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We introduce the concepts of lifting modules and (quasi-)discrete modules relative to a
given left module. We also introduce the notion of SSRS-modules. It is shown that (1) if
M is an amply supplemented moduleand 0 — N — N — N”’ — 0 an exact sequence, then
M is N-lifting if and only if it is N’ -lifting and N’ -lifting; (2) if M is a Noetherian module,
then M is lifting if and only if M is R-lifting if and only if M is an amply supplemented
SSRS-module; and (3) let M be an amply supplemented SSRS-module such that Rad(M)
is finitely generated, then M = K @ K’, where K is a radical module and K’ is a lifting
module.
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1. Introduction and preliminaries

Extending modules and their generalizations have been studied by many authors (see
[2, 3, 8, 7]). The motivation of the present discussion is from [2, 8], where the concepts
of extending modules and (quasi-)continuous modules with respect to a given module
and CESS-modules were studied, respectively. In this paper, we introduce the concepts
of lifting modules and (quasi-)discrete modules relative to a given module and SSRS-
modules. It is shown that (1) if 0 = N — N — N”" — 0 is an exact sequence and M an
amply supplemented module, then M is N-lifting if and only if it is both N’-lifting and
N"-lifting; (2) if M is a Noetherian module, then M is lifting if and only if M is R-lifting
if and only if M is an amply supplemented SSRS-module; and (3) let M be an amply
supplemented SSRS-module such that Rad(M) is finitely generated, then M = K ® K',
where K is a radical module and K" is a lifting module.

Throughout this paper, R is an associative ring with identity and all modules are unital
left R-modules. We use N < M to indicate that N is a submodule of M. As usual, Rad(M)
and Soc(M) stand for the Jacobson radical and the socle of a module M, respectively.

Let M be a module and S < M. S is called small in M (notation S < M) if M # S+ T
for any proper submodule T of M. Let N and L be submodules of M, N is called a supple-
ment of Lin M if N + L = M, and N is minimal with respect to this property. Equivalently,
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2 Generalized lifting modules

M =N+Land NNL < N.N is called a supplement submodule if N is a supplement of
some submodule of M. M is called an amply supplemented module if for any two sub-
modules A and B of M with A+ B = M, B contains a supplement of A. M is called a
weakly supplemented module (see [5]) if for each submodule A of M there exists a sub-
module B of M suchthat M =A+Band AnB < M. Let B<A <M. If A/B < M/B,
then B is called a coessential submodule of A and A is called a coessential extension of B in
M. A submodule A of M is called coclosed if A has no proper coessential submodules in
M. Following [5], B is called an s-closure of A in M if B is a coessential submodule of A
and B is coclosed in M.

Let M be a module. M is called a lifting module (or satisfies (D;)) (see [9]) if for ev-
ery submodule A of M, there exists a direct summand K of M such that K < A and
A/K < M/K, equivalently, M is amply supplemented and every supplement submodule
of M is a direct summand. M is called discrete if M is lifting and has the following condi-
tion.

(D,) If A < M such that M/A is isomorphic to a direct summand of M, then A is a

summand of M.
M is called quasidiscrete if M is lifting and has the following condition:
(D3) For each pair of direct summands A and B of M with A + B = M, A N B is a direct
summand of M. For more details on these concepts, see [9].

Lemma 1.1 (see [12, 19.3]). Let M be a module and K < L < M.
(1) L < M ifand only if K < M and L/K < M/K.
(2) If M" is a module and ¢ : M — M’ a homomorphism, then ¢(L) < M' whenever
L<M.

LEMMA 1.2 (see Lemma 1.1 in [5]). Let M be a weakly supplemented module and N < M.
Then the following statements are equivalent.

(1) N is a supplement submodule of M.

(2) N is coclosed in M.

(3) Forall X <N, X < M implies X < N.

LemMa 1.3 (see Proposition 1.5 in [5]). Let M be an amply supplemented module. Then
every submodule of M has an s-closure.

LEmMMA 1.4 (see [12,41.7]). Let M be an amply supplemented module. Then every coclosed
submodule of M is amply supplemented.

2. Relative lifting modules

To define the concepts of relative lifting and (quasi-)discrete modules, we dualize the
concepts of relative extending and (quasi-)continuous modules introduced in [8] in this
section. We start with the following.

