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1. Introduction and preliminaries

Probabilistic metric space was first introduced by Menger [6]. Later, there are many au-
thors who have some detailed discussions and applications of a probabilistic metric space,
for example, we may see Schweizer and Sklar [8]. Besides, there are many results about
fixed point theorems in a probabilistic metric space with contractive types having ap-
peared; we may see the papers [1-3, 9-12].

In this paper, we will prove two common fixed point theorems for four self-mappings
and two set-valued mappings with ¢-contractive condition in a Menger space, which
generalize some results of Dedei¢ and Sarapa [4, 5], and Sehgal and Bharucha-Reid [9].

A mapping F : R — R* is said to be a distribution if it is nondecreasing left continuous
with inf{F(t): t € R} =0and sup{F(¢):t € R} = 1.

We will denote by & the set of all distribution functions while G will always denote the
specific distribution function defined by

0, t=<0,
G(1) =<| (1.1)
1, t>0.

A probabilistic metric space (PM-space) [7] is an ordered pair (X, %) consisting of
a nonempty set X and a mapping & from X X X into the collections of all distribution
functions on R. For x,y € X, we denote the distribution function F(x, y) by F,, and
F.,(u) represents the value of % (x, y) at u € R. The functions Fj,, are assumed to satisfy
the following conditions:
(1) Fxy(u) = 1 forall u >0 if and only if x = y,
(2) Fx,(0) =0 forall x, y in X,
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2 Common fixed point theorems in Menger spaces

(3) Fyy(u) = F, x(u) for all x, y in X, and

(4) if Fyy(u) = Land F, ,(v) = 1, then F; .(u+v) = 1 for all x, y,z in X and u,v > 0.
A mapping t: [0,1] X [0,1] — [0,1] is called a t-norm if

(1) t(a,1) = a, £(0,0) = 0,

(2) t(a,b) = t(b,a),

(3) t(c,d) = t(a,b) for c = a, d = b, and

(4) t(t(a,b),c) = t(a,t(b,c)).
A Menger space is a triplet (X, %,t), where (X, %) is a PM-space, ¢ is a T-norm, and

the generalized triangle inequality

Fry(u+v) = t(Fy (1), Fy.(v)) (1.2)

holds for all x, y,z in X and u,v > 0.

The concept of neighborhoods in a Menger space was introduced by Schweizer and
Sklar [8].

Let (X, %,t) be a Menger space. If x € X, ¢ >0,and A € (0,1), then an (¢,A)-neighbor-
hood of x, called Uy (e, 1), is defined by

Uc(e,M) = {y € X : F(e) >1 - A} (1.3)

An (g,1)-topology in X is the topology induced by the family {Uy(e,1) :x € X, €>0, A €
(0,1)} of neighborhood.

Remark 1.1. If t is continuous, then Menger space (X,%,t) is a Hausdorff space in the
(e,A)-topology. (see [8]).

Let (X, %,t) be a complete Menger space and A C X. Then A is called a bounded set if

lim inf F,,(u)=1. (1.4)

u— oox,yEA

Throughout this paper, B(X) will denote the family of nonempty bounded subsets of
a complete Menger space X.
For all A,B € B(X) and for all u > 0, we define

sFap(u) = inf {F, ,(u):x € A, y € B},

pFap(u) =sup{F,,(u):x €A, y € B}, (15)

uFap(u) = inf{sup inf F,p,(u),sup inf Fu,b(u)}.

acAbeB beBac A

Remark 1.2. Tt is clear that sF4 (1) = §Fpa(u), pFap(u) =p Fpa(u), and gFap(u) =
uFpa(u), forall A,B € B(X) and u > 0.
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If A = {x}, we denote sFy (1) =5 Fy (1), pFixy,8(1) =p Fyp(u), and gFpy p(u) =
HFxp(u).

