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1. Introduction

For q := e2πiz, Im(z) > 0, define Ramanujan’s theta-functions as

φ(q) :=
∞∑

n=−∞
qn

2 = ϑ3(0,2z), (1.1)

ψ(q) :=
∞∑

n=0

qn(n+1)/2 = 2−1q−1/8ϑ2(0,z), (1.2)

f (−q) := (q;q)∞ = q−1/24η(z), (1.3)

where ϑ2 and ϑ3 are classical theta-functions [8, page 464], η denotes the Dedekind eta-
function, and (a;q)∞ is defined by

(a;q)∞ :=
∞∏

k=0

(
1− aqk). (1.4)

Now, Ramanujan-Selberg continued fraction S1(q) is defined by

S1(q) := q1/8ψ(q)
φ(q)

= q1/8

1 +

q

1 + q +

q2

1 + q2
+

q3

1 + q3
+···

, |q| < 1. (1.5)

This continued fraction was recorded by Ramanujan at the beginning of Chapter 19 of
his second notebook [1, page 221]. The equality in (1.5) was proved by Ramanathan [3].
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2 Ramanujan-Selberg continued fractions

Closely related to S1(q) is the continued fraction H(q) [7, page 82] defined by

H(q) := f (−q)
q1/8 f

(− q4
) = q1/8− q7/8

1− q +

q2

1 + q2 −

q3

1− q3
+

q4

1 + q4 −···
, |q| < 1. (1.6)

By [1, page 115, Entry 8(xii)] and (1.6), we find that

H(q)= φ
(− q2

)

q1/8ψ(q)
. (1.7)

Also, employing (1.2) and [1, page 37, equation (22.4)], we have

H(q)=
(
q;q2

)
∞

q1/8
(− q2;q2

)
∞
. (1.8)

Again, for |q| < 1, define

N(q) := 1 +
q

1 +

q+ q2

1 +

q3

1 +

q2 + q4

1 +···
. (1.9)

In his notebook [4, page 290], Ramanujan asserted that

N(q)=
(− q;q2

)
∞(− q2;q2
)
∞
. (1.10)

This formula was first proved in print by Selberg [6].
In his lost notebook, Ramanujan [5, page 44] also stated that if |q| < 1 and

L(q)= 1 + q
1 +

q2

1 +

q+ q3

1 +

q4

1 +···
, (1.11)

then

L(q)=
(− q;q2

)
∞(− q2;q2
)
∞
. (1.12)

From (1.5) and (1.9)–(1.12), we easily see that

S1(q)= q1/8

N(q)
= q1/8

L(q)
= q1/8

(− q2;q2
)
∞(− q;q2

)
∞

. (1.13)

By setting

T(q) := q1/8

1 +

−q
1 +

−q+ q2

1 +

−q3

1 +···
, (1.14)

we also note that

T(q)= q1/8

N(−q)
= q1/8

L(−q)
= q1/8

(− q2;q2
)
∞(

q;q2
)
∞

. (1.15)
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In this paper, we find several modular relations connecting the above continued frac-
tions in different arguments. We present these in Sections 3–5.

We observe that Vasuki and Shivashankara [7] had found explicit values of H(e−π
√
n)

for n= 3,1/3,5,1/5,7,1/7,13, and 1/13 by using eta-function identities and transforma-
tion formulas. In Sections 6 and 7, we also find several new explicit values of H(e−π

√
n) by

using the parameter Jn, defined by

Jn = f (−q)√
2q1/8 f

(− q4
) , q := e−π

√
n, (1.16)

where n is any positive real number. We note that the parameter Jn is equivalent to the
parameter r4,n, which is a particular case of the parameter rk,n, introduced by Yi [10, page
4, equation (1.11)] (see also [9, page 11, equation (2.1.1)]), and defined by

rk,n := f (−q)
k1/4q(k−1)/24 f

(− qk) , q = e−2π
√
n/k, (1.17)

where n and k are positive real numbers.
We note that Zhang [11, page 11, Theorems 2.1 and 2.2] established general formu-

las for explicit evaluations of S1(e−π
√
n) and T(e−π

√
n) in terms of Ramanujan’s singular

moduli. In fact, he proved that

S1(q)= α1/8
n√
2

, (1.18)

T(q)= 1√
2

(
αn

1−αn
)1/8

, (1.19)

where q = e−π
√
n and the singular modulus αn is that unique positive number between 0

and 1 satisfying

√
n= 2F1

(
1/2,1/2;1;1−αn

)

2F1
(
1/2,1/2;1;αn

) . (1.20)

In Section 8, we establish general formulas for explicit evaluations of S1(e−π
√
n) and

S1(e−π/
√
n) in terms of the parameter rk,n. We also give some particular examples.

