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The concept of η-invex set is explored and the concept of T-η-invex function is intro-
duced. These concepts are applied to the generalized vector variational inequality prob-
lems in ordered topological vector spaces. The study of variational inequality problems is
extended to H-spaces and differentiable n-manifolds. The solution of complementarity
problem is also studied in the presence of fixed points or Lefschetz number.
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1. Introduction

Variational inequality theory has become a rich source of inspiration in pure and applied
mathematics. In recent years, classical variational inequality problem has been extended
to study a wide class of problems arising in mechanics, physics, optimization and con-
trol, nonlinear programming, economics, finance, regional, structural, transportation,
elasticity and applied sciences, and so forth. They have been extended and generalized in
different directions by using novel and innovative techniques and ideas. In this paper, we
extend the study of variational inequality problems to H-spaces and n-manifolds. First
we extend the concept of η-invex sets and introduce the concept of T-η-invex function
and study their applications to the generalized vector variational inequality problems in
ordered topological vector spaces.

2. η-invex set and T-η-invex function in ordered topological vector spaces

The notion of invexity was introduced by Hanson [8] as a generalization of the con-
cept of convexity. Now this concept is broadly used in the theory of optimization. Many
authors have studied different types of convex and invex functions in different vector
spaces. Suneja et al. [13] have studied K-convex functions in finite-dimensional vector
spaces. Mititelu [11] has studied the concept of η-invex functions in the differentiable
manifolds. We recall the concept of η-invex set.
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2 Variational inequality problems in H-spaces

Definition 2.1 [8]. Let X be a topological vector space and K ⊂ X a nonempty subset of
X . K is said to be an η-invex set if there exists a vector function η : K ×K → Xsuch that
y + tη(x, y) ∈ K for all x, y ∈ K and for all t ∈(0,1). For an example of η-invex set, see
Example 2.7.

We make the following definitions for the vector function η for our need.

Definition 2.2 (Condition C0). Let X be a topological vector space and K a nonempty
subset of X . A vector function η : K ×K → X is said to satisfy condition C0 if the following
hold:

η
(
x′ +η(x,x′),x′

)
+η
(
x′,x′ +η(x,x′)

)= 0,

η
(
x′ + tη(x,x′),x′

)
+ tη(x,x′)= 0

(2.1)

for all x,x′ ∈ K , for all t ∈ (0,1).

Example 2.3 (Condition C0). Let X = R. Let K = [0,∞) be any nonempty convex sub-
set of X . Define the vector function η : K ×K → X by the rule η(x,x′) = x′ − x for all
x,x′ ∈ K . η(x′ + η(x,x′),x′) + η(x′,x′ + η(x,x′)) = x′ − x′ − η(x,x′) + x′+η(x,x′)− x′ = 0
and for all t ∈ (0,1), η(x′ + tη(x,x′),x′) = x′ − x′ − tη(x,x′) = −tη(x,x′). Thus η(x′ +
tη(x,x′),x′) + tη(x,x′)= 0 for all x, x′ ∈ K .

Theorem 2.4. Let K ⊂ X be a nonempty pointed subset of the topological vector space X.
Let p : X → X be a linear projective map (p2 = p). Let η : K ×K → X be a vector-valued
mapping defined by the rule η(x,x′)= p(x′)− p(x). Then η satisfies condition C0.

Proof. For all x,x′ ∈ K , η(x′ +η(x,x′),x′) +η(x′,x′ +η(x,x′))= p(x′)− p(x′ +η(x,x′)) +
p(x′ + η(x,x′))− p(x′) = 0. If p is projective, then η(x′ + tη(x,x′),x′) = p(x′)− p(x′ +
tη(x,x′))= p(x′)−p(x′)− p(tη(x,x′))=−tp(η(x,x′))=−tp(p(x′)−p(x))=−t(p2(x′)−
p2(x))=−t(p(x′)− p(x))=−tη(x,x′). �

We use the following result of Ky Fan in our work.

Theorem 2.5 [6, Theorem 4.3.1, page 116]. Let K be an arbitrary nonempty set in a Hous-
dorff topological vector space X . Let the set-valued mapping F : K → 2X be a KKM map such
that

(a) F(x) is closed for all x ∈ K ,
(b) F(x) is compact for at least one x ∈ K .

Then ∩x∈KF(x) �= ∅.

