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Let R be a ring such that every zero divisor x is expressible as a sum of a nilpotent element
and a potent element of R : x = a + b, where a is nilpotent, b is potent, and ab = ba. We
call such a ring a D+-ring. We give the structure of periodic D*-ring, weakly periodic
D+-ring, Artinian D+ -ring, semiperfect D+ -ring, and other classes of D* -ring.
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1. Introduction

Throughout this paper, R is an associative ring; and N, C, C(R), and J denote, respectively,
the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical.
An element x of R is called potent if x" = x for some positive integer n = n(x) > 1. Aring R
is called periodic if for every x in R, x™ = x" for some distinct positive integers m = m(x),
n = n(x). A ring R is called weakly periodic if every element of R is expressible as a sum
of a nilpotent element and a potent element of R: R = N + P, where P is the set of potent
elements of R. A ring R such that every zero divisor is nilpotent is called a D-ring. The
structure of certain classes of D-rings was studied in [1]. Following [7], R is called normal
if all of its idempotents are in C. A ring R is called a D*-ring, if every zero divisor x in
R can be written as x = a+b, where a € N, b € P, and ab = ba. Clearly every D-ring is
a D*-ring. In particular every nil ring is a D*-ring, and every domain is a D*-ring. A
Boolean ring is a D*-ring but not a D-ring. Our objective is to study the structure of
certain classes of D*-ring.

2. Main results

We start by stating the following known lemmas: Lemmas 2.1 and 2.2 were proved in [5],
Lemmas 2.3 and 2.4 were proved in [4].

LEMMA 2.1. Let R be a weakly periodic ring. Then the Jacobson radical ] of R is nil. If,
furthermore, xR = N for all x € N, then N = ] and R is periodic.

LemMa 2.2. If R is a weakly periodic division ring, then R is a field.
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2 Structure of rings with certain conditions on zero divisors

LEmMMA 2.3. Let R be a periodic ring and x any element of R. Then
(a) some power of x is idempotent;
(b) there exists an integer n > 1 such that x — x" € N.

LEmMaA 2.4. Let R be a periodic ring and let 0 : R — S be a homomorphism of R onto a ring
S. Then the nilpotents of S coincide with o(N), where N is the set of nilpotents of R.

Definition 2.5. A ring is said to be a D-ring if every zero divisor is nilpotent. A ring R
is called a D*-ring if every zero divisor x in R can be written as x = a+ b, where a € N,
b e P, and ab = ba.

THEOREM 2.6. A ring R is a D*-ring if and only if every zero divisor of R is periodic.

Proof. Assume R is a D*-ring and let x be any zero divisor. Then
x=a+b, a€N,beP,ab=ba (2.1)

So, (x —a) = b =b" = (x — a)". This implies, since x commutes with a, that (x —a) =
(x —a)" = x"+ sum of pairwise commuting nilpotent elements.
Hence

x—x" €N for every zero divisor x. (2.2)

Since each such x is included in a subring of zero divisors, which is periodic by
Chacron’s theorem, x is periodic.

Suppose, conversely, that each zero divisor is periodic. Then by the proof of [4, Lemma
1], Ris a D*-ring. O

THEOREM 2.7. If R is any normal D* -ring, then either R is periodic or R is a D-ring. More-
ovet, aR € N for each a € N.

Proof. If R is a normal D*-ring which is not a D-ring, then R has a central idempotent
zero divisor e. Then R = eR @ A(e), where eR and A(e) both consist of zero divisors of R,
hence (in view of Theorem 2.6) are periodic. Therefore R is periodic.

Now consider a € N and x € R. Since ax is a zero divisor, hence a periodic element,
(ax)/ = e is a central idempotent for some j. Thus (ax)/*! = (ax)ax = a*y for some
¥ € R. Repeating this argument, one can show that for each positive integer k, there exists
m such that (ax)™ = a* w for some w € R. Therefore aR < N. O

CoROLLARY 2.8. Let R be a D* -ring which is not a D-ring. If N < C, then R is commutative.

