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Co-semigroups of linear operators play a crucial role in the solvability of evolution equa-
tions in the classical context. This paper is concerned with a brief conceptualization of
Co-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical set-
ting, the parameter of a given Cy-semigroup belongs to a clopen ball Q, of the ground
field K. As an illustration, we will discuss the solvability of some homogeneous p-adic
differential equations.
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1. Introduction

Let (K, +,,] - |) be a (complete) ultrametric-valued field and let Q, be the closed ball of
K centered at 0 with radius r > 0, that is, Q, = {x € K : |x| < r}. It is well known that
Q, is also open in [; for this reason, Q, is called a clopen. Recall that each ball Q, is an
additive subgroup of K. From now on, the radius r of the ball Q, will be suitably chosen
so that the series, which defines the p-adic exponential, converges. Indeed, let K = Q,
be the field of p-adic numbers (p = 2 being a prime) equipped with the p-adic valuation
|- | and let Q, = {g € Q : |q| < r}. In contrast with the classical context, the p-adic
exponential given by

el:= > — (1.1)

is not always well defined and analytic for each g € Q,. However, it does converge for all
q € Z,, such that |q| <r = p~ /(=1 where Z, denotes the ring of p-adic integers. (The
ring of p-adic integers Z, is the unit ball of Q, centered at zero, that is, the set of all
x € Q, such that |x| < I, where | - | is the p-adic valuation of Q;). For more on these
and related issues, we refer the reader to [1, 7, 8, 18].

In this paper, we provide the reader with a brief conceptualization of ultrametric coun-
terparts of Co-semigroups in connection with the formalism of linear operators on free
Banach and non-Archimedean Hilbert spaces, recently developed in [2-6].
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2 Ultrametric Cy-semigroups

The present paper is mainly motivated by the solvability of p-adic differential and par-
tial differential equations [9, 11-13, 18] as strong (mild) solutions to the Cauchy problem
related to several classes of differential and partial differential equations in the classical
setting which can be expressed through Cy-semigroups, see, for example, [15, 16].

As for the p-adic exponential defined above, here, the parameter of a given Cy-semi-
group belongs to one of those clopen balls ), whose radius r will be suitably chosen.
Let us mention however that the idea of considering one-parameter families of bounded
linear operators on balls such as Q, was first initiated in [1] for bounded symmetric oper-
ators defined on Q,. Here, we consider those issues within the framework of free Banach
and non-Archimedean Hilbert spaces, while a development of a theory of linear opera-
tors on those ultrametric spaces is underway. One of the consequences of the ongoing
discussion is that if K = Q, and if A is a bounded linear operator on a free Banach space
E satisfying || Al < r with r = p~V(P=D then the function defined by

v(q) = (Z (q:!)n>uo, q€Qy, (1.2)

n=0

for a fixed u, € E is the solution to the homogeneous p-adic differential equation given
by

du =Au, u(0) = uy. (1.3)
dq

This paper is organized as follows: Section 2 is devoted to the required background
needed in the sequel. In Section 3, we study Cy-semigroups and consider the solvability
of homogeneous p-differential equations involving both bounded and unbounded linear
operators on a free Banach space E.

2. Preliminaries
2.1. Free Banach spaces

Defintion 2.1. Let (K,| - |) be a complete non-Archimedean field and let E be a vector
space over [K. A nonnegative real-valued function || - || over E is called an ultrametric
norm if

(a) x|l = 0 if and only if x = 0;

(b) IAx|l = |A]llx|| forall A € K and x € E;

() llx+ yll < max(||x|l, 1 yll) for all x, y € E with equality holding if [|x|| # [ y|l.

Defintion 2.2. An ultrametric Banach space is a vector space endowed with an ultrametric
norm, which is complete.

For details on ultrametric Banach spaces and related issues, see, for example, [14, 17].

Example 2.3. Let (I, ] - |) be a complete ultrametric field and let p = (p;)ier C R* — {0}
be real numbers, where I is a given index set.



Toka Diagana 3

Define

1°(1,K,p) := {x = (xi),; € K sup | x| pi < 00}. (2.1)
iel
One equips [° (I, K, p) with the ultrametric norm defined by ||x|| := sup,; |xilp;. It is
well known that (I°(I,K,p), || - I|) is an ultrametric Banach space, see [5, 6].

Example 2.4. Let ¢o(I,K,p) C I®(I, K, p) be a subspace defined by

co(LK,p) := {x = (x:),c; €K' lin} | xi| pi = 0}. (2.2)
1€
Clearly, (co(I,K,p), Il - II), where || - || is the ultrametric norm given in Example 2.3, is
a closed subspace of (I°(I,K,p), |l - II), and hence it is an ultrametric Banach space.

