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C0-semigroups of linear operators play a crucial role in the solvability of evolution equa-
tions in the classical context. This paper is concerned with a brief conceptualization of
C0-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical set-
ting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground
field K. As an illustration, we will discuss the solvability of some homogeneous p-adic
differential equations.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let (K,+,·,| · |) be a (complete) ultrametric-valued field and let Ωr be the closed ball of
K centered at 0 with radius r > 0, that is, Ωr = {κ ∈ K : |κ| ≤ r}. It is well known that
Ωr is also open in K; for this reason, Ωr is called a clopen. Recall that each ball Ωr is an
additive subgroup of K. From now on, the radius r of the ball Ωr will be suitably chosen
so that the series, which defines the p-adic exponential, converges. Indeed, let K =Qp

be the field of p-adic numbers (p ≥ 2 being a prime) equipped with the p-adic valuation
| · | and let Ωr = {q ∈ Qp : |q| ≤ r}. In contrast with the classical context, the p-adic
exponential given by

eq :=
∑

n≥0

qn

n!
(1.1)

is not always well defined and analytic for each q ∈Qp. However, it does converge for all
q ∈ Zp such that |q| < r = p−1/(p−1), where Zp denotes the ring of p-adic integers. (The
ring of p-adic integers Zp is the unit ball of Qp centered at zero, that is, the set of all
x ∈Qp such that |x| ≤ 1, where | · | is the p-adic valuation of Qp). For more on these
and related issues, we refer the reader to [1, 7, 8, 18].

In this paper, we provide the reader with a brief conceptualization of ultrametric coun-
terparts of C0-semigroups in connection with the formalism of linear operators on free
Banach and non-Archimedean Hilbert spaces, recently developed in [2–6].
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2 Ultrametric C0-semigroups

The present paper is mainly motivated by the solvability of p-adic differential and par-
tial differential equations [9, 11–13, 18] as strong (mild) solutions to the Cauchy problem
related to several classes of differential and partial differential equations in the classical
setting which can be expressed through C0-semigroups, see, for example, [15, 16].

As for the p-adic exponential defined above, here, the parameter of a given C0-semi-
group belongs to one of those clopen balls Ωr whose radius r will be suitably chosen.
Let us mention however that the idea of considering one-parameter families of bounded
linear operators on balls such as Ωr was first initiated in [1] for bounded symmetric oper-
ators defined onQp. Here, we consider those issues within the framework of free Banach
and non-Archimedean Hilbert spaces, while a development of a theory of linear opera-
tors on those ultrametric spaces is underway. One of the consequences of the ongoing
discussion is that if K=Qp and if A is a bounded linear operator on a free Banach space
E satisfying ‖A‖ ≤ r with r = p−1/(p−1), then the function defined by

v(q)=
(
∑

n≥0

(qA)n

n!

)
u0, q ∈Ωr , (1.2)

for a fixed u0 ∈ E is the solution to the homogeneous p-adic differential equation given
by

du

dq
= Au, u(0)= u0. (1.3)

This paper is organized as follows: Section 2 is devoted to the required background
needed in the sequel. In Section 3, we study C0-semigroups and consider the solvability
of homogeneous p-differential equations involving both bounded and unbounded linear
operators on a free Banach space E.

2. Preliminaries

2.1. Free Banach spaces

Defintion 2.1. Let (K,| · |) be a complete non-Archimedean field and let E be a vector
space over K. A nonnegative real-valued function ‖ · ‖ over E is called an ultrametric
norm if

(a) ‖x‖ = 0 if and only if x = 0;
(b) ‖λx‖ = |λ|‖x‖ for all λ∈K and x ∈ E;
(c) ‖x+ y‖ ≤max(‖x‖,‖y‖) for all x, y ∈ E with equality holding if ‖x‖ �= ‖y‖.

Defintion 2.2. An ultrametric Banach space is a vector space endowed with an ultrametric
norm, which is complete.

For details on ultrametric Banach spaces and related issues, see, for example, [14, 17].

Example 2.3. Let (K,| · |) be a complete ultrametric field and let ρ = (ρi)i∈I ⊂ R+−{0}
be real numbers, where I is a given index set.
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Define

l∞(I ,K,ρ) :=
{
x = (xi

)
i∈I ∈KI : sup

i∈I

∣∣xi
∣∣ρi <∞

}
. (2.1)

One equips l∞(I ,K,ρ) with the ultrametric norm defined by ‖x‖ := supi∈I |xi|ρi. It is
well known that (l∞(I ,K,ρ),‖ · ‖) is an ultrametric Banach space, see [5, 6].