Let (X, %, t) be a complete Menger space, and let T': X — B(X) be a set-valued function
and I : X — X a single-valued function. Then we say that S and I are compatible if

lim p Fsp, 15, (4) = 1, (1.6)
whenever {x,} is a sequence in X such that
%i_r{}oéFImexn(”) =1, VYu>0. (1.7)
Let {A,} be a sequence in B(X). We say that {A,} §-converges to a set A in X if

lim Fp,a(u) =1, foreveryu >0, (1.8)
n— 00

and it is denoted by A, 2 A

2. Main results

In this paper, we let R™ denote the set of all nonnegative real numbers, let N denote the
set of all positive integers, and let (X, %,t) be a Menger space with t(x, y) = min(x, y).
We first prove the following lemmas.

Lemma 2.1. Let (X, %, min) be a Menger space. Then for A,B,C € B(X) and for u,v > 0,
sFa,c(u+v) = min{sFap(u),s Fgc(v)}. (2.1)
Proof. For all u,v >0, we have
min {sFap(u),sFp,c(v)} <min{F,p(u),Fp(v)} < Foc(u+v) (2.2)

foreachae A,be B,andce C.
This implies that min{sFaz(u),s F,c(v)} < sFac(u+v). O

LemMa 2.2. Let (X, %, min) be a Menger space. Then for A,B € B(X), c€ X, and for u,v >0,
HFac(u+v) > min{gFap(u),yFz.(v)}. (2.3)

Proof. Since for each a,b,c € X and for all u,v >0,
Fuc(u+v) =min {Fyp(u),Fpc(v)}. (2.4)

By taking inf cc, we have

inf F, .(u+v) > min {Fa,b(u),ianb,c(V)}. (2.5)
ceC ceC
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Hence,

sup inf F,(u+v) = supmin {Fu,;,(u), inng,C(v)}
ce

acAceC acA

= mm{supFab(u),mbec(v)} (2.6)

acA

> mln{sup inf F,p,(u), 1an;,C(v)}
acAbeB

Next, by taking sup,, ., we have

sup inf F,(u+v) = supmln{sup inf F,p(u), 1anbC( )}
acAceC beB acAbeB

(2.7)
> min { sup inf F,p(u),sup inf (v)}.
acAbeB beBceC
Similarly, for each a,b,c € X and for all u,v > o,
F,c(u+v) = min{F,;(u),Fp.(v)}. (2.8)
By taking inf.cc, we have
inf F, .(u+v) > min { iana,b(u),Fb,c(v)}. (2.9)
acA acA
Hence,
sup inf F,(u+v) > supmin { inf Fa,b(u),Fb,c(v)}
ceCacA ceC acA
= min { ianu,b(u),supr,C(v)} (2.10)
acA ceC
> min { inf F,p,(u),sup inf Fb,c(v)}.
acA ceCbeB
Next, by taking sup, ., we have
sup inf F,.(u+v) = supmin { 1ana »(u),sup inf Fp C(v)}
ceCacA beB ceCbeB
(2.11)

> min{sup inf F,,(u),sup inf (v)}
beBacA ceCbeB
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Therefore, we obtain that

aFac(u+v) =min { sup inf F,.(u+v),sup inf F,(u+ v)}

ceCacA acAceC

2.12
> min{sup inf F,,(u),sup inf (v),sup inf F,p(u),sup inf (v)} ( )
beBacA ceCbeB acAbeB beBceC

= min {yFap(u),uFp(v)}. O
Lemma 2.3. Let (X, %, min) be a Menger space. If A,B € B(X), then limy_.c sFa,g(u) = 1.