Since Ramanujan’s modular equations are central in our evaluations, we now give the
definition of a modular equation as given by Ramanujan. Let K , K ′ := K(k′), L, and L′ :=
L(l′) denote the complete elliptic integral of the first kind associated with the moduli k,
k′ :=√1− k2, l, and l′ :=√1− l2, respectively. Suppose that the equality

n
K ′

K
= L′

L
(1.21)

holds for some positive integer n. Then a modular equation of degree n is a relation
between the moduli k and l which is implied by (1.21).

If we set

q = exp
(
−π K

′

K

)
, q′ = exp

(
−π L

′

L

)
, (1.22)
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we see that (1.21) is equivalent to the relation qn = q′. Thus, a modular equation can be
viewed as an identity involving theta-functions at the arguments q and qn. Ramanujan
recorded his modular equations in terms of α and β, where α= k2 and β = l2. We say that
β has degree n over α. The multiplier m connecting α and β is defined by

m= K

L
. (1.23)

If q = exp(−πK ′/K), one of the most fundamental relations in the theory of elliptic
functions is given by the formula [1, pages 101-102]

φ2(q)=2 F1

(
1
2

,
1
2

;1,k2
)
= 2
π
K(k). (1.24)

So the multiplier m of degree n defined in (1.23) can also be written as

m= z1

zn
, (1.25)

where zr = φ2(qr).
Again, if we put q = exp(−πK ′/K), z = z1, and x = α in [1, Entries 10(i), 11(i), 12(i),

12(ii), and 12(iv), pages 122–124], then we have the representations

φ(q)=√z1, (1.26)

ψ(q)=
√
z1

2

(
α

q

)1/8

, (1.27)

f (q)=√z12−1/6
(
α(1−α)

q

)1/24

, (1.28)

f (−q)=√z12−1/6
(

(1−α)4α

q

)1/24

, (1.29)

f
(− q4)=√z12−2/3

(
(1−α)α4

q4

)1/24

, (1.30)

respectively. It is to be noted that if we replace q by qn, then z1 and α will be replaced by
zn and β, respectively, where β has degree n over α.

In the next section, we give the values of rk,n, eta-function identities and modular
equations, which will be used in our subsequent sections.

2. Some values of rk,n and modular equations

In the following theorem, we record the values of rk,n from [9].
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Theorem 2.1 (Yi [9]). One has

r2,1 = 1, r2,2 = 21/8, r2,3 =
(
1 +
√

2
)1/6

, r2,4 = 21/8(1 +
√

2
)1/8

,

r2,5 =
√

1 +
√

5
2

, r2,6 = 21/24(√3 + 1
)1/4

, r2,8 = 23/16(1 +
√

2
)1/4

,

r2,9 =
(√

2 +
√

3
)1/3

, r2,10 =
(

1
2

(
1 +
√

5
)(√√

5 + 1 +
√

2
))1/4

,

r2,12 =
(
1+
√

2
)5/24(

2
(
1 +
√

2 +
√

6
))1/8

, r2,16 = 21/8(1 +
√

2
)1/4
(

4 +
√

2 + 10
√

2
)1/8

,

r2,18 =
(
1 +
√

3
)1/3(

1 +
√

3 +
√

2 · 33/4
)1/3

211/24
r2,20 =

(
1 +
√

5
)5/8(

2 + 3
√

2 +
√

5
)1/8

√
2

,

r2,32 = 23/16(1 +
√

2
)1/4(

16 + 15 · 21/4+12
√

2 + 9 · 23/4)1/8
,

r2,36 =
{

2
(
1 + 35

√
2− 28

√
3
)}1/8

(√
3−√2

)2/3 r2,50 = 25/8

51/4− 1
,

r2,72 =
(√

2 +
√

3
)1/3(−√2 + 4 + 2

√
3 + 33/4

(√
3 + 1

))1/3

213/48
(√

2− 1
)5/12 ,

r2,3/2 =
(
1 +
√

3
)1/4

27/24
, r2,5/2 =

(√√
5 + 1 +

√
2
)1/4

21/4
,

r2,7/2 =
(
3 +
√

7
)1/4

23/8
, r2,9/2 =

(
1 +
√

3 +
√

2 · 33/4
)1/3

213/24
, r2,25/2 = 51/4 + 1

25/8
.

