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1. Introduction and preliminaries

Probabilistic metric space was first introduced by Menger [6]. Later, there are many au-
thors who have some detailed discussions and applications of a probabilistic metric space,
for example, we may see Schweizer and Sklar [8]. Besides, there are many results about
fixed point theorems in a probabilistic metric space with contractive types having ap-
peared; we may see the papers [1–3, 9–12].

In this paper, we will prove two common fixed point theorems for four self-mappings
and two set-valued mappings with φ-contractive condition in a Menger space, which
generalize some results of Dedeić and Sarapa [4, 5], and Sehgal and Bharucha-Reid [9].

A mapping F :R→R+ is said to be a distribution if it is nondecreasing left continuous
with inf{F(t) : t ∈R} = 0 and sup{F(t) : t ∈R} = 1.

We will denote by � the set of all distribution functions while G will always denote the
specific distribution function defined by

G(t)=
⎧
⎨

⎩

0, t ≤ 0,

1, t > 0.
(1.1)

A probabilistic metric space (PM-space) [7] is an ordered pair (X ,�) consisting of
a nonempty set X and a mapping � from X ×X into the collections of all distribution
functions on R. For x, y ∈ X , we denote the distribution function �(x, y) by Fx,y and
Fx,y(u) represents the value of �(x, y) at u∈R. The functions Fx,y are assumed to satisfy
the following conditions:

(1) Fx,y(u)= 1 for all u > 0 if and only if x = y,
(2) Fx,y(0)= 0 for all x, y in X ,
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(3) Fx,y(u)= Fy,x(u) for all x, y in X , and
(4) if Fx,y(u)= 1 and Fy,z(v)= 1, then Fx,z(u+ v)= 1 for all x, y,z in X and u,v > 0.

A mapping t : [0,1]× [0,1]→ [0,1] is called a t-norm if
(1) t(a,1)= a, t(0,0)= 0,
(2) t(a,b)= t(b,a),
(3) t(c,d)≥ t(a,b) for c ≥ a, d ≥ b, and
(4) t(t(a,b),c)= t(a, t(b,c)).

A Menger space is a triplet (X ,�, t), where (X ,�) is a PM-space, t is a T-norm, and
the generalized triangle inequality

Fx,y(u+ v)≥ t
(
Fx,y(u),Fy,z(v)

)
(1.2)

holds for all x, y,z in X and u,v > 0.
The concept of neighborhoods in a Menger space was introduced by Schweizer and

Sklar [8].
Let (X ,�, t) be a Menger space. If x ∈ X , ε > 0, and λ∈ (0,1), then an (ε,λ)-neighbor-

hood of x, called Ux(ε,λ), is defined by

Ux(ε,λ)= {y ∈ X : Fx,y(ε) > 1− λ
}
. (1.3)

An (ε,λ)-topology in X is the topology induced by the family {Ux(ε,λ) : x ∈ X , ε > 0, λ∈
(0,1)} of neighborhood.

Remark 1.1. If t is continuous, then Menger space (X ,�, t) is a Hausdorff space in the
(ε,λ)-topology. (see [8]).

Let (X ,�, t) be a complete Menger space and A⊂ X . Then A is called a bounded set if

lim
u→∞

inf
x,y∈A

Fx,y(u)= 1. (1.4)

Throughout this paper, B(X) will denote the family of nonempty bounded subsets of
a complete Menger space X .

For all A,B ∈ B(X) and for all u > 0, we define

δFA,B(u)= inf
{
Fx,y(u) : x ∈A, y ∈ B

}
,

DFA,B(u)= sup
{
Fx,y(u) : x ∈ A, y ∈ B

}
,

HFA,B(u)= inf

{

sup
a∈A

inf
b∈ B

Fa,b(u), sup
b∈B

inf
a∈ A

Fa,b(u)

}

.

(1.5)

Remark 1.2. It is clear that δFA,B(u) = δFB,A(u), DFA,B(u) =D FB,A(u), and HFA,B(u) =
HFB,A(u), for all A,B ∈ B(X) and u > 0.
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If A = {x}, we denote δF{x},B(u) =δ Fx,B(u), DF{x},B(u) =D Fx,B(u), and HF{x},B(u) =
HFx,B(u).