Proof. Forany x € A and y € B, by Lemma 2.1, we have

. u u u
sEas0) = min sEae( % ) Fey (4 ) B ()] (2.13)
Letting u — oo, we have
lim F4,3(u) = min { lim §F (5),31330 8Fx,y (5) , lim 5Fy (5) } (2.14)
Sincex € A, y € B, and A, B € B(X), we have
. u
lim sFae(§) = 1. (2.15)
Similarly, we have
. u
lim sy 5( 5 ) = 1. (2.16)

By the definition of the PM-space, we have that lim,, . Fy,, (4/3) = 1.
Therefore, we conclude that

1}%1()105FA,B(M) =1. (2.17)

This completes the proof. O

The following lemma which was introduced by Chang [3], will play an important role
for this paper.

Lemma 2.4. If ¢ : R* — R* is a strictly increasing, continuous function such that 0 < ¢(u) <
uforallu>0,lim,_« ¢(u) = o, and if for each u > 0, $°(u) =uand §~"(u) = ¢~ (¢ (1))
for each n € N are denoted, then lim,_.. ¢ " (u) = oco.

In the sequel, we let ® = {¢: R* — R* : ¢ is a strictly increasing, continuous function
with ¢(t) <t forall t >0}.

Lemma 2.5. Let (X, %, min) be a Menger space and {Y,} a sequence in B(X). If for each
u >0 and for each n € N,

sFy,.. v, (¢(w)) = sFy,y,,(u), ¢ €O, (2.18)
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then
lim oFy,v,,, (u) = 1. (2.19)
Proof. For u >0, by induction, we have
sFy,., v,.,(u) = sFy, v, (¢ " (u)) = - -+ > sFy,y,(¢ "(u)), foreachneN. (2.20)

By Lemma 2.4, we also have that ¢ " (u) — o0, as n — co.
Next, since Y}, is a bounded set and sFy,,y,(¢~"(u)) — 1 as n — o, hence we have

lim sFy,,, v,,,(4) = 1. (2.21)
n—oo
O

LEmMMA 2.6. Let (X, %, min) be a Menger space, and let A,B € B(X). If
oFap(d(u)) =5 Fap(u), foru>0, (2.22)
then A = B = a, for some a € X.
Proof. For u >0, by induction, we have
sFap(u) = sFap(¢ " (u) = -+ = sFap (¢ "(u)). (2.23)

Since A,B € B(X), by Lemma 2.3, we have
%ljl(}o sFap(¢™"(u) =1, (2.24)

and by Lemma 2.5, we have sF4 g(u) = 1 for u > 0. Thus we conclude that A = B = {a}
for some a € X. O

The following lemma was introduced by Schweizer and Sklar [8].

Lemma 2.7. Let (X, %, min) be a Menger space. If a, — a and b, — b, then for u > 0,

lim inf F,, p, (1) = Fap(u). (2.25)

n—oo
From Lemma 2.7, we conclude the following lemma.

LemMa 2.8. Let (X, %, min) be a Menger space. If A, 2 aand B, 2 b, then for u >0,

’11_{{)10 inf sFa, 5, (1) = Fop(u). (2.26)

Proof. For u >0 and for € > 0. Since F, ;,(u) is left continuous function at u, there exists a
positive number k with 0 < 2k < u such that F, (1) — F,p(u — 2k) < &.

Since k >0and A, LN a, B, 3 b, hence we may take m € N such that for n > m,

oFa,a(k) = Fop(u —2k), oFp, (k) = Fop(u —2k). (2.27)
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Hence, for n > m,

sFa,.p, (1) = min {6FAn,b(” —K),5Fs5,(k)}

(2.28)
> min { Fa, a(k),5Fap(t = 2K),5 Fop, (k)| = Fap (1= 2K),
and hence
—sFa,, (1) < —Fop(u—2k). (2.29)
Therefore, we conclude that
Fop(u) = sFa, B, (u) < Fap(u) — Fap(u—2k) <e. (2.30)
Taking lim,,— « inf, we have
Fop(u) — %13)10 infsFa, p,(u) <e. (2.31)

For any a, € A,, b, € By, since A, % aand B, LN b, we have a,, — a, b,, — b. Thus, for
u>0