Defintion 2.5. An ultrametric Banach space (E, || - ||) over a (complete) field (I, | - |) is
said to be a free Banach space if there exists a family (e;);c; of elements of E such that each
element x € E can be written in a unique fashion as a pointwise convergent series defined
by x = > ;crxie; with limjer xje; = 0, and [|x]| = sup,; [x;llle;ll.

The family (e;)ic; is then called an orthogonal basis for E. If ||e;|| = 1, for all i € I, then
(ei)ieg is called an orthonormal basis for E.

Example 2.6. Let (I, | - |) be a complete ultrametric field and let M be a compact (topo-
logical) space. Let C(M,K) denote the space of continuous functions which go from M
into K. The space C(M,K) is equipped the with the sup norm defined by

llulle := sup |u(m)]|. (2.3)

meM
It can be shown that (C(M, K), || - ||«) is an ultrametric Banach space. In particular, when
M =17, and K = (Q,| - |), where p > 2 is a prime number, then the resulting space

(C(Zp,Qp)s |l - ll) is a free Banach space. Indeed, consider the sequence of functions
defined by

x(x—1D(x—2)(x—3)---(x—n+1)
n!

fn(x) =

It is well known [10] that the family ( f,)qen is an orthonormal base, that is, || fulle = 1,
and that every function u € C(Z,,Q,) has a unique uniformly convergent decomposition
defined by u(x) = Z:J:o Cnfn(x), cp € Qp, with |¢,| =~ 0asn — oo and [|ulle = sup, o lcal.

, nz1l, folx)=1. (2.4)

Example 2.7. Let K be a field which is complete with respect to a non-Archimedean val-
uation which will be denoted | - |. Fix once and for all a sequence w = (w;)sen of nonzero
elements of K. Set E,, = ¢co(N, K, (leillien)), where ||l = |w;|*/? for each i € N. As men-
tioned above, an (ultrametric) norm is defined on E, by

x=(x)erp  lxlli=sup x| |ws| 2 (2.5)

seN

Note that E, is a free Banach space—it has a canonical orthogonal base—namely, (¢;)icn,
where ¢; is the sequence all of whose terms are 0 except the ith term which is 1, and
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(ei,ej) = w;0;;, where §;; is the Kronecker symbol. An inner product (symmetric, bilinear,
nondegenerate form) is defined by: for all x = (x;)sen, ¥ = (¥s)sen € Eo,

(X,p) 1= D xXepsws. (2.6)
s=0
The space (Eg, Il - [I,{,)) is then called a non-Archimedean (or p-adic) Hilbert space,

see, for example, [2, 5, 6].

For a free Banach space [, let E* denote its (topological) dual and B(E) the Banach
space of all bounded linear operators on E, see [2, 3, 5, 6]. Both E* and B([E) are equipped
with their respective natural norms. For (u,v) € E X E*, we define the linear operator
(v ® u) by setting

Vxelk, wou(x):=v(x)u=wx)u (2.7)

It follows that [[v® ul|| = ||v|| - [lull.

Let (e;)ien be an orthogonal basis for E. Define ¢; € E* by x = > ;o\ xie; with €] (x) = x;.
It turns out that [le;|| = 1|le;||. Furthermore, every x € E* can be expressed as a pointwise
convergent series: x'e = > ;cn (X" e;) e;. Moreover,

AT |(x’,e,-)|
I ”"?‘éé’[ Tedl } (28

Now let us recall that every bounded linear operator A on E can be expressed as a
pointwise convergent series, that is, there exists an infinite matrix (a;;) i j)enxn with co-
efficients in [ such that

A= aij(€; @), (2.9)
ij
and for any j € N,
lim|aij|||ei|| =0. (2.10)

Moreover, for each j € N, Aej = ;o\ ajje; and its norm is defined by

1Al := sup [WHell] (2.11)

ij ||ej||

2.2. Unbounded linear operators on free Banach spaces. Let E, [ be free Banach spaces.
Suppose that (e;)icn and (h;) jen are, respectively, the canonical orthogonal bases associ-
ated with the free Banach spaces E and F.

For details on the next definition, see [3, 4], in which a similar definition appears on
non-Archimedean Hilbert spaces.

Defintion 2.8. An unbounded linear operator A from E into [ is a pair (D(A),A) con-
sisting of a subspace D(A) C E (called the domain of A), and a (possibly not continuous)
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linear transformation A : D(A) C E — F, such that the domain D(A) contains the basis
(ei)ien and consists of all u = (u;);en € E, such that Au = > ;o u;Ae; converges in F, that
s,

D(A) := {u = (ui);en € E: }1}2 |ui|||Aei]| = O},
, . . (2.12)
A= Z ai,jej®hi, V]EN,llm|ai,]’|Hhi||=0.

ijeN

The collection of those unbounded linear operators is denoted by U(E, ).
For more on these and related issues, we refer the reader to [3, 4].