Let N and M be modules. We define the family

A M
$(N,M)=‘$LA<M|E|X<N EleHOITl(XM 5W<< ﬁ} (2.1)
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ProrositioN 2.1. $(N,M) is closed under small submodules, isomorphic images, and co-
essential extensions.

Proof. We only show that $(N, M) is closed under coessential extensions. Let A € $(N, M),
A <A <M,and A'/A < M/A. There exist X < N and f € Hom(X, M) such that f(X) <
A and A/f(X) < M/f(X) since A € $(N,M). Note that A'/A < M/A, so A'/f(X) <
M/ f(X) by Lemma 1.1(1). Thus A" € $(N,M). |

LeEMMmA 2.2. Let A € $(N, M) and A be coclosed in M. Then B € $(N, M) for any submodule
B of A.

Proof. Thereexist X <N and f € Hom(X, M) such that f(X) <Aand A/ f(X) < M/ f(X)
by hypothesis. Since A is coclosed in M, f(X) = A. Let B be any submodule of A and
Y = f1(B) <X < N.Then fly:Y — M is a homomorphism such that f|y(Y) = B for
f(X)=A.Clearly B/f|y(Y) < M/fly(Y). Therefore B € $(N,M). O

LemMa 2.3. Let C < A < B <M and A be a coessential submodule of B. If C is an s-closure
of A, then it is also an s-closure of B.

Proof. Ttis clear by Lemma 1.1(1). O

ProrosITION 2.4. Let M be an amply supplemented module. Then every A in $(N, M) has
an s-closure A in $(N, M).

Proof. Since A € $(N,M), there exist X < N and f € Hom(X, M) such that A/ f(X) <«
M/ f(X). Note that M is amply supplemented, and so f(X) has an s-closure A in M by
Lemma 1.3. Thus A is also an s-closure of A by Lemma 2.3. The verification for A €
$(N, M) is analogous to that for B € $(N, M) in Lemma 2.2. O

Let N be a module. Consider the following conditions for a module M.
($(N,M)-D,) For every submodule A € $(N, M), there exists a direct summand K of M
such that K < A and A/K < M/K.
($(N,M)-D,) If A € $(N,M) such that M/A is isomorphic to a direct summand of M,
then A is a direct summand of M.
($(N,M)-D5) If A and L are direct summands of M with A € $(N,M) and A+ L = M,
then A N L is a direct summand of M.

Definition 2.5. Let N be a module. A module M is said to be N-lifting, N-discrete, or
N-quasidiscrete if M satisfies $(N,M)-Dy, $(N,M)-D; and $(N,M)-D, or $(N,M)-D,
and $(N, M)-Ds, respectively.

One easily obtains the hierarchy: M is N-discrete = M is N-quasidiscrete=> M is N-
lifting. Clearly, the notion of relative discreteness generalizes the concept of discreteness.
For any module N, lifting modules are N-lifting. But the converse is not true as shown in
the following examples.

Example 2.6. Since, for any module M, $(0,M) = {A| A < M} and 0 is a direct sum-
mand of M such that A/0 < M/0 for any A € $(0, M), all modules are 0-lifting. How-
ever, the Z-module Z/27 x 7/8Z is not lifting since the supplement submodule ((1,2))
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({((1,2)) is a supplement of {(1,1)})) and is not a direct summand of it though it is amply
supplemented.

Example 2.7. Let M be a module with zero socle and S a simple module. Then M is S-
lifting since $(S, M) is a family only containing all small submodules of M. So all torsion-
free Z-modules are S-lifting for any simple Z-module S (see [12, Exercise 21.17]). In par-
ticular, 7Z and 7Q are S-lifting for any simple Z-module, but each one is not a lifting
module.

LeMMA 2.8. Let M be a module. Then $(M,M) = {A | A < M} = Uyer-Mod $(N, M), where
R-Mod denotes the category of left R-module.

Proof. Tt is straight forward. O

ProrosITION 2.9. Let M be a module. Then M is lifting or (quasi- )discrete if and only if M
is M-lifting or M-(quasi-)discrete if and only if M is N-lifting or N-(quasi-)discrete for any
module N.

Proof. Itis clear by Lemma 2.8. O

ProrosITION 2.10. Let M be an amply supplemented module. Then the condition $(N, M )-
D, is inherited by coclosed submodules of M.