8Fa, ., (u) < Fqp, (). (2.32)
Taking lim,,—. « inf, we have
,11330 infsF4, p,(u) < %15130 infF, p (u). (2.33)
By Lemma 2.7, we have
%1}1010 infF,, 5, () = Fap(u), and so Fup(u) — %1}130 inf 5F4, p, (1) = 0. (2.34)
Therefore, for any € > 0,
e>F,p(u) — %LHOIQ inf sFa, 5, (1) = 0. (2.35)
This implies that
313?0 infsFa, p,(u) = Fop(u), foru>0. (2.36)
O

The following two theorems are our main results for this paper.
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TueoreM 2.9. Let (X,%,min) be a complete Menger space. Let f,g,1,& : X — X be four
single-valued functions, and let S,T : X — B(X) two set-valued functions. If the following
conditions are satisfied:

(i) S(X) cég(X), T(X) cyf(X),

(i) nf = fn. §g =88 Sf = fS, Tg=gT,
(iil) # f or &g is continuous,
(iv) (8,1 f) and (T,&g) are compatible, and
(v) foru >0,

8Fsx 1y (¢(u))

> min {Fr/fx,fgy(”)>éanx,Sx(u): 5ngy,Ty(u))5ngy,3x(/5u)r5F;1fx,Ty((2 - /3)“)}
(2.37)

for all x,y € X, B € (0,2), where ¢ € ©, then f, g, 1, £, S, and T have a unique
common fixed point z in X.

Proof. Let xy € X. Define the sequence {x,} recursively as follows:

EgXoni1 € SXon = Zoy, N fxans2 € TxXont1 = Zops. (2.38)

Forn e Nand forall u >0, and f = (1 — &) with a € (0, 1),

6F 2,0, 2,0 (¢(11))
= Fsuy, T (9(1))
= min {Fy fa, £gx (1) 6 Fr frnnSion (1) 6 Fegrin, T ()58 Fegan,1 5, (1 — @)),
0F o Txpey (1 + @)ua) }
= min{;Fz, 7, (4),6Fz, 7., (41),6F 2, 2,0, (1), 6F2,,2,, (1 — a)u),
6F 25, 1,230y (1 + )u) }

> min {JFZZn—l,ZZn(u ’5FZZn—1,Zzn (u)u?FszZznﬂ (u)> 1’5FZ2n—1,Zzn ((u): (SFZZn)ZZVH»l (061/1)) }

)
= min {6FZZn71)ZZn (u)’ 8FZzn,ZZn+1 (u), BFZZn,Zan ((XM)}
(2.39)

As t-norm = min is continuous, letting « — 1, we have

KSFZzn,szl (¢(u)) > min {anzn—l,Zzn (u))5FszZzn+1 (M)} (240)
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By Lemma 2.6, we have
6F 2,220 (9(W) 26 Fz,,,, 2, (10).
Similarly, we also can prove that for n € N and for all u > 0,
6F 2,001,200, (9(W)) = 5F 7, 7,,,., (1).
So, we have
oFz, 20 (0(1)) = 6Fz, 7., (1), VneN, u>0.
By Lemma 2.5, we conclude that

lim 5Fzmzﬂ+l(u) =1, Vu>0.
Nn— o0

Now, we consider the condition (v) with f = 1, and then we claim that

(2.41)

(2.42)

(2.43)

fore >0, A €(0,1) thereis M(e,A) € N such that 5Fz, 7, (¢) = 1—Afor n,m = M.

(2.44)

If it is not the case, then there exists ¢ >0, A’ € (0,1) such that for k € N, there exist

ny > my = k such that

(1) ny is even and my is odd,

(2) sFz, 7, ()<1-=1",and

(3) ny is the smallest even number such that (1) and (2) hold.
By (), we may choose m; € N such that for n > m,

’ -1 Y ol
6FZn)Zn+l (mln{%,%}) >1 —A,.