Let (X ,�, t) be a complete Menger space, and letT : X → B(X) be a set-valued function
and I : X → X a single-valued function. Then we say that S and I are compatible if

lim
n→∞HFSIxn,ISxn(u)= 1, (1.6)

whenever {xn} is a sequence in X such that

lim
n→∞ δFIxn,Sxn(u)= 1, ∀u > 0. (1.7)

Let {An} be a sequence in B(X). We say that {An} δ-converges to a set A in X if

lim
n→∞ δFAn,A(u)= 1, for every u > 0, (1.8)

and it is denoted by An
δ−→ A.

2. Main results

In this paper, we let R+ denote the set of all nonnegative real numbers, let N denote the
set of all positive integers, and let (X ,�, t) be a Menger space with t(x, y)=min(x, y).

We first prove the following lemmas.

Lemma 2.1. Let (X ,�,min) be a Menger space. Then for A,B,C ∈ B(X) and for u,v > 0,

δFA,C(u+ v)≥min
{

δFA,B(u),δ FB,C(v)
}
. (2.1)

Proof. For all u,v > 0, we have

min
{
δFA,B(u), δFB,C(v)

}≤min
{
Fa,b(u),Fb,c(v)

}≤ Fa,c(u+ v) (2.2)

for each a∈A, b ∈ B, and c ∈ C.
This implies that min{δFA,B(u),δ FB,C(v)} ≤ δFA,C(u+ v). �

Lemma 2.2. Let (X ,�,min) be a Menger space. Then forA,B∈B(X), c∈X , and for u,v > 0,

HFA,c(u+ v)≥min
{
HFA,B(u),HFB,c(v)

}
. (2.3)

Proof. Since for each a,b,c ∈ X and for all u,v > 0,

Fa,c(u+ v)≥min
{
Fa,b(u),Fb,c(v)

}
. (2.4)

By taking inf c∈C, we have

inf
c∈C

Fa,c(u+ v)≥min
{

Fa,b(u), inf
c∈C

Fb,c(v)
}

. (2.5)
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Hence,

sup
a∈A

inf
c ∈ C

Fa,c(u+ v)≥ sup
a∈A

min
{

Fa,b(u), inf
c∈C

Fb,c(v)
}

=min
{

sup
a∈A

Fa,b(u), inf
c∈C

Fb,c(v)
}

≥min
{

sup
a∈A

inf
b ∈ B

Fa,b(u), inf
c∈C

Fb,c(v)
}

.

(2.6)

Next, by taking supb∈B, we have

sup
a∈A

inf
c ∈ C

Fa,c(u+ v)≥ sup
b∈B

min

{

sup
a∈A

inf
b∈ B

Fa,b(u), inf
c∈C

Fb,c(v)

}

≥min

{

sup
a∈A

inf
b ∈ B

Fa,b(u), sup
b∈B

inf
c ∈ C

(v)

}

.

(2.7)

Similarly, for each a,b,c ∈ X and for all u,v > o,

Fa,c(u+ v)≥min
{
Fa,b(u),Fb,c(v)

}
. (2.8)

By taking inf c∈C, we have

inf
a∈A

Fa,c(u+ v)≥min

{

inf
a∈A

Fa,b(u),Fb,c(v)

}

. (2.9)

Hence,

sup
c∈C

inf
a∈A

Fa,c(u+ v)≥ sup
c∈C

min

{

inf
a∈A

Fa,b(u),Fb,c(v)

}

=min

{

inf
a∈A

Fa,b(u), sup
c∈C

Fb,c(v)

}

≥min

{

inf
a∈A

Fa,b(u), sup
c∈C

inf
b∈ B

Fb,c(v)

}

.

(2.10)

Next, by taking supb∈B, we have

sup
c∈C

inf
a∈A

Fa,c(u+ v)≥ sup
b∈B

min

{

inf
a∈A

Fa,b(u), sup
c∈C

inf
b∈ B

Fb,c(v)

}

≥min

{

sup
b∈B

inf
a∈ A

Fa,b(u), sup
c∈C

inf
b∈ B

(v)

}

.

