1 if and only if ei[J(RE)/J2(RE)]ej �= 0 and

d′i j = dimDi

(
ei
[
J
(
RE
)
/J2(RE

)]
ej
)
, d′′i j = dim

(
ei
[
J
(
RE
)
/J2(RE

)]
ej
)
Dj

; (3.34)

compare with [1, Chapter II, Definition 3.1].
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