So for k > my, nx = my + 3, and so for k > m;,
1=X'>sFz, 2, (') =6 Fsx, Tx,, (€')
> min {Fyr,, g, (671 oFus, 5. (671()):oFeg, 1 (671(E)),
sFeg,, 8., (071 (D) 6Fyz, 1., (67'(€D)}
> min {sFz, .z, ((p’l(e')),stnkfl,znk (¢71(€')),6Fzmk71,zmk (¢7'(€)),

oFz, 2, (071())6Fz, 2z, ($7'())}.

(2.45)

(2.46)
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Since

6F2, 72, (¢7'(€)) = min{sFz, 2, ($7'(e) ~€),6Fz, 2, (€D}

1 ) e +e e —-¢
a6 it (£, (06

7
56F7, 17, (€,

<</> '(e') ¢

> min {6FZ"k71’Z"k 5

oFz, 7., <¢ &)= )

. e 8,
Zmln{aFanil,an 2( )’6FZ"k ZZ k( )16Fka ka 1<E))

1(s )—¢
oFz, 7., ( )

, ) -¢
6Fz, 2 (€ )6 Fz, 7, (¢7) },

L, ) )¢ ) +¢
6FZ"k71’ka71 (¢ ‘(e )) = min {6FZ"k—1’Z”k—2 (%) ’5FZ"kfz’ka71 (gbi)}

(2.47)
so for k > m;, we have
1-X >5FZ"k’ka(8’)Z 1—)L,, (2.48)
which is a contradiction. And, since X is complete, hence for any choice of z, in Z,, the
sequence {z,} must converge to some point, say, z in X. The point z is independent of
the choice of z,, and so we have
Hfxm — 2z, Egxon — 2, Sx2n — {2}, Txon1 — {z}. (2.49)

That is, for u >0,

Fr/foH,z(u) — 1, ngx2n+|,z(u) — 1, §Fsy,(u) — 1, §Fry,,, (u) — 1 asn— oo,
(2.50)
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Assume that the function 7 f is continuous, then for u > 0, we have

llm F(Vlf)ZXvaWfZ(u) = 1) %gl;logFﬂfoZn,ﬂfZ(u) = l' (2.51)

n— 00

By limy . Fy fx,, 2 (1) = 1 and lim, . §Fsx,, (1) = 1, we obtain lim, -« §Fsx,, 5 fx,, (4) =
1. Since S and 7 f are compatible, and for u >0, lim, e §Fsx,,fx,(4) = 1, we have
lim, - o Hansz,,,Sqfxzn (u)=1and HFSqfxzy,,qu(u) = min{HFrnyxzy,,Sqfxzy, (”/2):HF;1fo2n,f1fz(u/
2)}. And, since limy . oo HF; £5x,,,59 fro, (4/2) = 1, imy, oo g Fy £y, 2(1/2) = 1, we have

rlli_r{}oHanfxzmﬂfz(u) = %ijfoloSFSnfxzmnfz(“) =L (2.52)

In order to complete the proof, we will divide it into 5 steps as follows:
Step 1. For u >0 with § = 1 in the condition (v),
5F5?1fX2n,Tx2n+1 (¢(U)) > min {F(ﬂf)zxm,fgxznu (u)’ 5F(f1f)2X2n,571fX2n (u)’ 5ngX2n+1,Tx2n+1 (U),

8ngxzn+1,817fxzn (u)’(SF("]f)ZxMyTxZnH (”)}
(2.53)

Taking lim,, ., by Lemma 2.8,

quz,z((p(u)) > min {Fr]fz,z(u):Fr/fz,qu(u)>Fz,z(u):anz,z(u)anfz,z(u)} = quz,z(”)-
(2.54)

Sowegetrnfz=z.
Step 2. For u >0 with § = 1 in the condition (v),
oFsz.2 (¢(u))
= lim inf s Fs; 1., (¢(u))
> ,115?0 inf min {F, 2 egx,,, ), 6 Fyy £2,52(4)s 6 Fegronon Txamis ) 6 Fsz.egaepmns ()5 6 Fy 2, T ()}
> min {F,;(u),Fzs: (), Fopz(4), 5 Fz 50 (1), Foo ()} =6 Fos2(u). o5
2.55

So we get Sz = {z}.