(2.1)

Note that is we have recorded the corrected version of r2,72 that is given by Yi [9].
From [9, page 12, Theorem 2.1.2(i)–(iii)], we also note that rk,1 = 1, rk,1/n = 1/rk,n, and

rk,n = rn,k, where k and n are any positive real numbers.
In the next three theorems, we state three eta-function identities of Yi [9].

Theorem 2.2 (Yi [9, page 36, Theorem 3.5.1]). If

P = f (−q)
q1/8 f

(− q4
) , Q = f

(− q2
)

q1/4 f
(− q8

) , (2.2)

then

(PQ)4 +
4
PQ

4

=
(
Q

P

)12

− 16
(
Q

P

)4

− 16
(
P

Q

)4

. (2.3)

Theorem 2.3 (Yi [9, page 37, Theorem 3.5.2]). If

P = f (−q)
q1/8 f

(− q4
) , Q = f

(− q3
)

q3/8 f
(− q12

) , (2.4)
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then

PQ+
4
PQ

=
(
Q

P

)2

+
(
P

Q

)2

. (2.5)

Theorem 2.4 (Yi [9, page 38, Theorem 3.5.3]). If

P = f (−q)
q1/8 f

(− q4
) , Q = f

(− q5
)

q5/8 f
(− q20

) , (2.6)

then

(PQ)2 +
(

4
PQ

)2

=
(
Q

P

)3

− 5
(
Q

P
+
P

Q

)
+
(
P

Q

)3

. (2.7)

The remaining theorems of this section are devoted to stating some modular equations
of Ramanujan.

Theorem 2.5 (Berndt [1, page 230, Entry 5(ii)]). If β has degree 3 over α, then

(αβ)1/4 +
(
(1−α)(1−β)

)1/4 = 1. (2.8)

Theorem 2.6 (Berndt [1, page 282, Entry 13(xv)]). If β has degree 5 over α, then

(
Q− 1

Q

)3

+ 8
(
Q− 1

Q

)
= 4
(
P− 1

P

)
, (2.9)

where P = (αβ)1/4 and Q = (β/α)1/8.

Theorem 2.7 (Berndt [1, page 314, Entry 19(i)]). If β has degree 7 over α, then

(αβ)1/8 +
(
(1−α)(1−β)

)1/8 = 1. (2.10)

Theorem 2.8 (Berndt [1, page 363, Entry 7(i)]). If β has degree 11 over α, then

(αβ)1/4 +
{

(1−α)(1−β)
}1/4

+ 2
{

16αβ(1−α)(1−β)
}1/12 = 1. (2.11)

Theorem 2.9 (Berndt [2, page 387, Entry 62]). Let P, Q, and R be defined by

P = 1−
√
αβ−

√
(1−α)(1−β),

Q = 64
(√

αβ+
√

(1−α)(1−β)−
√
αβ(1−α)(1−β)

)
,

R= 32
√
αβ(1−α)(1−β),

(2.12)

respectively. Then, if β has degree 13 over α,

√
P
(
P3 + 8R

)−
√
R
(
11P2 +Q

)= 0. (2.13)
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Theorem 2.10 (Berndt [2, page 385, Entry 53]). Let

P = 1 + (αβ)1/8 +
{

(1−α)(1−β)
}1/8

,

Q= 4
(

(αβ)1/8 +
{

(1−α)(1−β)
}1/8

+
{
αβ(1−α)(1−β)

}1/8
)

,

R= 4
{
αβ(1−α)(1−β)

}1/8
.

(2.14)

Then, if β has degree 15 over α,

P
(
P2−Q)+R= 0. (2.15)

Theorem 2.11 (Berndt [2, page 387, Entry 62]). Let P, Q, and R be defined as in Theorem
2.9, then if β has degree 17 over α,

P3−R1/3(10P2 +Q
)

+ 13R2/3P + 12R= 0. (2.16)

Theorem 2.12 (Berndt [2, page 386, Entry 58]). Let

P = 1− (αβ)1/4− {(1−α)(1−β)
}1/4

,

Q = 16
(

(αβ)1/4 +
{

(1−α)(1−β)
}1/4− {αβ(1−α)(1−β)

}1/4
)

,

R= 16
{
αβ(1−α)(1−β)

}1/4
.

(2.17)

Then, if β has degree 19 over α,

P5− 7P2R−QR= 0. (2.18)

Theorem 2.13 (Berndt [1, page 411, Entry 15(i)]). If β has degree 23 over α, then

(αβ)1/8 +
{

(1−α)(1−β)
}1/8

+ 22/3{αβ(1−α)(1−β)
}1/24 = 1. (2.19)

Theorem 2.14 (Berndt [2, page 385, Entry 54]). Let P, Q, and R be defined in as Theorem
2.10. If β has degree 31 over α, then

P2−Q=
√
PR. (2.20)

3. Relations between H(q) and H(qn)

In this section, we state and prove some relations between H(q) and H(qn).