3. p-adic Cy-semigroup of bounded linear operators

Let (E, || - I|) be a free Banach space. Throughout the rest of this paper, we consider fami-
lies (T(k))xeq, : E — E of bounded linear operators. We always suppose that r is suitably
chosen so that k¥ — T(x) is well defined.

Defintion 3.1. Let r > 0 be a real number. A family (T'(x))«eq, : E — E of bounded linear
operators will be called a semigroup of bounded linear operators on E if

(i) T(0) = I, where I is the unit operator of E;

(i) T(k+«") =T(x)T(x') for all k,x" € Q.

The semigroup (T(x))«ecq, Will be called of class Cy or strongly continuous if the fol-
lowing additional condition holds:

(ii1) limy_o [| T(x)x — x| = 0 for each x € E.

Remark 3.2. A semigroup (T (x))«cq, will be called uniformly continuous if the following
additional condition holds:
(iv) limy—o | T(x) — Igll = 0.

Remark 3.3. One should point out that a semigroup (T(k))ccq, of bounded linear oper-
ators is not only a semigroup, but also a group. Every T (k) is invertible, the inverse being
T(—x), according to Definition 3.1(i) and (ii). Moreover, it is an infinite abelian group.

Defintion 3.4. If (T (x))eq, is a semigroup, then the linear operator A defined by

D(A) = {x S [E:lin(}(%) exists },
T(x) (3.1)
Ax = lin& (%), for each x € D(A),

is called the infinitesimal generator associated with the semigroup (T'(x))«cq, -
e

Remark 3.5. (i) Note that if (T(x))xeq, is a semigroup on E and if (e;)ieny denotes the
orthogonal basis for E, then T(x) for each ¥ € Q, can be expressed [3, 5, 6], for any
x =D ienxiei € E, by T(k)x = X jenxi T (x)e;, where

VseN, T(x)es= > ais(k)e; with lim |ais(x)||]ei]| = 0. (3.2)

ieN
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(ii) Using (i), one can easily see that for each 0 # x € Q,,

VseN, (%)es = (wk)_l>65+zai’s—(x)ei (3.3)

i#s K
with limis,ie |ais(x) [ lleill = 0.
(iii) If (T'(x))xeq, is a semigroup on E, then its infinitesimal generator A may or may
not be a bounded linear operator on E.

In this paper, we mainly focus on general semigroups and strongly continuous semi-
groups of bounded linear operators on general free Banach spaces.
We begin with the following example.

Example 3.6. Take K = Q, the field of p-adic numbers. Consider the ball Q, of Q, with
r= p’l/(f””. Let [E be a free Banach space over Q, and let (¢;);en be the canonical orthog-
onal base. Define for each g € Q, and for x = >.;. ¢ x;e; € E the family of linear operators
T(q)x = Y=o xie!9e;, where (p;)ien C Q, is a sequence of nonzero elements.

It is routine to check that the family (T'(g))4eq, is well defined.

ProrosiTioN 3.7. The family (T(q))q4eq, of linear operators given above is a Cy-semigroup
of bounded linear operators, whose infinitesimal generator is the (bounded) diagonal opera-
tor A defined by Ax = X .o uixie; for each x = X ;oo xie; € E.

Proof. First, note that T(q) is analytic on the ball Q,. It is routine to check that (T(q))4<q,
is a family of bounded linear operators on E. Indeed, for each g € Q,,

wa"
T(q)ei = etide; = (Z ln' )ei, VieN, (3.4)

n=0

and hence, | T(q) |l = [(2,=0(pg")/n!)| < o0, by the fact that qu; € Q, for eachi € N. Fur-
thermore, one can easily check that T(0) = I, T(q+q') = T(q)T(q’) for all q,q" € O,
and thatlim, ¢ || T(g)x — x|l = 0 for each x € E, and hence, (T(q))4eq, is a Cy-semigroup
of bounded linear operators.

Now, let B be the infinitesimal generator of (T(q))4eq, . It remains to show that A = B.
First of all, let us show that D(B) = E (= D(A)). Clearly, foreach 0 # g € Q,, (T(q)e; — e;)/
q = ((e"1 —1)/q)e; for each i € N, and hence

T(q)ei —€

D(B) = {x = (%) jen 111}2 |xi] - H q

=o}=m (3.5)

by |x;| - I(T(q)e;i — e)/qll < (Ixillleill)/1g| — 0 as i — oo, for each x = >, xie; € E.
To complete the proof, it suffices to prove that

The latter is actually obvious since ((e#4 —1)/q) — u; as ¢ — 0, and hence B = A is the
infinitesimal generator of the Cy-semigroup (7(q))4eq, - O

Aei—<T(q)2i_ei>H~>O asq— 0. (3.6)
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In the next theorem, we suppose K = Q,,, where p > 2 is prime. Note also that it is a
natural generalization of Example 3.6.