(2.11)
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Therefore, we obtain that

HFA,c(u+ v)=min

{

sup
c∈C

inf
a∈A

Fa,c(u+ v), sup
a∈A

inf
c ∈ C

Fa,c(u+ v)

}

≥min

{

sup
b∈B

inf
a∈A

Fa,b(u), sup
c∈C

inf
b∈ B

(v), sup
a∈A

inf
b ∈ B

Fa,b(u), sup
b∈B

inf
c ∈ C

(v)

}

=min
{
HFA,B(u),HFB,c(v)

}
.

(2.12)

�

Lemma 2.3. Let (X ,�,min) be a Menger space. If A,B ∈ B(X), then limu→∞ δFA,B(u)= 1.

Proof. For any x ∈ A and y ∈ B, by Lemma 2.1, we have

δFA,B(u)≥min
{

δFA,x

(
u

3

)

,δ Fx,y

(
u

3

)

,δ Fy,B

(
u

3

)}

. (2.13)

Letting u→∞, we have

lim
u→∞ δFA,B(u)≥min

{

lim
u→∞ δFA,x

(
u

3

)

, lim
u→∞ δFx,y

(
u

3

)

, lim
u→∞ δFy,B

(
u

3

)}

. (2.14)

Since x ∈ A, y ∈ B, and A,B ∈ B(X), we have

lim
u→∞ δFA,x

(
u

3

)

= 1. (2.15)

Similarly, we have

lim
u→∞ δFy,B

(
u

3

)

= 1. (2.16)

By the definition of the PM-space, we have that limu→∞Fx,y(u/3)= 1.
Therefore, we conclude that

lim
u→∞ δFA,B(u)= 1. (2.17)

This completes the proof. �

The following lemma which was introduced by Chang [3], will play an important role
for this paper.

Lemma 2.4. If φ :R+ →R+ is a strictly increasing, continuous function such that 0 < φ(u) <
u for all u >0, limu→∞φ(u)=∞, and if for each u > 0, φ0(u)=u and φ−n(u)=φ−1(φ−n+1(u))
for each n∈N are denoted, then limn→∞φ−n(u)=∞.

In the sequel, we let Φ= {φ :R+ →R+ : φ is a strictly increasing, continuous function
with φ(t) < t for all t > 0}.
Lemma 2.5. Let (X ,�,min) be a Menger space and {Yn} a sequence in B(X). If for each
u > 0 and for each n∈N,

δFYn+1,Yn+2

(
φ(u)

)≥ δFYn,Yn+1 (u), φ ∈Φ, (2.18)
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then

lim
n→∞ δFYn,Yn+1 (u)= 1. (2.19)

Proof. For u > 0, by induction, we have

δFYn+1,Yn+2 (u)≥ δFYn,Yn+1

(
φ−1(u)

)≥ ··· ≥ δFY1,Y2

(
φ−n(u)

)
, for each n∈N. (2.20)

By Lemma 2.4, we also have that φ−n(u)→∞, as n→∞.
Next, since Yn is a bounded set and δFY1,Y2 (φ−n(u))→ 1 as n→∞, hence we have

lim
n→∞ δFYn+1,Yn+2 (u)= 1. (2.21)

�

Lemma 2.6. Let (X ,�,min) be a Menger space, and let A,B ∈ B(X). If

δFA,B
(
φ(u)

)≥δ FA,B(u), for u > 0, (2.22)

then A= B = a, for some a∈ X .

Proof. For u > 0, by induction, we have

δFA,B(u)≥ δFA,B
(
φ−1(u)

)≥ ··· ≥ δFA,B
(
φ−n(u)

)
. (2.23)

Since A,B ∈ B(X), by Lemma 2.3, we have

lim
n→∞ δFA,B

(
φ−n(u)

)= 1, (2.24)

and by Lemma 2.5, we have δFA,B(u) = 1 for u > 0. Thus we conclude that A = B = {a}
for some a∈ X . �

The following lemma was introduced by Schweizer and Sklar [8].