Hence, by Steps 1 and 2, we have Sz = {z} = {nfz}.
Step 3. By the condition (i), since SX C £gX, there exists z' € X such that {£gz'} = Sz =
{z}.

So for any u > 0 with 8 = 1 in the condition (v)

0F s, 12 (9(14))

> min {quxzy,,fgz’ (u)a SFr/fon,SxZn (u)>8FEgz’,Tz’ (u)a 8Fr/fz’,Sx2n (Ll), 6F11fxz,,,Tz’ (u)}
(2.56)
Taking lim,,— «inf, by Lemma 2.8,

oF, 12 ((/5(”)) > min {Fz,z(u)>Fz,z(u)a oF. 1z (u)an,z(u)>5Fz,Tz’ (u)} =5 Fy 1z (u). (2.57)
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So we get Tz' = {z}. Hence, {£gz'} = {2z} = TZ'.
By Step 2, we may let {z} = {yfz} = {Sz} = {{gz'} = {TZ'}.
Since S and 7 f are compatible and {# fz} = Sz, we get 1 f Sz =Sy f z, that s, {3 fz} =Sz.
Now,

SFSZ,Z(¢(u)) = (SFSZ,TZ/ (¢(u))
> min {Fﬂfz,fgz’ (u)yéquz,Sz(u)) SFEgZ’,Tz’ (u)¢5Ft1fz,Tz’(u)>5FSZ,€gZ’(u)} (2-58)

= Squz,z(u) = oFs. . (u).

This implies Sz = {z} = {fz}.
Choose 2z’ in X such that {gz’'} = Sz = {z}, then

oF. 12 ((/)(u))
= 5FSZ,TZ’ (‘P(”))

> min {anz,fgz’y5quz,Sz(u): Sngz’,Tz’ (u)Sanz,Tz’ (”)>8FSZ,Egz’(u)} = sF, 12 (u).
(2.59)

By Lemma 2.6, we get Tz" = {z}.
Since T and &g are compatible and {£gz’} = Tz', we get Tégz' =&gTZ', that is, Tz =
{Egz}.

Now, for u >0,

sFszrz(¢(w))
> min {anz,fgz(u)aé quz,Sz(u)x6ngz,Tz(”)>8Fi1fz,Tz(u)’ JFSz,fgz(u)} (2.60)

= qu,fgz(”) =6 FSz,Tz(”)-

Sowehave Sz = Tz = {5 fz} = {Egz} = {z}.
Step 4. For u >0 with = 1 in the condition (v), we get

5Fsz,Tx2n+1 ((/5(”))

> min {Fﬂffz,fgxz,m (u)>6F11ffz,sz(u)’5ngxZn+1,sz,,+1 (u): (?ngxzﬁl,sz(u)»Squfz,TxZnH (u)}
(2.61)

By the condition (ii), nf = f#, Sf = fS,sowe have nf(fz) = f(nfz) = fzand S(fz) =
{f(Sz)} = { fz}. Taking lim,, . inf, by Lemma 2.8,

Ffz,z(¢(u)) > min {Ffz,z(u)aFfz,fz(u)an,z(”)>Fz,fz(u))Ffz,z(u)} = Ffz,z(u)- (2-62)

So we get fz =z
Hence, by Steps 1 and 4, we have 71 fz = z and fz = z, which implies 7z = z. Therefore,
{z} = {fz} = {nz} = Sz.