Theorem 2.6. Let X be a topological vector space and let K be any nonempty η-invex sub-
set of X . Let (Y ,P) be an ordered topological vector space equipped with the closed convex
pointed cone P with intP �= ∅. Let L(X ,Y) be the set of linear continuous functionals from
X to Y . Let T : K → L(X ,Y) and η : K ×K → X be continuous mappings. Assume that

(a) 〈T(x),η(x,x)〉 /∈− intP for all x ∈ K ,
(b) for each u∈ K , the set B(u)= {x ∈ K : 〈T(u),η(x,u)〉 ∈ − intP} is an η-invex set,
(c) the map u �→ 〈T(u),η(x,u)〉 is continuous on the finite-dimensional subspaces (or at

least hemicontinuos),
(d) for at least one x ∈ K , the set {u∈ K : 〈T(u),η(x,u)〉 /∈− intP} is compact.

Then there exists an x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K .
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Proof. For each u ∈ K , consider the set-valued mapping F : K → 2X defined by the rule
F(x)= {u∈ K : 〈T(u),η(x,u)〉 /∈− intP} for all x ∈ K .

We assert that F(x) is closed for each x ∈ K . Let {un} be a sequence in F(x) such
that un → u. Since un ∈ F(x), we have 〈T(un),η(x,un)〉 /∈ − intP for all x ∈ K , that is,
〈T(un),η(x,un)〉 ∈ (Y−{−intP}) for all x∈K . Since T and η are continuous, we have
〈T(un),η(x,un)〉→〈T(u),η(x,u)〉. Since (Y−{−intP}) is a closed set, 〈T(u),η(x,u)〉 ∈
(Y−{−intP}) for all x ∈ K , that is, 〈T(u),η(x,u)〉 /∈−intP for all x ∈ K . Thus u∈ F(x)
and F(x) is closed.

We claim that F is a KKM mapping. If not there exists a finite subset {x1,x2, . . .,xn} of
K such that Ch({x1,x2, . . .,xn}) �⊂ ∪{F(x) : x ∈ {x1,x2, . . . ,xn}}, that is, Ch({x1,x2, . . . ,xn})
�⊂ F(x) for any x ∈ {x1,x2, . . . ,xn}, where Ch({x1,x2, . . . ,xn}) denotes the convex hull of
{x1,x2, . . . ,xn}. Let w ∈ Ch({x1,x2, . . . ,xn}) such that w /∈ ∪{F(x) : x ∈ {x1,x2, . . .,xn}},
that is, w /∈ F(x) for any x ∈ {x1,x2, . . .,xn}. Note that w ∈ K . Thus 〈T(w),η(x,w)〉 ∈
− intP for all x ∈ {x1,x2, . . .,xn}; this shows that x ∈ {x1,x2, . . . ,xn} ⊂ Ch({x1,x2, . . .,xn})⊂
B(w) (since every convex set is a subset of invex set). Hence w ∈ B(w), that is, 〈T(w),
η(w,w)〉 ∈ − intP, which contradicts (a). Thus F is a KKM mapping. Hence by Theorem
2.6, ∩{F(x) : x ∈ K} �= ∅, that is, there exists x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈− intP
for all x ∈ K . �

We illustrate Theorem 2.6 by an example.

Example 2.7. Let X = {si : s ∈ (−∞,∞)}, K = {si : s ∈ [0,∞)}, Y = R, P = [0,∞). Let
η : K ×K → X be defined by η(u,v)= u− v. Let T : K → L(X ,Y) be defined by T(x)=−x
for all x ∈ K and 〈T(u),x〉 = T(u) · x for all u∈ K and x ∈ X .

(a) For all x ∈ K , 〈T(x),η(x,x)〉 = x(x− x)=P 0.
(b) Let a,b ∈ B(u). We show b+ tη(a,b)∈ B(u). First we show that t〈T(u),η(a,u)〉+

(1− t)〈T(u),η(b,u)〉 − 〈T(u),η(b + tη(a,b),u)〉 = 0 for all a,b ∈ B(u) and for
all t ∈ (0,1) : t〈T(u),η(a,u)〉+ (1− t)〈T(u),η(b,u)〉− 〈T(u),η(b+ tη(a,b),u)〉 =
t(−u)(a− u) + (1− t)(−u)(b− u)− (−u)η(b + t(a− b),u) = (−u)(ta− tu + b−
u− tb + tu)− (−u)(b + ta− tb − u) = (−u)(ta− tu + b − u− tb + tu− b − ta +
tb+u)= (−u)0= 0. Hence for each u∈ K , tT(u), η(a,u) + (1− t)T(u), η(b,u)−
T(u), η(b+ tη(a,b),u)= 0 /∈− intP for all a,b ∈ B(u).

As a,b∈B(u), 〈T(u),η(a,u)〉∈− intP, 〈T(u),η(b,u)〉 ∈ − intP. Now for any t ∈ (0,1),
〈T(u),η(b + tη(a,b),u)〉 = t〈T(u),η(a,u)〉+ (1− t)〈T(u),η(b,u)〉 ∈ − intP for all a,b ∈
B(u). Hence b+ tη(a,b)∈ B(u) for all a,b ∈ B(u) and for all t ∈ (0,1).