Lemma 2.7. Let (X ,�,min) be a Menger space. If an→ a and bn→ b, then for u > 0,

lim
n→∞ inf Fan,bn(u)= Fa,b(u). (2.25)

From Lemma 2.7, we conclude the following lemma.

Lemma 2.8. Let (X ,�,min) be a Menger space. If An
δ−→ a and Bn

δ−→ b, then for u > 0,

lim
n→∞ inf δFAn,Bn(u)= Fa,b(u). (2.26)

Proof. For u > 0 and for ε > 0. Since Fa,b(u) is left continuous function at u, there exists a
positive number k with 0 < 2k < u such that Fa,b(u)−Fa,b(u− 2k) < ε.

Since k > 0 and An
δ−→ a, Bn

δ−→ b, hence we may take m∈N such that for n≥m,

δFAn,a(k)≥ Fa,b(u− 2k), δFBn,b(k)≥ Fa,b(u− 2k). (2.27)
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Hence, for n >m,

δFAn,Bn(u)≥min
{

δ
FAn,b(u− k), δFb,Bn(k)

}

≥min
{

δ
FAn,a(k), δFa,b(u− 2k),δ Fb,Bn(k)

}

= Fa,b(u− 2k),
(2.28)

and hence

−δFAn,Bn(u)≤−Fa,b(u− 2k). (2.29)

Therefore, we conclude that

Fa,b(u)− δFAn,Bn(u) < Fa,b(u)−Fa,b(u− 2k) < ε. (2.30)

Taking limn→∞ inf , we have

Fa,b(u)− lim
n→∞ inf δFAn,Bn(u) < ε. (2.31)

For any an ∈An, bn ∈ Bn, since An
δ−→ a and Bn

δ−→ b, we have an→ a, bn→ b. Thus, for
u > 0

δFAn,Bn(u)≤ Fan,bn(u). (2.32)

Taking limn→∞ inf , we have

lim
n→∞ inf δFAn,Bn(u)≤ lim

n→∞ inf Fan,bn(u). (2.33)

By Lemma 2.7, we have

lim
n→∞ inf Fan,bn(u)= Fa,b(u), and so Fa,b(u)− lim

n→∞ inf δFAn,Bn(u)≥ 0. (2.34)

Therefore, for any ε > 0,

ε > Fa,b(u)− lim
n→∞ inf δFAn,Bn(u)≥ 0. (2.35)

This implies that

lim
n→∞ inf δFAn,Bn(u)= Fa,b(u), for u > 0. (2.36)

�

The following two theorems are our main results for this paper.
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Theorem 2.9. Let (X ,�,min) be a complete Menger space. Let f ,g,η,ξ : X → X be four
single-valued functions, and let S,T : X → B(X) two set-valued functions. If the following
conditions are satisfied:

(i) S(X)⊂ ξg(X), T(X)⊂ η f (X),
(ii) η f = f η, ξg = gξ, S f = f S, Tg = gT ,

(iii) η f or ξg is continuous,
(iv) (S,η f ) and (T ,ξg) are compatible, and
(v) for u > 0,

δFSx,Ty
(
φ(u)

)

≥min
{
Fη f x,ξg y(u), δFη f x,Sx(u), δFξg y,Ty(u), δFξg y,Sx(βu), δFη f x,Ty

(
(2−β)u

)}

(2.37)

for all x, y ∈ X , β ∈ (0,2), where φ ∈ Φ, then f , g, η, ξ, S, and T have a unique
common fixed point z in X .

Proof. Let x0 ∈ X . Define the sequence {xn} recursively as follows:

ξgx2n+1 ∈ Sx2n = Z2n, η f x2n+2 ∈ Tx2n+1 = Z2n+1. (2.38)

For n∈N and for all u > 0, and β = (1−α) with α∈ (0,1),

δFZ2n,Z2n+1

(
φ(u)

)

= δFSx2n,Tx2n+1

(
φ(u)

)

≥min
{
Fη f x2n,ξgx2n+1 (u), δFη f x2n,Sx2n(u), δFξgx2n+1,Tx2n+1 (u), δFξgx2n+1,Sx2n