Example 2.4. Let c0(I ,K,ρ)⊂ l∞(I ,K,ρ) be a subspace defined by

c0(I ,K,ρ) :=
{
x = (xi

)
i∈I ∈KI : lim

i∈I
∣∣xi
∣∣ρi = 0

}
. (2.2)

Clearly, (c0(I ,K,ρ),‖ · ‖), where ‖ · ‖ is the ultrametric norm given in Example 2.3, is
a closed subspace of (l∞(I ,K,ρ),‖ · ‖), and hence it is an ultrametric Banach space.

Defintion 2.5. An ultrametric Banach space (E,‖ · ‖) over a (complete) field (K,| · |) is
said to be a free Banach space if there exists a family (ei)i∈I of elements of E such that each
element x ∈ E can be written in a unique fashion as a pointwise convergent series defined
by x =∑i∈I xiei with limi∈I xiei = 0, and ‖x‖ = supi∈I |xi|‖ei‖.

The family (ei)i∈I is then called an orthogonal basis for E. If ‖ei‖ = 1, for all i∈ I , then
(ei)i∈I is called an orthonormal basis for E.

Example 2.6. Let (K,| · |) be a complete ultrametric field and let M be a compact (topo-
logical) space. Let C(M,K) denote the space of continuous functions which go from M
into K. The space C(M,K) is equipped the with the sup norm defined by

‖u‖∞ := sup
m∈M

∣∣u(m)
∣∣. (2.3)

It can be shown that (C(M,K),‖ · ‖∞) is an ultrametric Banach space. In particular, when
M = Zp and K = (Qp,| · |), where p ≥ 2 is a prime number, then the resulting space
(C(Zp,Qp),‖ · ‖∞) is a free Banach space. Indeed, consider the sequence of functions
defined by

fn(x)= x(x− 1)(x− 2)(x− 3)···(x−n+ 1)
n!

, n≥ 1, f0(x)= 1. (2.4)

It is well known [10] that the family ( fn)n∈N is an orthonormal base, that is, ‖ fn‖∞ = 1,
and that every function u∈ C(Zp,Qp) has a unique uniformly convergent decomposition
defined by u(x)=∑∞

n=0 cn fn(x), cp ∈Qp, with |cn| 	→ 0 as n 	→ ∞ and ‖u‖∞ = supn∈N |cn|.
Example 2.7. Let K be a field which is complete with respect to a non-Archimedean val-
uation which will be denoted | · |. Fix once and for all a sequence ω = (ωs)s∈N of nonzero
elements of K. Set Eω = c0(N,K, (‖ei‖i∈N )), where ‖ei‖ = |ωi|1/2 for each i∈N. As men-
tioned above, an (ultrametric) norm is defined on Eω by

x = (xs
)
s∈N, ‖x‖ := sup

s∈N

∣∣xs
∣∣∣∣ωs

∣∣1/2
. (2.5)

Note that Eω is a free Banach space—it has a canonical orthogonal base—namely, (ei)i∈N,
where ei is the sequence all of whose terms are 0 except the ith term which is 1, and
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〈ei,ej〉 = ωiδi j , where δi j is the Kronecker symbol. An inner product (symmetric, bilinear,
nondegenerate form) is defined by: for all x = (xs)s∈N, y = (ys)s∈N ∈ Eω,

〈x, y〉 :=
∞∑

s=0

xs ysωs. (2.6)

The space (Eω,‖ · ‖,〈·,·〉) is then called a non-Archimedean (or p-adic) Hilbert space,
see, for example, [2, 5, 6].

For a free Banach space E, let E∗ denote its (topological) dual and B(E) the Banach
space of all bounded linear operators on E, see [2, 3, 5, 6]. Both E∗ and B(E) are equipped
with their respective natural norms. For (u,v) ∈ E× E∗, we define the linear operator
(v⊗u) by setting

∀x ∈ E, (v⊗u)(x) := v(x)u= 〈v,x〉u. (2.7)

It follows that ‖v⊗u‖ = ‖v‖ · ‖u‖.
Let (ei)i∈N be an orthogonal basis for E. Define e′i ∈ E∗ by x =∑i∈N xiei with e′i (x)= xi.