Theorem 3.1. One has
(i) α= 16/(16 +H8(q)),

(ii) β = 16/(16 +H8(qn)),
where β has degree n over α.

Proof. We apply (1.29) and (1.30) in the definition ofH(q) in (1.6) to complete the proof.
�
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Theorem 3.2. One has
(i) α=−16/(H8(−q)),

(ii) β =−16/(H8(−qn)),
where β has degree n over α.

Proof. We replace q by−q in the definition of H(q) and then employ (1.28) and (1.30) to
arrive at the desired result. �

Remark 3.3. By Theorem 3.1 and for any given modular equation of degree n, we can
obtain a relation between H(q) and H(qn). In the following theorem, we illustrate this
with n= 3,5, and 7 in (iii), (iv), and (v), respectively.

Theorem 3.4. Let a = H(q), b = H(−q), c = H(q2), u = H(q3), v = H(q5), and w =
H(q7). Then one has

(i) a8 + b8 + 16= 0,
(ii) 256a8 + 16a16 + 16a8c8 + a16c8− c16 = 0,

(iii) a4− 4au− a3u3 +u4 = 0,
(iv) a6− 16av− 5a4v2− 5a2v4− a5v5 + v6 = 0,
(v) a8− 64aw− 112a2w2− 112a3w3− 70a4w4− 28a5w5− 7a6w6 + a7w7 +w8 = 0.

Proof. From Theorem 3.1(i) and Theorem 3.2, we easily arrive at (i). To prove (iii)–(v),
we employ Theorem 3.1 in Theorems 2.5, 2.6, and 2.7, respectively. We note that (ii)–(iv)
can also be proved by employing Theorems 2.2–2.4. �

4. Relations between S1(q) and S1(qn)

Theorem 4.1. One has
(i) α= 16S8

1(q),
(ii) β = 16S8

1(qn),
(iii) α= 16T8(q)/(1 + 16T8(q)),

where β has degree n over α.

Proof. To prove (i) and (ii), we employ (1.26) and (1.27) in the definition of S1(q) in
(1.5). Proof of (iii) follows easily from (1.19). �

Remark 4.2. For any given modular equation of degree n, we can easily obtain the rela-
tions connecting S1(q) and S1(qn) by using Theorem 4.1. We give some examples in the
following theorem.

Theorem 4.3. Let U = S1(q), V = S1(q3), W = S1(q5), and X = S1(q7). Then, one has
(i) U4−UV + 4U3V 3−V 4 = 0,

(ii) U6−UW + 5U4W2− 5U2W4 + 16U5W5−W6 = 0,
(iii) U8 +X8−UX + 7U2X2− 28U3X3 + 70U4X4− 112U5X5 + 112U6X6− 64U7X7 =

0.

Proof. Employing Theorem 4.1 in Theorems 2.5–2.7, we readily deduce (i)–(iii), respec-
tively. �
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5. Relations connecting H(±q), S1(q) and T(q)

Theorem 5.1. Let u=H(q), x =H(−q), v = S1(q), and y = T(q). One has
(i) u8v8 + 16v8− 1= 0,

(ii) x8u8 + 1= 0,
(iii) u= 1/y,
(iv) x8y8 + 16y8 + 1= 0.

Proof. (i) follows from Theorem 3.1(i) and Theorem 4.1(i). To prove (ii), we use
Theorem 3.2(i) and Theorem 4.1(i). To prove (iii), we employ Theorem 3.1(i) and
Theorem 4.1(iii). Finally, employing Theorem 3.2(i) and Theorem 4.1(iii), we easily ar-
rive at (iv). �

6. Theorems on Jn and explicit values

In this section, we establish some general theorems for the explicit evaluations of Jn and
find some of its explicit values.

First we recall the following transformation formula for f (−q) from [1, page 43, Entry
27(iii)]. Let αβ = π2, then

e−α/12 4
√
α f
(− e−2α)= e−β/12 4

√
β f
(− e−2β). (6.1)

Theorem 6.1. If Jn is defined as in (1.16), then one has

J1 = 1, J1/n = 1
Jn
. (6.2)

The proof follows directly from (6.1) and the definition of Jn.