Proof. Let M satisfy $(N,M)-D; and H be a coclosed submodule of M. H is amply sup-
plemented by Lemma 1.4. For any A € $(N,H), A has an s-closure A€ $(N,H)in H by
Proposition 2.4. Since A € $(N,H) < $(N, M) and M satisfies $(N,M)-Dy, there is a di-
rect summand K of M such that K < A and A/K < M/K. By Lemma 1.2, A/K < H/K.
Now A = K since A is coclosed in H. Thus H satisfies $(N,H)-D;. O

CoROLLARY 2.11. Let M be an amply supplemented module. Then the condition $(N,M)-
D is inherited by direct summands of M.

ProposiTION 2.12. Let M be an amply supplemented module. Then $(N,M)-D; (i = 2,3)
is inherited by direct summands of M.

Proof. (1) Let M satisfy $(N,M)-D, and H be a direct summand of M. We will show that
H satisfies $(N,H)-D,.

Let A € $(N,H) < $(N,M) and H/A is isomorphic to a direct summand of H. Since
H is a direct summand of M, there exists H' < M such that M = H @ H'. Thus M/A =
(He H')/A = (H/A) @ H’', and so M/A is isomorphic to a direct summand of M. A is a
direct summand of M since M satisfies $(N, M)-D,, and hence A is a direct summand of
H.

(2) Let A € $(N,H) < $(N,M) and A, L be direct summands of H with A+ L = H.
We will show that A N L is a direct summand of H. Since H is a direct summand of
M, there exists H <M suchthat M=Ho H . Thus M= (A+L)eH =A+ (Lo H').
Now AN (L® H’) is a direct summand of M since M satisfies $(IN, M)-Ds. Note that
An(LeH')=ANL,soANLisa direct summand of H. |

THEOREM 2.13. Let M be an amply supplemented module and A € $(N, M) a direct sum-
mand of M. If M is N-(quasi-)discrete, then A is (quasi-)discrete.



Y. Wang and N. Ding 5

Proof. The proof follows from Lemma 2.2, Corollary 2.11, and Proposition 2.12. g

ProprosSITION 2.14. Let 0 = N’ — N — N” — 0 be an exact sequence. Then $(N',M) U
$(N",M) < $(N,M). Therefore, if M is N-lifting (resp., (quasi-)discrete), then M is N'-
lifting and N’ -lifting (resp., (quasi-)discrete).

Proof. Without loss of generality we can assume that N' < N and N = N/N’. By def-
inition, N < N implies $(N',M) < $(N,M). Next, let A, € $(N"',M). Then there exist
X <N” =N/N'" and f € Hom(X,M) such that A,/f(X) < M/f(X). Write X = Y/N’,
Y <N andlet §:Y — Y/N' be the canonical homomorphism. It is clear that g = f €
Hom(Y,M) and g(Y) = f(X), hence A»/g(Y) < M/g(Y). Thus A, € $(N,M). Therefore
$(N',M)US$(N"",M) < $(N,M). The rest is obvious. O

Dual to [8, Proposition 2.7], we have the following.

THEOREM 2.15. Let 0 — N’ — N — N"' — 0 be an exact sequence and M an amply supple-
mented module. Then M is N-lifting if and only if it is both N’ -lifting and N"'-lifting.

Proof. Let M be N-lifting. Then it is both N’-lifting and N"'-lifting by Proposition 2.14.
Conversely suppose that M is both N’-lifting and N”'-lifting. For any submodule A €
$(N,M), A has an s-closure A € $(N, M) by Proposition 2.4. Since A € $(N, M), there
exist X < N and f € Hom(X, M) such that A/ f(X) < M/ f(X). Since A is coclosed in M,
f(X) =A. Write Y =X NN’ <N’ and fly:Y = M is a homomorphism, then f(Y) <
f(X) =A. Let f(Y) be an s-closure of f(Y) in A (for A is amply supplemented). Thus
we conclude that f(Y)/f(Y) < M/f(Y) and f(Y) € $(N',M). Since M is N’'-lifting,
there exists a direct summand K of M such that f(Y)/K < M/K. It is easy to see f(Y) is
coclosed in M, hence W = K is a direct summand of M. Write M = W oK' ,K' =M
and A=AnM=f(Y)®(AnK'). Define h: W = (X +N')/N' — M by h(x +N’) =
7 f(x), where 7: A — AN K’ denotes the canonical projection. It is clear that h(W) =
ANK', thus (AN K')/h(W) < M/h(W), and hence (A NK') € $(N",M). Since M is
N"-lifting, there exists a direct summand K’ of M such that (AN K')/K"” < M/K".
Since A N K’ is coclosed in M, AnK’' = K"’. Now A n K’ is a direct summand of K'.
Thus A is a direct summand of M. It follows that M is N-lifting. O

CoROLLARY 2.16. Let M be an amply supplemented module. If M is Ni-lifting for i =
1,2,...,nand N = @} N, then M is N-lifting.