It turns out that ‖e′i‖ = 1‖ei‖. Furthermore, every x′ ∈ E∗ can be expressed as a pointwise
convergent series: x′e =∑i∈N〈x′ei〉ei. Moreover,

‖x′‖ := sup
i∈N

[∣∣〈x′,ei
〉∣∣

∥∥ei
∥∥

]
. (2.8)

Now let us recall that every bounded linear operator A on E can be expressed as a
pointwise convergent series, that is, there exists an infinite matrix (ai j)(i, j)∈N×N with co-
efficients in K such that

A=
∑

i j

ai j
(
e′j ⊗ ei

)
, (2.9)

and for any j ∈N,

lim
i→∞

∣∣ai j
∣∣∥∥ei

∥∥= 0. (2.10)

Moreover, for each j ∈N, Aej =
∑

i∈N ai jei and its norm is defined by

‖A‖ := sup
i, j

[∣∣ai j
∣∣∥∥ei

∥∥
∥∥ej
∥∥

]
. (2.11)

2.2. Unbounded linear operators on free Banach spaces. Let E,F be free Banach spaces.
Suppose that (ei)i∈N and (hj) j∈N are, respectively, the canonical orthogonal bases associ-
ated with the free Banach spaces E and F.

For details on the next definition, see [3, 4], in which a similar definition appears on
non-Archimedean Hilbert spaces.

Defintion 2.8. An unbounded linear operator A from E into F is a pair (D(A),A) con-
sisting of a subspace D(A)⊂ E (called the domain of A), and a (possibly not continuous)
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linear transformation A : D(A) ⊂ E 	→ F, such that the domain D(A) contains the basis
(ei)i∈N and consists of all u= (ui)i∈N ∈ E, such that Au=∑i∈NuiAei converges in F, that
is,

D(A) :=
{
u= (ui

)
i∈N ∈ E : lim

i→∞
∣∣ui
∣∣∥∥Aei

∥∥= 0
}

,

A=
∑

i, j∈N
ai, j e

′
j ⊗hi, ∀ j ∈N, lim

i→∞
∣∣ai, j

∣∣∥∥hi
∥∥= 0.

(2.12)

The collection of those unbounded linear operators is denoted by U(E,F).
For more on these and related issues, we refer the reader to [3, 4].

3. p-adic C0-semigroup of bounded linear operators

Let (E,‖ · ‖) be a free Banach space. Throughout the rest of this paper, we consider fami-
lies (T(κ))κ∈Ωr : E 	→ E of bounded linear operators. We always suppose that r is suitably
chosen so that κ 	→ T(κ) is well defined.

Defintion 3.1. Let r > 0 be a real number. A family (T(κ))κ∈Ωr : E 	→ E of bounded linear
operators will be called a semigroup of bounded linear operators on E if

(i) T(0)= IE, where IE is the unit operator of E;
(ii) T(κ+ κ′)= T(κ)T(κ′) for all κ,κ′ ∈Ωr .
The semigroup (T(κ))κ∈Ωr will be called of class C0 or strongly continuous if the fol-

lowing additional condition holds:
(iii) limκ→0‖T(κ)x− x‖ = 0 for each x ∈ E.

Remark 3.2. A semigroup (T(κ))κ∈Ωr will be called uniformly continuous if the following
additional condition holds:

(iv) limκ→0‖T(κ)− IE‖ = 0.

Remark 3.3. One should point out that a semigroup (T(κ))κ∈Ωr of bounded linear oper-
ators is not only a semigroup, but also a group. Every T(κ) is invertible, the inverse being
T(−κ), according to Definition 3.1(i) and (ii). Moreover, it is an infinite abelian group.

Defintion 3.4. If (T(κ))κ∈Ωr is a semigroup, then the linear operator A defined by

D(A)=
{
x ∈ E : lim

κ→0

(
T(κ)x− x

κ

)
exists

}
,

Ax = lim
κ→0

(
T(κ)x− x

κ

)
, for each x ∈D(A),

(3.1)

is called the infinitesimal generator associated with the semigroup (T(κ))κ∈Ωr .

Remark 3.5. (i) Note that if (T(κ))κ∈Ωr is a semigroup on E and if (ei)i∈N denotes the
orthogonal basis for E, then T(κ) for each κ ∈ Ωr can be expressed [3, 5, 6], for any
x =∑i∈N xiei ∈ E, by T(κ)x =∑i∈N xiT(κ)ei, where

∀s∈N, T(κ)es =
∑

i∈N
ai,s(κ)ei with lim

i→∞
∣∣ai,s(κ)

∣∣∥∥ei
∥∥= 0. (3.2)
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(ii) Using (i), one can easily see that for each 0 �= κ∈Ωr ,

∀s∈N,
(
T(κ)− IE

κ

)
es =

(
as,s(κ)− 1

κ

)
es +

∑

i �=s

ai,s(κ)
κ

ei (3.3)

with limi �=s,i→∞ |ai,s(κ)|‖ei‖ = 0.
(iii) If (T(κ))κ∈Ωr is a semigroup on E, then its infinitesimal generator A may or may

not be a bounded linear operator on E.