Proof. Since N € C, Ris normal. Therefore commutativity follows from Theorem 2.7 and
a theorem of Herstein. O

Now, we prove the following result for D*-rings.

THEOREM 2.9. Let R be a normal D*-ring.
(1) If R is weakly periodic, then N is an ideal of R, R is periodic, and R is a subdirect
sum of nil rings and/or local rings R;. Furthermore, if N; is the set of nilpotents of
the local ring R;, then R;/Nj is a periodic field.
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(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division
rings.

Proof. (i) Using Theorem 2.7, we have

aRc N foreveryae N. (2.3)

This implies, using Lemma 2.1, that N = ] is an ideal of R, and R is periodic.
As is well-known, we have

R = asubdirect sum of subdirectly irreducible rings R;. (2.4)

Let 0 : R — R; be the natural homomorphism of R onto R;. Since R is periodic, R; is
periodic and by Lemma 2.4,

N; = the set of nilpotents of R; = ¢(N) is an ideal of R;. (2.5)

We now distinguish two cases.

Case 11 ¢ R;. Letx; € R;, and let 0 : x — x;. Then by Lemma 2.3, x* is a central idempo-
tent of R, and hence x¥ is a central idempotent in the subdirectly irreducible ring R;, for
some positive integer k. Hence x¥ = 0 (1 ¢ R;). Thus R; = N; is a nil ring.

Case 2 1 € R;. The above argument in Case 1 shows that x¥ is a central idempotent in the
subdirectly irreducible ring R;. Hence xf-‘ =0or x," =1 for all x; € R;. So, R; is a local ring

and for every x; + N; € Ri/N;,
xi+N;=N; or (x+N)F=1+N. (2.6)

So Ri/Nj is a periodic division ring, and hence by Lemma 2.2, R;/N; is a periodic field.

(ii) Suppose R is Artinian. Using (2.3), aR is a nil right ideal for every a € N. So,
N <= J. But J = N since R is Artinian. Therefore N = J is an ideal of R and R/N = R/J
is semisimple Artinian. This implies that R/N is isomorphic to a finite direct product
Ry X Ry X - -+ X Ry, where each R; is a complete #; X f; matrix ring over a division ring
D;. Since R is Artinian, the idempotents of R/J lift to idempotents in R [2], and hence
the idempotents of R/J are central. If t; > 1, then E;; € Rj, and (0,...,0,E11,0,...,0) is an
idempotent element of R/J which is not central in R/J. This is a contradiction. So ¢; = 1
for every i. Therefore each R; is a division ring and R/N is isomorphic to a finite direct
product of division rings. O

The next result deals with a special kind of D*-rings.

THEOREM 2.10. Let R be a ring such that every zero divisor x can be written uniquely as
X =a+e, where a € N and e is idempotent.
(i) If R is weakly periodic, then N is an ideal of R, and R/N is isomorphic to a subdirect
sum of fields.
(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division
rings.



4 Structure of rings with certain conditions on zero divisors

Proof. Lete? =e € R,x € R,andlet f = e+ex — exe. Then f2 = f and hence (ef —e)f =
0. So if f is not a zero divisor, then ef —e = 0. So ef = e, and thus f = e, which implies
that ex = exe. The net result is ex — exe = 0 if f is not a zero divisor. Next, suppose f is a
zero divisor. Then since

f=(ex—exe)+e; ex—exeec N, eidempotent;

(2.7)
f=0+f,
it follows from uniqueness that ex — exe = 0, and hence ex = exe in all cases. Similarly
xe = exe, and thus

all idempotents of R are central, and hence R is a normal D*-ring. (2.8)

(i) Using (2.8), R satisfies all the hypotheses of Theorem 2.9(i), and hence N is an ideal,
and R is periodic. Using Lemma 2.2, for each x € R, there exists an integer k > 1, such that
x —xF € N, and hence

(x+N)*=(x+N), k=k(x)>1 (2.9)

By a well-known theorem of Jacobson [6], (2.9) implies that R/N is a subdirect sum of
fields.

(ii) If R is Artinian, then using (2.8), R satisfies the hypotheses of Theorem 2.9(ii).
Therefore N is an ideal and R/N is a finite direct product of division rings. ]

THEOREM 2.11. Let R be a semiprime D*-ring with N commutative. Then R is either a
domain or a J-ring.