(
(1−α)u

)
,

δFη f x2n,Tx2n+1

(
(1 +α)u

)}

≥min
{

δFZ2n−1,Z2n(u), δFZ2n−1,Z2n(u), δFZ2n,Z2n+1 (u), δFZ2n,Z2n

(
(1−α)u

)
,

δFZ2n−1,Z2n+1

(
(1 +α)u

)}

≥min
{

δFZ2n−1,Z2n(u), δFZ2n−1,Z2n(u), δFZ2n,Z2n+1 (u),1, δFZ2n−1,Z2n

(
(u), δFZ2n,Z2n+1 (αu)

)}

=min
{

δFZ2n−1,Z2n(u), δFZ2n,Z2n+1 (u), δFZ2n,Z2n+1 (αu)
}
.

(2.39)

As t-norm=min is continuous, letting α→ 1, we have

δFZ2n,Z2n+1

(
φ(u)

)≥min
{
δFZ2n−1,Z2n(u), δFZ2n,Z2n+1 (u)

}
. (2.40)
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By Lemma 2.6, we have

δFZ2n,Z2n+1

(
φ(u)

)≥δ FZ2n−1,Z2n(u). (2.41)

Similarly, we also can prove that for n∈N and for all u > 0,

δFZ2n+1,Z2n+2

(
φ(u)

)≥ δFZ2n,Z2n+1 (u). (2.42)

So, we have

δFZn+1,Zn+2

(
φ(u)

)≥ δFZn,Zn+1 (u), ∀n∈N, u > 0. (2.43)

By Lemma 2.5, we conclude that

lim
n→∞ δFZn,Zn+1 (u)= 1, ∀u > 0. (∗)

Now, we consider the condition (v) with β = 1, and then we claim that

for ε > 0, λ∈ (0,1) there is M(ε,λ)∈N such that δFZn,Zm(ε)≥ 1− λ for n,m≥M.
(2.44)

If it is not the case, then there exists ε′ > 0, λ′ ∈ (0,1) such that for k ∈ N, there exist
nk > mk ≥ k such that

(1) nk is even and mk is odd,

(2) δFZnk
,Zmk

(ε′) < 1− λ′, and

(3) nk is the smallest even number such that (1) and (2) hold.
By (∗), we may choose m1 ∈N such that for n≥m1,

δFZn,Zn+1

(

min
{
ε′

2
,
φ−1(ε′)− ε′

2

})

> 1− λ′. (2.45)

So for k > m1, nk ≥mk + 3, and so for k > m1,

1− λ′ > δFZnk
,Zmk

(ε′)=δ FSxnk ,Txmk
(ε′)

≥min
{
Fη f xnk ,ξgxmk

(
φ−1(ε′)

)
, δFη fxnk ,Sxnk

(
φ−1(ε′)

)
, δFξgxmk

,Txmk

(
φ−1(ε′)

)
,

δFξgxmk
,Sxnk

(
φ−1(ε′)

)
, δFη fxnk ,Txmk

(
φ−1(ε′)

)}

≥min
{
δFZnk−1 ,Zmk−1

(
φ−1(ε′)

)
, δFZnk−1 ,Znk

(
φ−1(ε′)

)
, δFZmk−1 ,Zmk

(
φ−1(ε′)

)
,

δFZnk
,Zmk−1

(
φ−1(ε′)

)
, δFZnk−1 ,Zmk

(
φ−1(ε′)

)}
.

(2.46)
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Since

δFZnk−1 ,Zmk

(
φ−1(ε′)

)≥min
{
δFZnk−1 ,Znk−2

(
φ−1(ε′)− ε′

)
, δFZnk−2 ,Zmk

(ε′)
}

,

δFZmk−1 ,Znk

(
φ−1(ε′)

)≥min
{

δFZmk−1 ,Znk−1

(
φ−1(ε′) + ε′

2

)

, δFZnk−1 ,Znk

(
φ−1(ε′)− ε′

2

)}

≥min
{

δFZnk−1 ,Znk−2

(
φ−1(ε′)− ε′

2

)

, δFZnk−2 ,Zmk−1
(ε′),

δFZnk−1 ,Znk

(
φ−1(ε′)− ε′

2

)}

≥min
{

δFZnk−1 ,Znk−2

(
φ−1(ε′)− ε′

2

)

