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Under the assumption A > 0 and f verifying f(x,y,0) = 0in D, 2F(x you)—uf(x,y,u)=
0, u # 0,and if Q = R X D, we show the convexity of function E(t) = [[, |u(t,x, y)|>dx dy,
where u:Q — R is a solution of problem A(0?u/dt?) — (9/9x)(p(x, y)(au/ax)) (0/9y)(q(x,
¥)(0u/0y)) + f(x,y,u) = 01in Q, u+ e(du/dn) = 0 on 9Q, considered in H*(Q) N L*(Q),
p,q: D — R are two nonnull functions on D, ¢ is a positive real number, and D = ]ay, b, [
x]az, bal, (F(x,y,s) = [; f(x,y,t)dt).
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1. Introduction

In this paper we consider the question of absence of nontrivial solutions of the following
boundary value problem:

u 0 ou 0 8 .
Aﬁ‘&(}ﬁx;)’)a)—*(fﬂ ))’ y>+f(x %H) an,

dy
(P)
u+£a—u =0 onodQ,
on
where
7.9:D—R, (1.1)

are two continuous functions > 0 or < 0 in D, ¢ is a positive real number, and f is a locally
Lipschitz continuous function

f:DxR—R (1.2)
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2 A nonexistence result for a nonlinear PDE

such that
f(x,9,0) =0 inD, (1.3)
so that
u=0 (1.4)

is a solution of problem (P).
This problem is considered in the Sobolev space

H*(Q) N L®(Q), (1.5)
with
Q=RxD, D=]la,b|x]abl. (1.6)

This question has interested much researchers and a significant number of works, were

carried out. We quote by the way of examples the works of De Figueiredo and Jianfu [2],

Esteban and Lions [3], Pucci and Serrin [6], Pohozaev [5], and Van der Vorst [7].
Esteban and Lions show that the Dirichlet problem

—Au+ f(u) =0, ueC*(Q),

(1.7)
u=0 onodQ
satisfying
Vuel*Q),  f(0)=0,
u (1.8)
Flu) = J F(s)ds e L'(Q),
0
where Q is a connected unbounded domain of RN such that
JAeRY, |IAll=1, (nx),A)>=0 onadQ, (n(x),A)=+0, (1.9)

does not have nontrivial solution.
Berestycky et al. [1] established that the problem

~Au—1w+u=0, ucH*(R?), (1.10)
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admits a radial solution. This solution satisfies

—Au—-1P+u=0 inQ=]0,+o[ xR,
o (1.11)

%:0 on {0} X R.

This shows that the analog of the Dirichlet problem for the Neumann problem is not true.
The problem

“Au+u(u+1)(u+2)=0 inQ=Rx]0,af,

S_Z:O on 0Q), (112
considered in the Sobolev space
H*(Q)NL®(Q), (1.13)
is still open in
Q=R x]0,a[(a<mn). (1.14)

These considerations motivated us to explore more this question of the absence of non-
trivial solutions which presents a double interest. It makes it possible to solve an open
problem, and to ensure then that the single solution is the null solution.

The aim of this work is to extend the results of [4] to problem (P). We prove in Section
2 a Pohozaev-type identity.

In Section 3, we combine Theorem 2.1 with other results to obtain for the semilinear
elliptic problems a corollary of nonexistence of solutions. For the semilinear hyperbolic
problems, we obtain in the same section an interesting result which shows that the Klein-
Gordon align does not have nontrivial solutions.

Finally in Section 4, we give some examples to illustrate Theorems 3.1 and 3.5.

Let us denote by

F=E)Q=[R><8D=I‘1UI‘2UI‘3UI‘4, (1.15)

where

(1.16)

the boundary of Q, (t,x, ¥), the generic point of Q,

n(t"fl:‘fZ) = (”1(t151:£2)> nl(t)£1>£2)> 713(1',51,52)), (1-17)
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the outward normal to 9Q) at the point (¢,&,&), 0*u(t,x, )/ 0s%, the second derivative of
u with respect to s at point (¢,x, y), and

ou ou ou
A = lim = (£,x,b,) ‘yhf?z 5 (bany),
0 . Ou 0
a—;lz = lim aS(tx ay) = lim au(t,al,y), -
9 im % (. by) = Tim 2 (1,1, v), '
05 |1 Tk os 072 ylj’nz 3s Vb)Y
u . ou ou
F —iillbll g(t,x,az) = hm2 o (t,01,9),
where
l]zrlﬂr4={(t al,h2),t }
L=T,nT;={(ta,a), t €R},
(1.19)
l3 = F2 ﬁr4 = {(t bl,bz), te R}
L=T,nNnT3= {(t bl,az), te R}

2. Integral identity
We now give an integral identity in the form of theorem.

TueorEM 2.1. Let u be an element of H>(Q) N L (Q), a solution of problem (P), then for
eacht e Rande >0,