THEOREM 3.8. Let A be a bounded linear operator on [ such that ||A|| <r = p~ V=V, Then,
A is the infinitesimal generator of a uniformly continuous semigroup of bounded operators
(T(9))geq,-

Proof. Suppose that A is a bounded linear operator on E with [|A[| <r = p~"(»~1 and
set, for each q € Q,,

(qA)"
n!

T(q) =D : (3.7)

n=0
Clearly, the series given by (3.7) converges in norm and defines a family of bounded linear
operators on E, by |q] - [|A]| < r. It is also routine to check that T(0) = I, T(q+q’) =
T(q)T(q") forall q,q" € Q,.
It remains to show that (T'(q))4cq, given above is uniformly continuous. Indeed, 0 #
q € Qs onehas T(q) — Ir = gA{>.,20((qA)"/(n+ 1)1)}, and hence

H% — 4 < 1N 1IT(q) - Il < I T(@) - Fll. (3.8)

Now, |T(q) = Iell < Iq!| - Al - I{(q@)l, where {(q) = >.,-0((qA)"/(n+1)!) converges,
and hence

1qi5r3||T(q) —Ig|| = 0. (3.9)
Consequently,
lim m—AH =0 (3.10)
70 q
by both (3.8) and (3.9). O

Remark 3.9. (i) Note that the mapping Q, — B(E), g — T(q) is analytic. Furthermore,
dT(q)/dt = AT(q) = T(q)A.

(ii) An abstract version of Theorem 3.8, that is, in a general ultrametric-valued field
K, remains an unsolved problem.

Now, let K be a (complete) ultrametric-valued field and let Q, C K be a clopen, where
r is chosen so that Q, — B([E), x — T(k) is well defined.
We have the following theorem.

THEOREM 3.10. Let (T(k))ceq, be a Co-semigroup satisfying ||T(x)|l < M for each x €
Q, C K with M >0, and let A be its infinitesimal generator. Then, for each x € D(A),
T(x)x € D(A) for each k € Q,. Furthermore,

(&

)x =AT(x)x = T(x)Ax. (3.11)
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Proof. The proof in some extent, is similar to that of the classical one; however, for the
sake of clarity, we will provide the reader with all details.

Let x € D(A) and let 0 # x € Q,. Using Definition 3.1, Definition 3.4, and the bound-
edness of the Cy-semigroup T'(x), it easily follows that

(Tt ) 1y = 1) (T Y 7t o

K K

ask — 0.

Consequently, T'(x")x € D(A) and AT (x")x = T(x")Ax, by (3.12). Furthermore, since
T(x )((T(x) — Ig)/x)x — T(x)Ax as x — 0, it follows that the right derivative of T'(x")x
is T(x")Ax. Thus, to complete the proof, we have to show that for each 0 # «’ € Q,, the
left derivative of T(x")x exists and is T(x")Ax. (Note that if 0,0” € Q,, so is ¢ — ¢’, by
lo — 0’| <max(|ol,|0’]) <r.) Now

i (T

+1lim [T (x" — k) Ax — T (k") Ax].

k—0

(3.13)

Clearly, limy—o T(x" — ¥)((T(x)x —x)/x — Ax) = 0, by [|T(c)ll <M for each o € Q,.
Using the strong continuity of the semigroup T'(x), it follows that
lin(} [T(x —x)Ax— T(x')Ax] = 0. (3.14)

Consequently, lim,_o((T(x")x — T(x" — k)x)/x — T(x")x) = 0, and hence the left deriv-
ative of T'(x")x exists and equals T'(x")Ax. This completes the proof. O

Remark 3.11. One of the consequences of Theorem 3.10 is that the function v(x) =
T(x)uo, k € Q,, for some uy € D(A), is the solution to the homogeneous p-adic differen-
tial equation given by

d
%M(K) = Au(x), ke, (3.15)

u(0) = uo,

where A:D(A) C E ~ E is the infinitesimal generator of the Cy-semigroup (T(x))xeq,>
and u: Q, — D(A) is an E-valued function.

Example 3.12. Take K = Q. Let A be the multiplication operator on E = C(Z,,Q,) de-
fined by

Au=Qx)u, YueC(Z,,Qp), (3.16)

where Q = 3" qnfa € C(Z,,Qp).
Suppose that [|Ql|« = sup,cy |g| < r with r = p=/(?=1) (here, one can take M = 1).
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In view of Theorem 3.10, the function defined by v(q) = (>.,20((qA)"/n!))uy, q € Q,
for some uy € E, is the solution to the homogeneous p-adic differential equation

d
%M(K) = Q(k)u(x), xeQ,, (3.17)

u(0) = up € Q.
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