, δFZnk−2 ,Zmk

(
ε′

2

)

, δFZmk
,Zmk−1

(
ε′

2

)

,

δFZnk−1 ,Znk

(
φ−1(ε′)− ε′

2

)}

≥min
{

δFZnk−1 ,Znk−2
(ε′), δFZnk−2 ,Zmk

(ε′),δ FZmk
,Zmk

(
φ−1(ε′)− ε′

2

)

,

δFZmk
,Zmk−1

(ε′),δ FZnk−1 ,Znk

(
φ−1(ε′)− ε′

2

)}

,

δFZnk−1 ,Zmk−1

(
φ−1(ε′)

)≥min
{

δFZnk−1 ,Znk−2

(
φ−1(ε′)− ε′

2

)

, δFZnk−2 ,Zmk−1

(
φ−1(ε′) + ε′

2

)}

≥min
{

δFZnk−1 ,Znk−2

(
φ−1(ε′)− ε′

2

)

, δFZnk−2 ,Zmk
(ε′),

δFZmk−1 ,Zmk

(
φ−1(ε′)− ε′

2

)}

,

(2.47)

so for k > m1, we have

1− λ′ > δFZnk
,Zmk

(ε′)≥ 1− λ′, (2.48)

which is a contradiction. And, since X is complete, hence for any choice of zn in Zn, the
sequence {zn} must converge to some point, say, z in X . The point z is independent of
the choice of zn and so we have

η f x2n −→ z, ξgx2n+1 −→ z, Sx2n −→ {z}, Tx2n+1 −→ {z}. (2.49)

That is, for u > 0,

Fη f x2n,z(u)−→1, Fξgx2n+1,z(u)−→ 1, δFSx2n,z(u)−→ 1, δFTx2n+1,z(u)−→ 1 as n−→∞.
(2.50)
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Assume that the function η f is continuous, then for u > 0, we have

lim
n→∞F(η f )2x2n,η f z(u)= 1, lim

n→∞ δFη f Sx2n,η f z(u)= 1. (2.51)

By limn→∞Fη f x2n,z(u) = 1 and limn→∞ δFSx2n,z(u) = 1, we obtain limn→∞ δFSx2n,η f x2n(u) =
1. Since S and η f are compatible, and for u > 0, limn→∞ δFSx2n,η f x2n(u) = 1, we have
limn→∞HFη f Sx2n,Sη f x2n(u)=1 and HFSη f x2n,η f z(u)≥min{HFη f Sx2n,Sη f x2n(u/2),HFη f Sx2n,η f z(u/
2)}. And, since limn→∞HFη f Sx2n,Sη f x2n(u/2)= 1, limn→∞HFη f Sx2n,η f z(u/2)= 1, we have

lim
n→∞HFSη f x2n,η f z(u)= lim

n→∞ δFSη f x2n,η f z(u)= 1. (2.52)

In order to complete the proof, we will divide it into 5 steps as follows:
Step 1. For u > 0 with β = 1 in the condition (v),

δFSη f x2n,Tx2n+1

(
φ(u)

)≥min
{
F(η f )2x2n,ξgx2n+1 (u), δF(η f )2x2n,Sη f x2n(u), δFξgx2n+1,Tx2n+1 (u),

δFξgx2n+1,Sη f x2n(u), δF(η f )2x2n,Tx2n+1 (u)
}
.

(2.53)

Taking limn→∞, by Lemma 2.8,

Fη f z,z
(
φ(u)

)≥min
{
Fη f z,z(u),Fη f z,η f z(u),Fz,z(u),Fη f z,z(u),Fη f z,z(u)

}= Fη f z,z(u).
(2.54)

So we get η f z = z.
Step 2. For u > 0 with β = 1 in the condition (v),

δFSz,z
(
φ(u)

)

= lim
n→∞ inf δFSz,Tx2n+1

(
φ(u)

)

≥ lim
n→∞ inf min

{
Fη f z,ξgx2n+1 (u), δFη f z,Sz(u), δFξgx2n+1,Tx2n+1 (u), δFSz,ξgx2n+1 (u), δFη f z,Tx2n+1 (u)

}

≥min
{
Fz,z(u), δFz,Sz(u),Fz,z(u), δFz,Sz(u),Fz,z(u)

}=δ Fz,Sz(u).
(2.55)

So we get Sz = {z}.
Hence, by Steps 1 and 2, we have Sz = {z} = {η f z}.