CoROLLARY 2.17. Let M be an amply supplemented module. Then M is lifting if and only
if M is N-lifting and M/N-lifting for every submodule N of M if and only if M is N-lifting
and M/N-lifting for some submodule N of M.

Recall that a module M is said to be distributive if NN (K+L)=(NNnK)+(NNL)
for all submodules N, K, L of M. A module M has SSP (see [4]) if the sum of any pair of
direct summands of M is a direct summand of M.

CoROLLARY 2.18. Let 0 = N’ — N — N” — 0 be an exact sequence and let M be a dis-
tributive and amply supplemented module with SSP. If M is both N'-quasidiscrete and N’ -
quasidiscrete, then M is N-quasidiscrete.



6  Generalized lifting modules

Proof. We only need to show that M satisfies $(N,M)-Ds when M satisfies $(N',M)-Ds
and $(N"",M)-Ds by Theorem 2.15. Let A € $(N, M) and A, H be direct summands of M
with A+ H = M. We know that A = A; ® A,, where A; € $(N',M), A, € $(N"',M) from
the proof of Theorem 2.15. Since M is a distributive module with SSP, A; N Hand A, " H
are direct summands of M. This implies that A N H is a direct summand of M. Thus M
satisfies $(N, M)-Ds. O

3. SSRS-modules

In [2], a module is called a CESS-module if every complement with essential socle is a
direct summand. As a dual of CESS-modules, the concept of SSRS-modules is given in
this section. It is proven that: (1) let M be an amply supplemented SSRS-module such
that Rad(M) is finitely generated, then M = K @ K’, where K is a radical module and K’
is a lifting module; (2) let M be a finitely generated amply supplemented module, then M
is an SSRS-module if and only if M/K is a lifting module for every coclosed submodule
K of M.

Definition 3.1. A module is called an SSRS-module if every supplement with small radical
is a direct summand.

Lifting modules are SSRS-modules, but the converse is not true. For example, 77 is an
SSRS-module which is not a lifting module.

ProposiTION 3.2. Let M be an SSRS-module. Then any direct summand of M is an SSRS-
module.

Proof. Let K be a direct summand of M and N a supplement submodule of K such that
Rad(N) < N. Let N be a supplement of L in K, thatis, N+L=K and NnL < N.
Since K is a direct summand of M, there exists K’ < M such that M = K & K’. Note
that M=N+(LeK')and NNn(L®K’) = NnL < N. Therefore N is a supplement of
L& K’ in M. Thus N is a direct summand of M since M is an SSRS-module. So N is a
direct summand of K. The proof is complete. O

PropositioN 3.3. Let M be a weakly supplemented SSRS-module and K a coclosed sub-
module of M. Then K is an SSRS-module.

Proof. It follows from the assumption and [4, Lemma 2.6(3)]. O

PrROPOSITION 3.4. Let M be an amply supplemented module. Then M is an SSRS-module if
and only if for every submodule N with small radical, there exists a direct summand K of M
such that K < N and N/K <« M/K.

Proof. “<=. Let N be a supplement submodule with small radical. By assumption, there
exists a direct summand K of M such that K < N and N/K <« M/K. Since N is coclosed
in M, N = K. Thus N is a direct summand of M.

“=2 Let N < M with Rad(N) < N. There exists an s-closure N of N since M is
amply supplemented. Since Rad(N) < M (for Rad(N) < N) and Rad(N) < Rad(N),
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Rad(N) < N and N is a supplement submodule by Lemma 1.2. Therefore N is a direct
summand of M by assumption. This completes the proof. O

CoOROLLARY 3.5. Let M be an amply supplemented SSRS-module. Then every simple sub-
module of M is either a direct summand or a small submodule of M.

ProrosITION 3.6. Let M be an amply supplemented module. Then M is an SSRS-module
if and only if for every submodule N of M, every s-closure of N with small radical is a lifting
module and a direct summand of M.