Theorem 6.2. One has
(i) 16((JnJ4n)4 + 1/(JnJ4n)4)= (Jn/J4n)12− 16(J4n/Jn)4− 16(Jn/J4n)4,

(ii) 2(JnJ9n + 1/JnJ9n)= (J9n/Jn)2 + (Jn/J9n)2,
(iii) 4((JnJ25n)2 + 1/(JnJ25n)2)= (J25n/Jn)3− 5(J25n/Jn)− 5(Jn/J25n) + (Jn/J25n)3,
(iv) (1 + JnJ49n)8− (1 + J8

n)(1 + J8
49n)= 0.

Proof. Employing the definition Jn in Theorems 2.2–2.4, and 2.7, we complete the proof
of (i)–(iv), respectively. �

Theorem 6.3. One has
(i) J2 = 21/8(1 +

√
2)1/8,

(ii) J3 = (2 +
√

3)1/4,
(iii) J4 = 25/16(1 +

√
2)1/4,

(iv) J5 = (1/
√

2)(1 +
√

5 +
√

2(1 +
√

5))1/2,
(v) J7 = (8 + 3

√
7)1/4,

(vi) J9 = 1/2 + 31/4/
√

2 +
√

3/2,
(vii) J25 = (1/2)(3 + 4

√
5 +
√

5 + 4
√

53),

(viii) J49 = (1/4)(
√

4 +
√

7 +
√

21 + 8
√

7 +
√√

7 +
√

21 + 8
√

7)2,
(ix) J8 = 21/4(1 +

√
2)3/8(4 +

√
2 + 10

√
2)1/8.
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Proof. First we set n= 1/2, 1/3, 1, 1/5, 1/7, 1, 1, and 1 in Theorem 6.2(i), Theorem 6.2(ii),
Theorem 6.2(i), Theorem 6.2(iii), Theorem 6.2(iv), Theorem 6.2(ii), Theorem 6.2(iii),
and Theorem 6.2(iv), respectively, and then simplify by using Theorem 6.1. Solving the
resulting polynomial equations, we readily arrive at (i)–(viii).

Setting n = 2 in Theorem 8.3(i), employing the value of J2 in (i), and solving the re-
sulting equation, we deduce (ix). �

Remark 6.4. From Theorem 6.1 and the above theorem, the values of Jn for n= 1/2,1/3,
1/4,1/5,1/7,1/9,1/25,1/49, and 1/8 also follow immediately.

Theorem 6.5. One has
(i) J6 = r4,6 = (1 +

√
2)3/8(2(1 +

√
2 +
√

6))1/8,
(ii) J10 = (1 +

√
5)9/8(2 + 3

√
2 +
√

5)1/8/2,
(iii) J16 = 23/8(1 +

√
2)1/2(16 + 15 · 21/4 + 12

√
2 + 9 · 23/4)1/8,

(iv) J18 = 21/8(
√

3 +
√

2)(1 + 35
√

2− 28
√

3)1/8,
(v) J36 = (

√
3+1)2/3(−√2+4 + 2

√
3+33/4(

√
3+1))1/3(1+

√
3+
√

2 · 33/4)1/3/235/48(
√

3 −√
2)1/3(

√
2− 1)5/12.

Proof. First we recall from [9, page 14, Corollary 2.1.5(i)] that

rk2,n = rk,nkrk,n/k. (6.3)

Setting k = 2 and n= 6 in (6.3), we obtain

r4,6 = r2,12 · r2,3. (6.4)

Now, from Section 2, we recall that

r2,3 =
(
1 +
√

2
)1/6

, r2,12 =
(
1 +
√

2
)5/24(

2
(
1 +
√

2 +
√

6
))1/8

. (6.5)

Substituting these in (6.4), we complete the proof of (i).
The proofs of (ii)–(v) can be given in a similar fashion. �

Remark 6.6. By using Theorem 6.1 and the above theorem, we can easily evaluate J1/n for
n= 6,10,16,18, and 36.