In this paper, we mainly focus on general semigroups and strongly continuous semi-
groups of bounded linear operators on general free Banach spaces.

We begin with the following example.

Example 3.6. Take K=Qp the field of p-adic numbers. Consider the ball Ωr of Qp with
r = p−1/(p−1). Let E be a free Banach space overQp and let (ei)i∈N be the canonical orthog-
onal base. Define for each q ∈Ωr and for x =∑i≥0 xiei ∈ E the family of linear operators
T(q)x =∑i≥0 xie

μiqei, where (μi)i∈N ⊂Ωr is a sequence of nonzero elements.
It is routine to check that the family (T(q))q∈Ωr is well defined.

Proposition 3.7. The family (T(q))q∈Ωr of linear operators given above is a C0-semigroup
of bounded linear operators, whose infinitesimal generator is the (bounded) diagonal opera-
tor A defined by Ax =∑i≥0μixiei for each x =∑i≥0 xiei ∈ E.

Proof. First, note that T(q) is analytic on the ball Ωr . It is routine to check that (T(q))q∈Ωr

is a family of bounded linear operators on E. Indeed, for each q ∈Ωr ,

T(q)ei = eμiqei =
(
∑

n≥0

μni q
n

n!

)
ei, ∀i∈N, (3.4)

and hence, ‖T(q)‖ = |(∑n≥0(μni q
n)/n!)| <∞, by the fact that qμi ∈Ωr for each i∈N. Fur-

thermore, one can easily check that T(0) = IE, T(q + q′) = T(q)T(q′) for all q,q′ ∈Ωr ,
and that limq→0‖T(q)x− x‖ = 0 for each x ∈ E, and hence, (T(q))q∈Ωr is a C0-semigroup
of bounded linear operators.

Now, let B be the infinitesimal generator of (T(q))q∈Ωr . It remains to show that A= B.
First of all, let us show thatD(B)= E (=D(A)). Clearly, for each 0 �= q ∈Ωr , (T(q)ei− ei)/
q = ((eμiq− 1)/q)ei for each i∈N, and hence

D(B)=
{
x = (xi

)
i∈N : lim

i→∞
∣∣xi
∣∣ ·
∥∥∥∥
T(q)ei− ei

q

∥∥∥∥= 0
}
= E (3.5)

by |xi| · ‖(T(q)ei− ei)/q‖ ≤ (|xi|‖ei‖)/|q| 	→ 0 as i 	→ ∞, for each x =∑i∈N xiei ∈ E.
To complete the proof, it suffices to prove that

∥∥∥∥Aei−
(
T(q)ei− ei

q

)∥∥∥∥ 	−→ 0 as q 	−→ 0. (3.6)

The latter is actually obvious since ((eμiq− 1)/q) 	→ μi as q 	→ 0, and hence B = A is the
infinitesimal generator of the C0-semigroup (T(q))q∈Ωr . �
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In the next theorem, we suppose K=Qp, where p ≥ 2 is prime. Note also that it is a
natural generalization of Example 3.6.

Theorem 3.8. LetA be a bounded linear operator on E such that ‖A‖ < r = p−1/(p−1). Then,
A is the infinitesimal generator of a uniformly continuous semigroup of bounded operators
(T(q))q∈Ωr .

Proof. Suppose that A is a bounded linear operator on E with ‖A‖ < r = p−1/(p−1), and
set, for each q ∈Ωr ,

T(q)=
∑

n≥0

(qA)n

n!
. (3.7)

Clearly, the series given by (3.7) converges in norm and defines a family of bounded linear
operators on E, by |q| · ‖A|| < r. It is also routine to check that T(0) = IE, T(q + q′) =
T(q)T(q′) for all q,q′ ∈Ωr .

It remains to show that (T(q))q∈Ωr given above is uniformly continuous. Indeed, 0 �=
q ∈Ωr ; one has T(q)− IE = qA{∑n≥0((qA)n/(n+ 1)!)}, and hence

∥∥∥∥
T(q)− IE

q
−A

∥∥∥∥≤ ‖A‖ ·
∥∥T(q)− IE

∥∥ <
∥∥T(q)− IE

∥∥. (3.8)

Now, ‖T(q)− IE‖ ≤ |q| · ‖A‖ · ‖ζ(q)‖, where ζ(q)=∑n≥0((qA)n/(n+ 1)!) converges,
and hence

lim
q 	→0

∥∥T(q)− IE
∥∥= 0. (3.9)

Consequently,

lim
q 	→0

∥∥∥∥
T(q)− IE

q
−A

∥∥∥∥= 0 (3.10)

by both (3.8) and (3.9). �

Remark 3.9. (i) Note that the mapping Ωr 	→ B(E), q 	→ T(q) is analytic. Furthermore,
dT(q)/dt = AT(q)= T(q)A.

