ON THE SET OF DISTANCES BETWEEN TWO SETS
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We use bounds of exponential sums to derive new lower bounds on the number of distinct
distances between all pairs of points (x,y) € A X &B for two given sets A, B € F”, where
[, is a finite field of g elements and n > 1 is an integer.
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1. Introduction

For a ring R and two finite sets s, B < R", we denote by T'(R", A, RB) the number of
distinct distances between all pairs of points (x,y) € A X B, that is,

(R0, B) = [{d(xy) | (xy) € st x B} |, (1.1)

where for x = (x1,...,%1),Y = (J15-..> ¥u) € R" we define
dixy) = > (x; - ;)" (1.2)
j=1

In the case s = %R the problem of estimating ['(R", o, o) is well known. In particular,
the Erdds distance conjecture asserts that over the real numbers, that is, for R = R, the
bound

T(R", oA, A) = c(e)|sd|¥m¢ (1.3)

holds for an arbitrary € > 0 and any finite set 5§ € R”, where c(¢) > 0 depends only on .
Despite that there are some very interesting lower bounds on I'(R”, 4, ), this conjecture
is still widely open in any dimension including # = 2. For some recent achievements and
generalisations, see [1-6] and references therein.

Iosevich and Rudnev [4] have recently considered this problem for sets over finite
fields (again for o = %) and obtained several very interesting results.
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2 On the set of distances between two sets over finite fields

The case of arbitrary sets A, %B € [Fg has recently been studied in [8], where the lower
bound

n+2

L(FLol,B) >q - 1 (1.4)

EAIEAY
is given (which in some special case is new even for o = RB). In particular, it is nontrivial
for |A||B| > q"*'. The method of [8] rests on a new bound of exponential sums over the
set of distances. Here we use this bound in a slightly different way to derive an improve-
ment of (1.4), which is nontrivial for |||RB] > g".

In fact, one can easily adjust the method of [4] to the case of distinct sets 4 and %,
or in fact derive a lower bound on I'(F?, 54, %) from already existing results of [4]. Such
bounds are usually stronger than the bound of this work. However in some extremal cases
our approach leads to a bound of the same order of magnitude which has completely
explicit (and perhaps better than those one can extract from [4]) constants. For example,
one can derive from [4] that if |||B| > Cq™*!, then F([Fg,sﬁ,%) = ¢, provided that C is
sufficiently large.

Furthermore, as in [8], given n polynomials f;(X,Y) € F4[X,Y], j = 1,...,n, we define
the generalised distance

di(x,y) = > fi(xj,y)), (1.5)
j=1
where f = (fi,..., fn)-
Now, for two sets A, 9B = [y, we define
l"f(l]:fz’,&ﬁ,%) = [ {de(x,y) I x€ A, y € B} . (1.6)

In the special case of the Euclidean distance function fy = (f1,0,..., fu0), where f;o(X,Y) =
(X-Y)2 j=1,...,n, we simply have

rfo(n:g)ﬂ)%) :r(ﬂ:gvﬂ)%) (17)

In particular, under some conditions on f, the bound

g
Te(F2, A, B) =g+ 0O 1.8
has been given in [8]. Here we show that the power of g in the error term can be lowered
to g2+,

2. Euclidean distances
We start with the case of Euclidean distances and improve the bound (1.4).

TaeoreM 2.1. For arbitrary sets 4,8 < [F7,

I(F!,sl,%) > ; |A11Blq (2.1)

Lt Al
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Proof. Let y be a nontrivial additive character of [, (see [7] for basis properties of additive
characters). In particular, we recall the identity

0 ift e F*,
S xist) = Tie (2.2)
seF, q ift=0.
As in [8], we consider character sums
S(a, A, RB) = ZZXadx, , a€fly, (2.3)

xedl yeR

where as before d(x,y) is given by (1.2).
Our principal tool is the upper bound

|S(a, s, B) | <+/Isd||Blqn, (2.4)

which is established in [8] for any a € [F;".
For A € 4, we denote by N(A) the number of representations A = d(x,y) with (x,y) €
A x RB.

Then by (2.2) we have
Ny =1 > Z > xlaf ZX —a))S(a,sd,B).  (2.5)
9 xesd yeRB g acly ue[F
Hence,

DNQA)? == Z > x((b—a)r)S(a, 4, %)S(b, 4,%B)

AEF, /\e[Fq a,bel,
= LS Slad, BSEAT) S x((b-a)h) (2.6)
a,bel, A€y

- LS st B)|

acly

since by (2.2) the sum over A vanishes unless a = b.
We now use the bound (2.4) for a € [F;k and the trivial bound |S(a, 4, B)| < |A||9B|
for a = 0, getting

DINQA)? < || Blg" + A1 |BI>q . (2.7)

AEF,

Clearly

> NQ) = |9 (2.8)

AEF,
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Now by the Cauchy inequality we derive

2

(Ist]198])* (Z N(A)) <T(F;,50,B) >, NQ)

LeF, LeF, (2.9)

T(Fy, 50, B) (14 |Blq" + |1 |BIq7),
which implies the desired result. O

3. Generalised distances
We now use similar arguments to improve the bound (1.8).

Tueorem 3.1. Let f = (fi,..., fu), where each of the polynomials f;(X,Y) € F4[X,Y], j =
1,...,n, is of degree at most k and is not of the form f;(X,Y) = g;(X) + h;(Y) with g;(X) €
Fq[X], hj(Y) € By[Y]. Then, for arbitrary sets A, B = e

q3n/2+1
rf(mq,&a,%)=q+o<|ﬂl|%l). (3.1)

Proof. Here, instead of the bound (2.4), we use the bound

|Se(a, 0, B) | = O(\/1411Blg>2), aeFs, (3.2)

which is established in [8] for the character sums

S¢(a, A, B) = ZZXadfxy acky, (3.3)
xedl yeR

where dg(x,y) is given by (1.5).
Let N¢(1) be the number of solutions to the equation

di(x,y) =4, xed,ye®R. (3.4)

As in the proof of Theorem 2.1, using (3.2) instead of (2.4), we deduce

SN =L S [S(a,,B)|” = 14121B g +O(sUIBIg).  (3.5)

A€l ack,
As before, we also have

> Ne(A) = |49, (3.6)

A€,
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and by the Cauchy inequality we derive

2
(1s41198])° (ZN ) T(F, s, B) > N(A)?
LEF, LeF, (3.7)

D(F2, 54, B) (14171 BI12g~" +O (I 1BIg*?)),
which implies the desired result. O
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