Theorem 6.7. One has
(i) J11 = ((1 +

√
1− 4a12)/2a6)1/4, where a = −(21/3/3) + (1/6)(38− 6

√
33)1/3 + (19 +

3
√

33)1/3/(3 · 22/3),
(ii) J13 = (18 + 5

√
13 + 6

√
18 + 5

√
13)1/4,

(iii) J15 = ((16 +
√

3(7 +
√

5))/(7− 3
√

5))1/4,

(iv) J17=((2+
√

4−4(20+5
√

17− 2
√

206+50
√

17)2)/(40+10
√

17−4
√

206+50
√

17))1/4,
(v) J19= ((1+

√
1−4k4)/2k2)1/4, where k= (1/24)(−20+(2944− 384

√
57)1/3 + 4(46 +

6
√

57)1/3),
(vi) J23=((1+

√
1−4n24)/2n12)1/4, where n=−1/(3 · 21/3)+(1/6)(50−6

√
69)1/3 +(25 +

3
√

69)1/3/(3 · 22/3),
(vii) J31 = ((1 +

√
1− 4d8)/2d4)1/4, where d = 1/2 + (1/6)(−27 + 3

√
93/2)1/3 − 1/(22/3

(−27 + 3
√

93)1/3).
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Proof of (i). Using the definition of Jn in Theorem 3.1, we find that

α= 1
1 + J8

n
, β = 1

1 + J8
121n

, (6.6)

where β has degree 11 over α.
Setting n= 1/11 in (6.6) and simplifying by using Theorem 6.1, we find that

α= J8
11β, β = 1

1 + J8
11

, 1−α= β, αβ = J8
11β

2. (6.7)

Substituting (6.7) in Theorem 2.8 and simplifying, we obtain

2
(
J4
11β
)1/2

+ 24/3(J4
11β
)1/3− 1= 0. (6.8)

Solving the above polynomial equation for real positive a := (J4
11β)1/6, we obtain

a=−21/3

3
+

1
6

(
38− 6

√
33
)1/3

+

(
19 + 3

√
33
)1/3

3·22/3
. (6.9)

Then, from (6.7) and (6.9), we arrive at

a6J8
11− J4

11 + a6 = 0. (6.10)

Solving (6.10) for J11, we complete the proof of (i).
Similarly, we can prove (ii)–(vii) by using the definition of Jn in Theorem 3.1, setting

n = 1/13,1/15,1/17,1/19,1/23, and 1/31, in turn, and then appealing to Theorems 2.9–
2.14, respectively. �

Remark 6.8. By Theorem 6.1 and the above theorem, the values of J1/n for n= 11,13,15,
17,19,23, and 31 can also be found easily.

7. Explicit values of H(q)

In this section, we establish a general formula for the explicit evaluation of H(e−π
√
n)

and find some explicit values by using the particular values of Jn evaluated in the above
section.

Theorem 7.1. One has

H
(
e−π

√
n
)=√2Jn. (7.1)

Proof. The proof follows directly from the definitions of H(q) and Jn. �

Theorem 7.2. One has
(i) H(e−π)=√2,

(ii) H(e−π
√

2)= 25/8(1 +
√

2)1/8,
(iii) H(e−π

√
3)=√2(2 +

√
3)1/4,

(iv) H(e−2π)= 213/16(1 +
√

2)1/4,
(v) H(e−π

√
5)= (1 +

√
5 +
√

2
√

1 +
√

5)1/2,
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(vi) H(e−π
√

7)=√2(8 + 3
√

7)1/4,
(vii) H(e−3π)= (1 +

√
2 4
√

3 +
√

3)/
√

2,
(viii) H(e−5π)= (3 + 4

√
5 +
√

5 + 4
√

53)/
√

2,

(ix) H(e−7π)= (1/(2
√

2))(
√

4 +
√

7 +
√

21 + 8
√

7 +
√√

7 +
√

21 + 8
√

7)2,
(x) H(e−2

√
2π)= 23/4(1 +

√
2)3/8(4 +

√
2 + 10

√
2)1/8.

Proof. Employing the value that J1 = 1 in Theorem 7.1, we arrive at (i). To prove (ii)–(x),
we employ the values of Jn from Theorem 6.3 in Theorem 7.1. �

Remark 7.3. From Theorems 6.1 and 7.1, it is obvious that

H
(
e−π/

√
n
)=√2J1/n =

√
2
Jn
. (7.2)

So by employing the values of Jn from Theorem 6.3 in (7.2), we can easily evaluate
H(e−π/

√
n) for n= 2,3,4,5,7,9,25,49, and 8. For examples

H
(
e−π/2

)= 23/16(√2− 1
)1/4

, H
(
e−π/

√
5)=

(
1 +
√

5−√2
√

1 +
√

5
)1/2

,

H
(
e−π/7

)= 1
2
√

2

⎛
⎝
√

4 +
√

7 +
√

21 + 8
√

7−
√√

7 +
√

21 + 8
√

7

⎞
⎠

2

.