(ii) An abstract version of Theorem 3.8, that is, in a general ultrametric-valued field
K, remains an unsolved problem.

Now, letK be a (complete) ultrametric-valued field and let Ωr ⊂K be a clopen, where
r is chosen so that Ωr 	→ B(E), κ 	→ T(κ) is well defined.

We have the following theorem.

Theorem 3.10. Let (T(κ))κ∈Ωr be a C0-semigroup satisfying ‖T(κ)‖ ≤M for each κ ∈
Ωr ⊂ K with M > 0, and let A be its infinitesimal generator. Then, for each x ∈ D(A),
T(κ)x ∈D(A) for each κ∈Ωr . Furthermore,

(
dT(κ)
dκ

)
x = AT(κ)x = T(κ)Ax. (3.11)
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Proof. The proof in some extent, is similar to that of the classical one; however, for the
sake of clarity, we will provide the reader with all details.

Let x ∈D(A) and let 0 �= κ∈Ωr . Using Definition 3.1, Definition 3.4, and the bound-
edness of the C0-semigroup T(κ), it easily follows that

(
T(κ)− IE

κ

)
T
(
κ′
)
x = T

(
κ′
)(T(κ)− IE

κ

)
x 	−→ T

(
κ′
)
Ax (3.12)

as κ 	→ 0.
Consequently, T(κ′)x ∈D(A) and AT(κ′)x = T(κ′)Ax, by (3.12). Furthermore, since

T(κ′)((T(κ)− IE)/κ)x 	→ T(κ′)Ax as κ 	→ 0, it follows that the right derivative of T(κ′)x
is T(κ′)Ax. Thus, to complete the proof, we have to show that for each 0 �= κ′ ∈Ωr , the
left derivative of T(κ′)x exists and is T(κ′)Ax. (Note that if σ ,σ ′ ∈ Ωr , so is σ − σ ′, by
|σ − σ ′| ≤max(|σ|,|σ ′|) < r.) Now

lim
κ→0

(
T
(
κ′
)
x−T

(
κ′ − κ

)
x

κ
−T

(
κ′
)
x
)
= lim

κ→0
T
(
κ′ − κ

)(T(κ)x− x

κ
−Ax

)

+ lim
κ→0

[
T
(
κ′ − κ

)
Ax−T

(
κ′
)
Ax
]
.

(3.13)

Clearly, limκ→0T(κ′ − κ)((T(κ)x− x)/κ−Ax) = 0, by ‖T(σ)‖ ≤M for each σ ∈ Ωr .
Using the strong continuity of the semigroup T(κ), it follows that

lim
κ→0

[
T
(
κ′ − κ

)
Ax−T

(
κ′
)
Ax
]= 0. (3.14)

Consequently, limκ→0((T(κ′)x−T(κ′ − κ)x)/κ−T(κ′)x)= 0, and hence the left deriv-
ative of T(κ′)x exists and equals T(κ′)Ax. This completes the proof. �

Remark 3.11. One of the consequences of Theorem 3.10 is that the function v(κ) =
T(κ)u0, κ∈Ωr , for some u0 ∈D(A), is the solution to the homogeneous p-adic differen-
tial equation given by

d

dκ
u(κ)= Au(κ), κ∈Ωr ,

u(0)= u0,
(3.15)

where A : D(A) ⊂ E 	→ E is the infinitesimal generator of the C0-semigroup (T(κ))κ∈Ωr ,
and u : Ωr 	→D(A) is an E-valued function.

Example 3.12. Take K=Qp. Let A be the multiplication operator on E= C(Zp,Qp) de-
fined by

Au=Q(x)u, ∀u∈ C
(
Zp,Qp

)
, (3.16)

where Q =∑∞
n=0 qn fn ∈ C(Zp,Qp).

Suppose that ‖Q‖∞ = supn∈N |qn| < r with r = p−1/(p−1) (here, one can take M = 1).
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In view of Theorem 3.10, the function defined by v(q)= (
∑

n≥0((qA)n/n!))u0, q ∈Ωr ,
for some u0 ∈ E, is the solution to the homogeneous p-adic differential equation

d

dκ
u(κ)=Q(k)u(κ), κ∈Ωr ,

u(0)= u0 ∈Qp.
(3.17)
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