2 2
I [/\‘au 205 30 gl E +F(x,y,u)}dxdy
1/ (b 2 z
+2_5(I [P(x,a2)|u(t,x,az)| +q(x,b2) |u(t,x,by) | ]dx 20

by
+J [p any) |u(tany) | +q(by, )|u(t,b1,y)|2]dy>=0.

a

Proof. For t € R, we consider a function K defined by

ﬂ [A p(x.y)

2
The hypotheses on u, p, g, and f imply that K is absolutely continuous and thus differ-
entiable almost everywhere on R; we have

ou 0*u ou 0*u ou d*u
K=, [Aataﬂ PO, S HIED G 55+ S ]dxdy-

ou |

dy

ou |? ou |?

ox

q(x,y)
2

+F(x,y,u)]dxdy. (2.2)

(2.3)
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Fubini’s theorem and an integration by part make it possible to write

H Py (8x8 m)“’“”dxdy

h1 bz a
= L1 plx,y )a—ﬁ(t x,y)dxdy

- Ibz [ " p(x, y)(a—u —a)(t X, y)dx] dy (2.4)
[ 2 (pen ) 2t

o [0 () -t (258} o

In the same way, we find

ou d*u
ﬂ o) 50 5 500 y)dxdy

Jbl Jbz 8y (q(x y) ) (t,x,y)dxdy (2.5)

o Lo (2228 1) s (228 o

ay

Replacing in (2.3), we find

K'(t) = ﬂ [Aa u a—i(p(x,y)%) - aay(q(x,y)g;) + f( x,y,u)] dxdy

o
+Lb11 [Q(x,bz)(g” ?;;) (t,x,b2) — q(x,a2) (g” ?}t>(t X, az)]dx (2.6)
+Lb: [P(bpy)((gzgf)(t bi,y) - p(al,y)@ ‘?;t‘)(t an, )]dy.

Let us write on 0() the expression u + edu/dn = 0 in an equivalent way:

Jou ou
utes =O<:>u—££ =0 on{(t,a,y), tER, aa<y<by},

u+s% =0 on{(tb,y), tER, ax<y<by},

u—sgl; =0 on{(txa), tER, a1 <x<bi},

(2.7)

u+sg_; =0 on (t,xb),tER, a <x<b.
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For 0 < € < + 00, we can write

Lbll [q(x,bz) (%%) (t,x,b2) — q(x,a2) gu 81: (t,x, az)]dx
_ 1[
€

[ [t 2 -t i) o] o

b
:—i%(L [q(x,b»|u<t,x,bz>|2+q<x,az>|u<t,x’az>|2]d")

and in the same manner

Jbz [P(bl,y)Gu?;)(t bi,y) = plany )@u?tl)(t ““y)]dy

az

, (2.9)
1d 2 2 2
— L ([ [pten) [t I+ plany) [utn) ] )
K’, derivative of K, verifies therefore
d 1/ (b 5 X
T (K(t)+—<J [q(x,ba)u* (t,x,b2) + q(x,a2) u* (t,x,a2) |dx
by ,
+J [ bl: \M tbl’y | +P a, )|”(t,a1;)’)| ]dy>) =
: (2.10)
Integrating with respect to ¢, we obtain
1 b 2 2
KO+ 5 (| labb)id () +g(na)id (6. 1dx
' (2.11)

b,
+J [p(bl,y) lu(t,b1,y) | >+ plan,y) |u(t,ar, y) |2]dy> = const

ax
and by noticing that

f: [K(t) n 2% (

Jbl [Q(xa bz)uz(t,x,bz) + q(x,az)uz(t,x,az)]dx

ap

by
[ [pu e 4 plan) utan ) iy ) s < o
(2.12)

The constant is null; this shows the theorem. O
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3. Main results

The parameter A plays in fact an important part as it allows problem (P) to be dealt with
in two manners according to whether its value is positive or negative.

3.1. Semilinear hyperbolic problems. By employing identity (2.1) we obtain the follow-
ing nonexistence result.

THEOREM 3.1. Let, A >0,
p(x,¥),q9(x,y) >0 inD, (3.1)
and f satisfying
F(x,y,u) =0, u#0. (A)

Then problem (P) considered in H*(Q) N L®(Q) does not have nontrivial solutions.

Proof. Applying formula (2.1) we immediately obtain

u

ou ou .
g(t,x,y) = a(t,x,y) = ay(t,x,y) =0 inQ. (3.2)
O
The following theorem gives a nonexistence result if f satisfies another type of non-
linearity.

THEOREM 3.2. Let, A >0,

uc H*(Q)NL2(Q) (3.3)
be a solution of problem (P),
plx,y),q(x,y) >0 or <0 inD, (3.4)
and f a function verifying
2F(x, y,u) —uf(x,y,u) =0, u#0. (B)
Then the function
E(t) = HD |u(t,x,y)| 2dxdy (3.5)

is convex on R.