(7.3)

Theorem 7.4. One has
(i) H(e−π

√
6)=√2(1 +

√
2)3/8(2(1 +

√
2 +
√

6))1/8,
(ii) H(e−π

√
10)= ((1 +

√
5)9/8(2 + 3

√
2 +
√

5)1/8)/
√

2,
(iii) H(e−4π)= 27/8(

√
2 + 1)1/2(16 + 15 · 21/4 + 12

√
2 + 9 · 23/4)1/8,

(iv) H(e−3
√

2π)= 25/8(
√

3 +
√

2)(1 + 35
√

2− 28
√

3)1/8,
(v) H(e−6π) = (

√
3 + 1)2/3(−√2 + 4 + 2

√
3 + 33/4(

√
3 + 1))1/3(1 +

√
3 +
√

2 · 33/4)1/3/
(211/48(

√
3−√2)1/3(

√
2− 1)5/12).

Proof. We use the values of Jn from Theorem 6.5 in Theorem 7.1 to complete the proof.
�

The values of H(e−π/
√
n) for n = 6,10,18, and 36 also follow from Theorem 6.5 and

(7.2).

Theorem 7.5. One has
(i) H(e−π

√
11)=√2((1+

√
1−4a12)/2a6)1/4, where a=−21/3/3 + (1/6)(38− 6

√
33)1/3 +

(19 + 3
√

33)1/3/(3 · 22/3),
(ii) H(e−π

√
13)=√2(18 + 5

√
13 + 6

√
18 + 5

√
13)1/4,

(iii) H(e−π
√

15)=√2((16 +
√

3(54 + 14
√

5))/(7− 3
√

5))1/4,

(iv) H(e−π
√

17) = (
√

2)((2 +
√

4− 4(20 + 5
√

17− 2
√

206 + 50
√

17)2)/(40 + 10
√

17 −
4
√

206 + 50
√

17))1/4,
(v) H(e−π

√
19)=√2((1+

√
1−4k4)/2k2)1/4, where k=(1/24)(−20+(2944−384

√
57)1/3+

4(46 + 6
√

57)1/3),
(vi) H(e−π

√
23) = √

2((1 +
√

1− 4n12)/2n6)1/4, where n=−1/(3 · 21/3) + (1/6)(50 −
6
√

69)1/3 + (25 + 3
√

69)1/3/(3 · 22/3),
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(vii) H(e−π
√

31)=√2((1 +
√

1 + 4d8)/2d4)1/4, where d=1/2+(1/6)((−27+3
√

93)/2)1/3−
1/(22/3(−27 + 3

√
93)1/3).

The proof of the theorem follows directly from Theorems 6.7 and 7.1.

Remark 7.6. Values of H(e−π/
√
n) for n = 11,13,15,17,19,23, and 31 also follow readily

from Theorem 6.7 and (7.2).

8. Theorems on S1(q) and explicit values

The Weber-Ramanujan class invariants Gn and gn are defined by

Gn := 2−1/4q−1/24(− q;q2)
∞, gn := 2−1/4q−1/24(q;q2)

∞, (8.1)

where q := e−π√n.
The two class invariants satisfy the properties (see [2, page 187, Entry 2.1], [9, page 18,

Corollary 2.2.4(i), (ii)])

g4n = 21/4gnGn, g−1
n = g4/n, G1/n =Gn. (8.2)

We also note from [9, page 13, Lemma 2.1.3(i)] and [9, page 18, Theorem 2.2.3] that

rk,n/m = rmk,nr
−1
nk,m, (8.3)

gn = r2,n/2, Gn = r2,2n

21/4r2,n/2
, (8.4)

respectively, where rk,n is as defined in (1.17) and k and n are positive real numbers.
Now, we state and prove two general formulas for the explicit evaluations of S1(q) and

then calculate some specific values.

Theorem 8.1. One has

S1
(
e−π

√
n
)= 1

23/4G2
ngn

= r2,n/2

21/4r2
2,2n

= r4,n

21/4r3
2,2n

, (8.5)

where Gn and gn are Ramanujan’s class invariants as defined in (8.1).