Proof. As in the proof of [3, Theorem 1] we can show that if ak = 0, then (ar)* = 0 for all
r € R. Therefore, by Levitzki’s theorem, N = {0}. Assume R is not a domain, and let a be
any nonzero divisor of zero. Then a is potent and aR consists of zero divisors, hence is a
J-ring containing a. Therefore [ax,a] = 0 for all x € R, hence (ax)" = a"x" for all x € R,
and all n > 2. For x not a zero divisor, choose n > 1 such that a” = a and (ax)" = ax. Then
a"x" = ax, so a(x" —x) = 0 and x" — x is a zero divisor, hence is periodic. It follows by
Chacron’s theorem that R is a periodic ring; and since N = {0}, Ris a /-ring. O

Example 2.12. Let

0 0 11 1 0 0 1
=10 o) ) )b ereara e
0 0 1 1 0 1 1 0

Then R is a normal weakly periodic D*-ring with commuting nilpotents. R is not
semiprime since the set of nilpotent elements N is a nonzero nilpotent ideal. This example
shows that we cannot drop the hypothesis “R is semiprime” in Theorem 2.11.

In Theorem 2.14 below, we study the structure of a special kind of D*-rings, the class
of rings in which every zero divisor is potent. Recall that a ring is semiperfect [2] if and
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only if R/] is semisimple (Artinian) and idempotents lift modulo /. We need the following
lemma.

LemMa 2.13. Let R be a ring in which every zero divisor is potent. Then N = {0} and R is
normal. Moreover, If R is not a domain, then ] = {0}.

Proof. If a € N, then a is a zero divisor and hence potent by hypothesis. So a" = a for
some positive integer #, and since a € N, there exists a positive integer k such that 0 =
a™ = a.So N = {0}. Let e be any idempotent element of R and x is any element of R. Then
ex —exe € N, and hence ex — exe = 0. Similarly, xe = exe. So ex = xe and R is normal.
Let x be a nonzero divisor of zero. Then xJ consists of zero divisors, which are po-
tent. Therefore xJ = {0}. But then J consists of zero divisors, hence potent elements, and
therefore J = {0}. O

THEOREM 2.14. Let R be a ring such that every zero divisor is potent.
(1) If R is weakly periodic, then every element of R is potent and R is a subdirect sum of
fields.
If R is prime, then R is a domain.
If R is Artinian, then R is a finite direct product of division rings.
If R is semiperfect, then R/] is a finite direct product of division rings.

(ii
(iii
(iv

Proof.

— — — —

i) Since R is weakly periodic, every element x € R can be written as

x=a+b, whereae&N, bispotent. (2.11)

But N = {0} (Lemma 2.13), so every x € R is potent and hence R is isomorphic to a
subdirect sum of fields by a well-known theorem of Jacobson.

(ii) Suppose Ris a prime, then R is a prime ring with N = {0}, and hence R is a domain.

(iii) Let R be an Artinian ring such that every zero divisor is potent. Since N = {0}
(Lemma 2.13) and R is Artinian, ] = N = {0}. So R is semisimple Artinian and hence it
is isomorphic to a finite direct product R; X R; X - - - X R,,, where each R; is a complete
ti X t; matrix ring over a division ring D;. If t; > 1, then E;; € R, and (0,...,0,E3,0,...,0)
is an idempotent element of R which is not central in R contradicting Lemma 2.13. So
t; = 1 for every i. Therefore each R; is a division ring and R is isomorphic to a finite direct
product of division rings.

(iv) Let R be a semiperfect ring such that every zero divisor is potent. Then R/J is
semisimple Artinian and hence it is isomorphic to a finite direct product Ry X R, X - - - X
R,, where each R; is a complete t; X t; matrix ring over a division ring D;. Since R is
semiperfect, the idempotents of R/] lift to idempotents in R, and hence the argument of
part (iii) above implies that each R; is a division ring and R/J is isomorphic to a finite
direct product of division rings. O
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