C.-M. Chen and T.-H. Chang 13
Step 5. For u >0 with = 1 in condition (v), we get

6FSxZ,1,TgZ ((/)(u))

> min {F,lfomgggz(u), 5F,1fx2,,,sx2,, (“)»6 FEggz,ng(u)y(SFEggz,SxZn (u)> BquxZn,ng(u) }
(2.63)

Since Tg = ¢T and &g = g€, we have Tgz = {¢gTz} = {gz} and £g(gz) = g(&gz) = gz. Tak-
ing lim,_  inf, by Lemma 2.8, we get

Fz,gz(¢(u)) > min {Fz,gz(u):Fz,z(u)’ng,gz(”))ng,z(”)’Fz,gz(u)} = Fz,gz(u)- (2.64)

So we get gz = z.
Hence, by Steps 3 and 5, we have {gz = z and gz = z, which implies £z = z.
So we have {z} = {gz} = {{z} =Tz
Therefore, we have

{z} = {fz} = {gz} = {nz} = {2z} =Sz =Tz (2.65)

Last, we want to prove the uniqueness. Let y be the another commom fixed point of 7,
f>¢,¢, S, and T. Then for u >0,

Fz,y((p(u)) = BFSZ,Ty((p(u))
> min {Fr/fz,fgy(u): Jquz,Sz(u)aé FEgy,Ty(u):é FEgy,Sz(u):d anz,Ty(u)} (2.66)
> min {F; ,(u),F.(u),F,,, (1), Fy (1), Fye(u)} = F;, (u).

This implies y = z. We complete the proof. O

If we take f = g = I, the identity map on X in Theorem 2.9, then we immediately have
the following corollary.

Cororrary 2.10. Let (X,%,min) be a complete Menger space. Let 1, : X — X be two
single-valued functions, and let S, T : X — B(X) be two set-valued functions. If the following
conditions are satisfied:

(1) $(X) c é(X), T(X) € n(X),

(ii) n or & is continuous,
(i) (S,n) and (T,&) are compatible,
(iv) for u >0,

6FSx,Ty(¢(”)) > min {an,fy(u)x5F;1x,Sx(u)y6ny,Ty(u)>6FEy,Sx(ﬁu): 6F11x,Ty((2 - ﬁ)u)}
(2.67)

forallx,y € X, B € (0,2), where ¢ € O, then n, £, S, and T have a unique common
fixed point z in X.

By the same process of the proof of Theorem 2.9, we also get the results of Theorem
2.11.
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Tueorem 2.11. Let (X, %, min) be a complete Menger space. Let f,g,1,& : X — X be four
single-valued functions, and let S, T : X — B(X) be two set-valued functions. If the following
conditions are satisfied:

(i) S(X) cég(X), T(X) cnf(X),

(i) nf = fn, §¢ =8& Sf = fS, Tg = ¢T,

(iil) # f or &g is continuous,

(iv) (8,1 f) and (T,&g) are compatible,

(v) foru >0,

SFSx,Ty((p(u)) > min {Fﬂfx,fgy(u)>8Ff1fx,Sx(u))6ngy,Ty(u):Dngy,Sx(u) +DF17fx,Ty(u)}
(2.68)

forall x,y € X, where ¢ € @, then f, g, 1, &, S, and T have a unique common fixed
point z in X.

If we take f = g = I, the identity map on X in Theorem 2.11, then we immediately
have the following corollary.

CoROLLARY 2.12. Let (X, %, min) be a complete Menger space. Let n,& : X — X be two
single-valued functions, and let S, T : X — B(X) be two set-valued functions. If the following
conditions are satisfied:
(i) S(X) c &(X), T(X) c n(X),
(ii) # or & is continuous,
(i) (S,n) and (T,&) are compatible,
(iv) for u >0,

Fsx,ry (¢(1)) = min {Fyye, (1), 6Fyx,sx(1),6Fey, 1y (1), Dty 50 (1) +p Fyry (W)} (2.69)

forallx,y € X, where ¢ € ®, then y, &, S, and T have a unique common fixed point
zin X.
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