Proof. Tt is straight forward. O

ProprosITION 3.7. Let M be an amply supplemented SSRS-module. Then M = K & K,
where K is semisimple and K' has small socle.

Proof. For Soc(M), there exists a direct summand K of M such that Soc(M)/K < M/K
by Proposition 3.4. It is easy to see that K is semisimple. Since K is a direct summand of
M, there exists K’ < M such that M = K @ K’. Note that Soc(M) = Soc(K) @ Soc(K’). So
Soc(M)/K = (K & Soc(K"))/K < M/K = (K ® K")/K. Thus Soc(K") < K'. O

Recall that a module M is called a radical module if Rad(M) = M. Dual to [2, Theorem
2.6], we have the following.

TaEOREM 3.8. Let M be an amply supplemented SSRS-module such that Rad(M) is finitely
generated. Then M = K ® K', where K is a radical module and K’ is a lifting module.

Proof. Rad(Rad(M)) <« Rad(M) since Rad(M) is finitely generated. There exists a di-
rect summand K of M such that Rad(M)/K <« M/K by Proposition 3.4. Since K is a
direct summand of M, there exists K’ < M such that M = K @ K’. Note that Rad(M) =
Rad(K) ® Rad(K’). Therefore K = K N Rad(M) = Rad(K) and Rad(M)/K = (Rad(K) &
Rad(K'))/K < M/K = (K @ K')/K. Thus Rad(K) = K and Rad(K') < K'.

Next, we show that K’ is a lifting module. K’ is amply supplemented since it is a direct
summand of M. So we only prove that every supplement submodule of K’ is a direct
summand of K’. Let N be a supplement submodule of K’. By Lemma 1.2 and Rad(K") <
K'’, we know that Rad(N) < N. N is a direct summand of K’ since K’ is an SSRS-module
by Proposition 3.2. The proof is complete. O

CoROLLARY 3.9. Let M be an amply supplemented module with small radical. Then M is
an SSRS-module if and only if M is a lifting module.

THEOREM 3.10. Let M be a finitely generated amply supplemented module. Then the fol-
lowing statements are equivalent.

(1) M is an SSRS-module.

(2) M is a lifting module.

(3) M/K is a lifting module for every coclosed submodule K of M.

Proof. (1)« (2) follows from Corollary 3.9.

(3)=(1) is clear.

(1)=(3) we only prove that any supplement submodule of M/K is a direct summand.
Let A/K be a supplement submodule of M/K. A is coclosed in M since A/K is coclosed in
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M/K and K is coclosed in M. Rad(A) < A since M is finitely generated and A is coclosed
in M. A is a direct summand of M by assumption. Thus A/K is a direct summand of
M/K. O

LemMa 3.11. Let M be a module. Then the following statements are equivalent.
(1) For every cyclic submodule N of M, there exists a direct summand K of M such that
K <N and N/K < M/K.
(2) For every finitely generated submodule N of M, there exists a direct summand K of
M such that K < N and N/K < M/K.

Proof. See [12,41.13]. O

COROLLARY 3.12. Let M be a Noetherian module. Then the following statements are equiv-
alent.

(1) M is R-lifting.

(2) M is F-lifting, for any free module F.

(3) M is lifting.

(4) M is an amply supplemented SSRS-module.

Proof. It is easy to see that $(R, M) and $(F, M) are closed under cyclic submodules. The
rest follows immediately from Theorem 3.10 and Lemma 3.11. O

CoROLLARY 3.13. Let R be a left perfect (semiperfect) ring. Then every SSRS-module (finitely
generated SSRS-module) is a lifting module.

Proof. Tt follows from the fact that every module over a left perfect ring has small radical,
[11, Theorems 1.6 and 1.7] and Corollary 3.9. O

A module M is uniserial (see [6]) if its submodules are linearly ordered by inclusion
and it is serial if it is a direct sum of uniserial submodules. A ring R is right (left) serial if
the right (left) R-module Rr(rR) is serial and it is serial if it is both right and left serial.

COROLLARY 3.14. The following statements are equivalent for a ring R with radical J.
(1) R is an artinian serial ring and J* = 0.
(2) Ris a left semiperfct ring and every finitely generated module is an SSRS-module.
(3) Ris a left perfect ring and every module is an SSRS-module.

Proof. Tt holds by [6, Theorem 3.15], [10, Theorem 1 and Proposition 2.13], and Corol-
lary 3.13. O
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