(c) It is obvious that the map u �→ 〈T(u),η(x,u)〉 is continuous.
(d) At x = u,〈T(u),η(x,u)〉 = T(u)(x− u) = 0 for all u ∈ K showing for at least one

x = 0∈ K , the set {u∈ K : 〈T(u),η(x,u)〉 /∈− intP} is compact.
All the conditions of Theorem 2.6 are satisfied. Hence there exists 0x0 = 0∈ K solving

the problem 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K .
We introduce the concept of T-η-invexity.

Let X be a topological vector space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of linear functional from X to Y and let η : X ×X → X be a vector-valued function,
where K is any subset of X . Let T : K → L(X ,Y) be an operator.
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Definition 2.8. f is said to be T-η-invex in K if f (x)− f (x′)−〈T(x′),η(x,x′)〉 ≥P 0 (i.e.,
/∈− intP).

Remark 2.9. IfX =R,Y =R,K = (0,1),T =∇ f , and P = [0,∞) and if f is differentiable,
then Definition 2.8 coincides with the definition of a differentiable convex function.

Definition 2.10. T is said to be η-monotone if there exists a vector function η : K ×K → X
such that 〈T(x′),η(x,x′)〉+ 〈T(x),η(x′,x)〉 /∈ intP for all x,x′ ∈ K .

Example 2.11. Let X =R, K =R+, Y =R2, P =R2
+. Let f : K → Y be defined by f (u)=

[u
2

0 ] for all u∈ K and let T : K → L(X ,Y) be defined by T(u)= [−2u
0 ] for all u∈ K , where

〈T(u),x〉 = T(u) · x, u ∈ K , x ∈ X . Define a vector function η : K ×K → X by η(u,v) =
u+ v for all u,v ∈ K . Now for all u,v ∈ K , we have

f (u)− f (v)−〈T(v),η(u,v)〉 =
⎡

⎣
u2

0

⎤

⎦−
[
v2

0

]

−
[−2v

0

]

[u+ v]

=
[
u2− v2 + 2v(u+ v)

0

]

=
[

(u+ v)2

0

]

/∈− intP,

f (v)− f (u)−〈T(u),η(v,u)〉 =
[
v2

0

]

−
[
u2

0

]

−
[−2u

0

]

[v+u]

=
[
v2−u2 + 2u(v+u)

0

]

=
[

(v+u)2

0

]

/∈− intP

(2.2)

showing f is T-η-invex in K . Next we have

〈T(v),η(u,v)〉+ 〈T(u),η(v,u)〉 =
[−2v

0

]

[u+ v] +

[−2u

0

]

[v+u]

=
[−2(u+ v)

0

]

[u+ v]

=−
[

2(u+ v)

0

]

[u+ v] /∈ intP

(2.3)

for all u,v ∈ K , showing that T is η-monotone in K .
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Example 2.12. Let X = R, K = R+, Y = R2, P = R2
+. Let T : K → L(X ,Y) be defined by

T(u)= [−2u
−u ] for all u∈ K , where 〈T(u),x〉 = T(u)·x, u∈ K , x ∈ X . Define a vector func-

tion η : K ×K → X by η(u,v)= u+ v for all u,v ∈ K . Now for all u,v ∈ K , we have

〈T(v),η(u,v)〉+ 〈T(u),η(v,u)〉 =
[
−2v
−v

]

(u+ v) +

[
−2u
−u

]

(v+u)

=
[
−2
−1

]

(u+ v)2 /∈ intP ∀u,v ∈ K ,

(2.4)

showing that T is η- monotone in K .

Proposition 2.13. Let X be a topological vector space and let (Y ,P) be an ordered topolog-
ical vector space equipped with a closed pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of linear functional from X to Y and let η : X ×X → X be a vector-valued function,
where K is any subset of X . Let T : K → L(X ,Y) be an operator. Let the function f : K → Y
be T-η-invex in K . Then T is η-monotone.

Proof. Let f be T-η-invex in K , then for all x,x′ ∈ K , we have f (x)− f (x′)−〈T(x′),η(x,
x′)〉 /∈ − intP. Interchanging x and x′, we have f (x′)− f (x)−〈T(x),η(x′,x)〉 /∈ − intP.
Adding the above we get−〈T(x′),η(x,x′)〉− 〈T(x),η(x′,x)〉 /∈− intP, that is, 〈T(x′),η(x,
x′)〉+ 〈T(x),η(x′,x)〉 /∈ intP for all x,x′ ∈ K , showing T is η-monotone. �

The converse of Proposition 2.13 is not true, as the following example shows.