Proof. By [1, page 39, Entry 24(iii)], we have

ψ(q)= f 2
(− q2

)

f (−q)
, φ(q)= f 2(q)

f
(− q2

) . (8.6)

Substituting (8.6) in (1.5), we obtain

S1(q)= f 2
(− q2

)

2−1/2q−1/12 f 2(q)
× f

(− q2
)

2−1/4q−1/24 f (−q)
. (8.7)

From [1, page 39, Entry 24(iii)], we also note that

χ(q)= f (q)
f
(− q2

) . (8.8)
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Now, setting q := e−π
√
n and then applying (8.1), (8.7), and (8.8), we complete the proof

of the first equality. Employing (8.4) to the first equality, we arrive at the second equality.
To prove the third equality, we employ (8.3) to the second equality. �

Corollary 8.2. One has
(i) S1(e−π)= 2−5/8,

(ii) S1(e−π
√

2)= 2−1/2(1 +
√

2)−1/2,
(iii) S1(e−π

√
3)= 2−17/24(1 +

√
3)−1/4,

(iv) S1(e−2π)= 2−3/8(1 +
√

2)−1/4,
(v) S1(e−π

√
5)= (1 +

√
5)−1/2(

√√
5 + 1 +

√
2)−1/4,

(vi) S1(e−π
√

6)= 2−1/2(1 +
√

2)−1/4(1 +
√

2 +
√

6)−1/4,
(vii) S1(e−π

√
7)= 2−7/8(3 +

√
7)−1/4,

(viii) S1(e−2π
√

2)= 2−3/8(1 +
√

2)−3/8(4 +
√

2 + 10
√

2)−1/4,
(ix) S1(e−3π)= 21/8/(1 +

√
3)2/3(1 +

√
3 +
√

2 · 33/4)1/3,
(x) S1(e−π

√
10)= 21/4(1 +

√
5)−3/4(2 + 3

√
2 +
√

5)−1/4,
(xi) S1(e−4π)= 2−7/16(1 +

√
2)−1/4(16 + 15 · 21/4 + 12

√
2 + 9 · 23/4)−1/4,

(xii) S1(e−3π
√

2)= 2−1/2(
√

3 +
√

2)−1(1 + 35
√

2− 28
√

3)−1/4,
(xiii) S1(e−5π)= 2−17/8(

√
5− 1)(51/4− 1),

(xiv) S1(e−6π)=((
√

2−1)5/6(1+
√

3)1/3(1+
√

3+
√

2 · 33/4)1/3)/(21/6(
√

2+
√

3)2/3(4−√2 +
2
√

3 + 33/4(
√

3 + 1))2/3).

Proof. The parts (i)–(vi) and (viii)–(xiv) easily follow from Theorem 8.1 with the help of
the values of rk,n in Section 2. To prove (vii), we use the values of G7 and g7 = r2,7/2 from
[2] and Section 2, respectively. �

Theorem 8.3. One has

S1
(
e−π/

√
n
)= gn

21/2Gn
= r2

2,n/2

21/4r2,2n
= r2

4,n

21/4r3
2,2n

. (8.9)

Proof. Replacing n by 1/n in Theorem 8.1 and then simplifying by using (8.2), we arrive
at the first equality. To prove the second equality, we employ (8.4) to the first. Using (8.3)
to the second equality, we finish the proof of the third one. �

Corollary 8.4. One has
(i) S1(e−π/

√
2)= 2−3/8(

√
2− 1)1/8,

(ii) S1(e−π/
√

3)= 2−7/8(
√

3 + 1)1/4,
(iii) S1(e−π/2)= 2−3/16(

√
2− 1)1/4,

(iv) S1(e−π/2
√

2)= 2−1/8(4 +
√

2 + 10
√

2)−1/8,
(v) S1(e−π/5)= 2−17/8(

√
5− 1)(51/4 + 1),

(vi) S1(e−π/3)= (1 +
√

3 +
√

2 · 33/4)1/3/(27/8(1 +
√

3)1/3),
(vii) S1(e−π/

√
6)= 2−3/8((

√
2 + 1)/(1 +

√
2 +
√

6))1/8,
(viii) S1(e−π/4)= (23/16(

√
2 + 1)1/4)/(16 + 15 · 21/4 + 12

√
2 + 9 · 23/4)1/8,

(ix) S1(e−π/3
√

2)= 2−3/8(1 + 35
√

2− 28
√

3)−1/8,
(x) S1(e−π/6) = ((1+

√
3)2/3(

√
2− 1)5/12(1+

√
3+
√

2 · 33/4)2/3)/(215/16(
√

2 +
√

3)1/3(4−√
2 + 2

√
3 + 33/4(1 +

√
3))1/3),

(xi) S1(e−π/
√

10)= ((
√

5 + 1)3/8)/(23/4(2 + 3
√

2 +
√

5)1/8).
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Proof. With the help of Theorem 8.3 and the values of rk,n listed in Section 2, we readily
complete the proof. �

Remark 8.5. From the last equalities of Theorems 8.1 and 8.3, we have the transformation
formula for S1(q):

S1
(
e−π/

√
n
)= r4,nS1

(
e−π

√
n
)
. (8.10)
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