Step 3. By the condition (i), since SX⊂ ξgX , there exists z′ ∈ X such that {ξgz′}= Sz =
{z}.

So for any u > 0 with β = 1 in the condition (v)

δFSx2n,Tz′(φ(u))

≥min
{
Fη f x2n,ξgz′(u), δFη f x2n,Sx2n(u), δFξgz′,Tz′(u), δFη f z′,Sx2n(u), δFη f x2n,Tz′(u)

}
.

(2.56)

Taking limn→∞inf, by Lemma 2.8,

δFz,Tz′
(
φ(u)

)≥min
{
Fz,z(u),Fz,z(u), δFz,Tz′(u),Fz,z(u), δFz,Tz′(u)

}=δ Fz,Tz′(u). (2.57)
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So we get Tz′ = {z}. Hence, {ξgz′} = {z} = Tz′.
By Step 2, we may let {z} = {η f z} = {Sz} = {ξgz′} = {Tz′}.
Since S and η f are compatible and {η f z}=Sz, we get η f Sz=Sη f z, that is, {η f z} =Sz.
Now,

δFSz,z
(
φ(u)

)= δFSz,Tz′
(
φ(u)

)

≥min
{
Fη f z,ξgz′(u), δFη f z,Sz(u), δFξgz′,Tz′(u), δFη f z,Tz′(u), δFSz,ξgz′(u)

}

= δFη f z,z(u)= δFSz,z(u).

(2.58)

This implies Sz = {z} = {η f z}.
Choose z′ in X such that {ξgz′} = Sz = {z}, then

δFz,Tz′
(
φ(u)

)

= δFSz,Tz′
(
φ(u)

)

≥min
{
Fη f z,ξgz′ , δFη f z,Sz(u), δFξgz′,Tz′(u)δFη f z,Tz′(u), δFSz,ξgz′(u)

}= δFz,Tz′(u).
(2.59)

By Lemma 2.6, we get Tz′ = {z}.
Since T and ξg are compatible and {ξgz′}=Tz′, we get Tξgz′ =ξgTz′, that is, Tz=

{ξgz}.
Now, for u > 0,

δFSz,Tz
(
φ(u)

)

≥min
{
Fη f z,ξgz(u),δ Fη f z,Sz(u), δFξgz,Tz(u), δFη f z,Tz(u), δFSz,ξgz(u)

}

= Fη f z,ξgz(u)=δ FSz,Tz(u).

(2.60)

So we have Sz = Tz = {η f z} = {ξgz} = {z}.
Step 4. For u > 0 with β = 1 in the condition (v), we get

δFS f z,Tx2n+1

(
φ(u)

)

≥min
{
Fη f f z,ξgx2n+1 (u), δFη f f z,S f z(u), δFξgx2n+1,Tx2n+1 (u), δFξgx2n+1,S f z(u), δFη f f z,Tx2n+1 (u)

}
.

(2.61)

By the condition (ii), η f = f η, S f = f S, so we have η f ( f z)= f (η f z)= f z and S( f z)=
{ f (Sz)} = { f z}. Taking limn→∞ inf , by Lemma 2.8,

F f z,z
(
φ(u)

)≥min
{
F f z,z(u),F f z, f z(u),Fz,z(u),Fz, f z(u),F f z,z(u)

}= F f z,z(u). (2.62)

So we get f z = z.
Hence, by Steps 1 and 4, we have η f z = z and f z = z, which implies ηz = z. Therefore,

{z} = { f z} = {ηz} = Sz.
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Step 5. For u > 0 with β = 1 in condition (v), we get

δFSx2n,Tgz
(
φ(u)

)

≥min
{
Fη f x2n,ξggz(u), δFη f x2n,Sx2n(u),δ Fξggz,Tgz(u), δFξggz,Sx2n(u), δFη f x2n,Tgz(u)

}
.