Remark 3.3. The convexity of the function E(t) on R implies the triviality of the solution
u(t,x, y) of the problem (P).
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Proof. It is easy to see that almost everywhere in 2, we have

*u ~(10%(u?)
(“ﬁ)“”“”‘(i o

Let us multiply the first equation of (P) by u/2 and integrate the new align over D,
we obtain

[, [ %g—a(ﬂx )3)‘;)——%(( >f) +uf (o you ](nw)dxdy

H Ao*(u? _& ou
4 of

ot
ﬂ [ (P( a)’) )g ;y(q(X,y)gI;)Z+;uf(x,y,u)](t,x,y)dxdy.
(3.7)

a—uz
ot

)(t,x,y)- (3.6)

] (t,x, y)dxdy

Let us transform

ﬂ [ax< ) ](txy)dxdy
=beb 2 (b3 2t y)dvdy

:Jbz[J ai(p( y)a) (tx,y)dx}dy (3.8)

1y

[ 00 (42) by plany) (424 () |

a

2
ou(t,x,y) ‘ dxdy

Similary,

HD [% (q(x,y)g—;) %](txx,y)dxdy
e

+ Jbl [q(X,bz) (g%) (t,x,b2) —q(x,a2) (%%) (t,x,az)]dx,

ai

du(t,x, y) ‘2
3 dxdy (3.9)




Brahim Khodja 9

the substitution of these formulas in (3.7) gives

[

4 ot 2
1
2

b,
[ lalonn) lutan) P+qon )|u<t,b1,y>|2]dy),

2

ou

ot

o )2 ) e

by
J [p(x"h) |u(t)x’a2) |2 +p(x’b2) |u(t)x’b2) |2]dx

ap

a

(3.10)

which combined with (2.1) yields

e

+F (%, y,u ;uf(x,y,u))(t,x,y]dxdy,

(3.11)
the assumption (B) and A > 0 enable us to affirm that
A d 2 du(t,x,y) |
1dn (HD [u(t,x,y) ]| dxdy) > AHD (3.12)
This proves the theorem. U

COROLLARY 3.4. The result of Theorems 2.1 and 3.1 are still true if the condition of Robin is
replaced either by Dirichlet or Neumann condition.

3.2. Semilinear elliptic problems. For the elliptic case, there is a nonexistence result
which is stated as follows.

THEOREM 3.5. Let
ueH(Q)NL>(Q) (3.13)
be a solution of (P), A <0, and f satisfying
2F(x, y,u) —uf(x,y,u) <0, u#0. (C)

Then the function E(t) defined in Theorem 3.2 is convex on R.

Proof. The proof is similar to that of Theorem 3.2. O

4. Examples

In this paragraph we will discuss some examples to demonstrate the use of Theorems 3.1
and 3.2.
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Example 4.1. Let
0:D—R
be a continuous function
p(x%,9),q(x,y)>0 or <0 inD,
[ y,u) = 0(x, y)lul” u.

Then problem

*u 9 ou\ 9 8 )

u+£% =0 onodQ
on

does not have nontrivial solutions. In the following situations:
A >0,
p9,0>0 inD,
or
A>0,
p(x,¥),q(x,y) >0 or <O, 0<0 inD,

we can see that in the first case

_ 0y,
F(x,y,u) = y+1 [ul”,

and in the second case

Pyt = 3uf (o) = 005 ) (= 31l
Example 4.2. Let
pap:D—R
be continuous functions and
foyu) =u
The problem
= 2 (PN %) - 5 (s 3) +ptu=0 ine

u+£% =0 onodQ
on

considered in H2(Q) N L*(Q) does not have nontrivial solutions.

(4.1)

(4.2)

(P)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(P),
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Example 4.3. Let A >0,

fly,u) = mu— 601 (x, ) lul™ u—0x(x,y) [ul*'u,

(4.9)
ue H*(Q)NL®(Q),
be a solution of
Pu 0 ou\ 9 8 )
(P)s
u+ ea—u =0 onodQ,
on
where m > 0 is the mass of a particle, let
01,0,: D — R (4.10)

be two continuous nonnegative functions and r and s two numbers larger than one. The
problem (P); does not have nontrivial solutions. It suffices to remark that

F(x,y,u) — %uf(x,y,u)

1 1 11 (4.11)
= 91(96,)’)(5 - r+—1) lu| +62(x,y)<5 - 5+—1) ||t
Theorem 3.2 gives the desired result.
Example 4.4. Let
0:D—R (4.12)
be a nonnegative continuous function,
p,q:D— R (4.13)
two continuous functions >0 or < 0in D,
f(x, y,u) = 0(x, y) (wu+ [ul”'u), (4.14)
where w is a real parameter and y > 1; the problem
—%—a—i(p(x,y)g—z) (q(xy ou )+f X, Y,U) = in Q,
(P)4

u+s% =0 onodQ
on

does not have nontrivial solutions in H>(Q) N L*(Q)).
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