(2.63)

Since Tg = gT and ξg = gξ, we have Tgz = {gTz} = {gz} and ξg(gz)= g(ξgz)= gz. Tak-
ing limn→∞ inf , by Lemma 2.8, we get

Fz,gz
(
φ(u)

)≥min
{
Fz,gz(u),Fz,z(u),Fgz,gz(u),Fgz,z(u),Fz,gz(u)

}= Fz,gz(u). (2.64)

So we get gz = z.
Hence, by Steps 3 and 5, we have ξgz = z and gz = z, which implies ξz = z.
So we have {z} = {gz} = {ξz} = Tz.
Therefore, we have

{z} = { f z} = {gz} = {ηz} = {ξz} = Sz = Tz. (2.65)

Last, we want to prove the uniqueness. Let y be the another commom fixed point of η,
f , ξ, g, S, and T . Then for u > 0,

Fz,y
(
φ(u)

)= δFSz,Ty
(
φ(u)

)

≥min
{
Fη f z,ξg y(u), δFη f z,Sz(u),δ Fξg y,Ty(u),δ Fξg y,Sz(u),δ Fη f z,Ty(u)

}

≥min
{
Fz,y(u),Fz,z(u),Fy,y(u),Fy,z(u),Fygz(u)

}= Fz,y(u).

(2.66)

This implies y = z. We complete the proof. �

If we take f = g = I , the identity map on X in Theorem 2.9, then we immediately have
the following corollary.

Corollary 2.10. Let (X ,�,min) be a complete Menger space. Let η,ξ : X → X be two
single-valued functions, and let S,T : X → B(X) be two set-valued functions. If the following
conditions are satisfied:

(i) S(X)⊂ ξ(X), T(X)⊂ η(X),
(ii) η or ξ is continuous,

(iii) (S,η) and (T ,ξ) are compatible,
(iv) for u > 0,

δFSx,Ty
(
φ(u)

)≥min
{
Fηx,ξ y(u), δFηx,Sx(u), δFξy,Ty(u), δFξy,Sx(βu), δFηx,Ty

(
(2−β)u

)}

(2.67)

for all x, y ∈ X , β ∈ (0,2), where φ ∈Φ, then η, ξ, S, and T have a unique common
fixed point z in X .

By the same process of the proof of Theorem 2.9, we also get the results of Theorem
2.11.
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Theorem 2.11. Let (X ,�,min) be a complete Menger space. Let f ,g,η,ξ : X → X be four
single-valued functions, and let S,T : X → B(X) be two set-valued functions. If the following
conditions are satisfied:

(i) S(X)⊂ ξg(X), T(X)⊂ η f (X),
(ii) η f = f η, ξg = gξ, S f = f S, Tg = gT ,

(iii) η f or ξg is continuous,
(iv) (S,η f ) and (T ,ξg) are compatible,
(v) for u > 0,

δFSx,Ty
(
φ(u)

)≥min
{
Fη f x,ξg y(u), δFη f x,Sx(u), δFξg y,Ty(u),DFξg y,Sx(u) + DFη f x,Ty(u)

}

(2.68)

for all x, y ∈ X , where φ ∈Φ, then f , g, η, ξ, S, and T have a unique common fixed
point z in X .

If we take f = g = I , the identity map on X in Theorem 2.11, then we immediately
have the following corollary.

Corollary 2.12. Let (X ,�,min) be a complete Menger space. Let η,ξ : X → X be two
single-valued functions, and let S,T : X → B(X) be two set-valued functions. If the following
conditions are satisfied:

(i) S(X)⊂ ξ(X), T(X)⊂ η(X),
(ii) η or ξ is continuous,

(iii) (S,η) and (T ,ξ) are compatible,
(iv) for u > 0,

δFSx,Ty
(
φ(u)

)≥min
{
Fηx,ξ y(u), δFηx,Sx(u), δFξy,Ty(u),DFξy,Sx(u) +D Fηx,Ty(u)

}
(2.69)

for all x, y ∈ X , where φ∈Φ, then η, ξ, S, and T have a unique common fixed point
z in X .
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