Example 2.14. Let X = Y = R and K = [−π/2,π/2], P = [0,∞], T = ∇ f (derivative of
f ). Let f : K → R be defined by f (x)= sinx for all x ∈ K and η : K ×K → X defined by
η(x,x′) = cosx− cosx′ for all (x,x′) ∈ K ×K . Then 〈T(x′),η(x,x′)〉+ 〈T(x),η(x′,x)〉 =
∇ f (x′)η(x,x′) +∇ f (x)η(x′,x) = cosx′(cosx− cosx′) + cosx(cosx′ − cosx) = −(cosx−
cosx′)2 ≤ 0 for all x,x′ ∈ K , showing thatT is η-monotone. But at x =−π/3 and x′ = π/6,
we have f (x)− f (x′)−〈T(x′),η(x,x′)〉 < 0, showing f is not T-η-invex.

3. A complementarity problem

In this section we study a vector complementarity problem in topological vector spaces.
We use the notations of the following result.

Lemma 3.1 [5, Lemma 2.1]. Let (V ,P) be an ordered topological vector space with a closed,
pointed, and convex cone P with intP �= ∅. Then, for all y,z ∈V ,

(i) y− z ∈ intP and y /∈ intP imply z /∈ intP;
(ii) y− z ∈ P and y /∈ intP imply z /∈ intP;

(iii) y− z ∈− intP and y /∈− intP imply z /∈− intP;
(iv) y− z ∈−P and y /∈− intP imply z /∈− intP.

Remark 3.2. For simplicity, we use the following terminologies:
(a) y /∈− intP if and only if y ≥P 0;
(b) y ∈ intP if and only if y >P 0;
(c) y /∈ intP if and only if y ≤P 0;
(d) y ∈− intP if and only if y <P 0;
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(e) y− z /∈− intP if and only if y− z ≥P 0 (i.e., y ≥P z);
(f) y− z /∈ intP if and only if y− z ≤P 0 (i.e., y ≤P z);
(g) y− z /∈ (intP∪ (− intP)) if and only if y− z =P 0, (i.e., y =P z).

We also use the following terminologies as and when required:
(A) y− z /∈−P and z /∈− intP imply y /∈− intP;
(B) y− z /∈− intP and z /∈− intP imply y /∈− intP;
(C) y− z /∈−P and y ∈− intP imply z ∈− intP;
(D) y− z /∈− intP and y ∈− intP imply z ∈− intP;
(E) y− z ∈− intP and z ∈− intP imply y ∈− intP;
(F) y /∈− intP if and only if −y /∈ intP;
(G) y /∈− intP and z /∈− intP imply y + z /∈− intP.

Definition 3.3. Let X be a topological vector space and let (Y ,P) be an ordered topological
vector space equipped with a closed convex pointed cone P such that intP �= ∅. Let K
be any subset of X , let L(X ,Y) be the set of all linear functionals from X to Y , and let
η : K ×K → X be a vector-valued function. Let T : K → L(X ,Y) be an arbitrary map.

The generalized vector variational inequality problem (GVVI) and the generalized vector
complementarity problem (GVCP) are defined as follows.

GVVI: find x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K .
GVCP: find x0 ∈ K such that 〈T(x0),η(x,x0)〉 ∈ (Y − (intP∪ (− intP))) for all x ∈ K .

We prove the following result concerning GVCP.

Theorem 3.4. Let K be a nonempty compact cone in a topological vector space X and let
(Y ,P) be an ordered topological vector space equipped with a convex pointed cone P such that
intP �= ∅. Let L(X ,Y) be the set of all linear functionals from X to Y and let η : K ×K → X
be a continuous vector-valued function. Let T : K → L(X ,Y) be an arbitrary continuous map
and let K be η-invex.

Let the following conditions hold:
(a) 〈T(x),η(x,x)〉 =P 0 for all x ∈ K ,
(b) for each u∈ K , the set B(u)= {x ∈ K : 〈T(u)η(x,u)〉 ∈ − intP} is an η-invex set,
(c) η satisfies condition C0.

Then there exists x0 ∈ K such that 〈T(x0),η(x,x0)〉 ∈ (Y − (intP∪ (− intP))) for all x ∈ K .

Proof. By Theorem 2.6, there exists x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈
K , that is, 〈T(x0),η(x,x0)〉 ≥P 0 for all x ∈ K . Since K is η-invex cone, x0 + tη(x,x0)∈ K
for all x ∈ K . Replacing x by x0 + tη(x,x0), we get 〈T(x0),η(x0 + tη(x,x0),x0)〉 ≥P 0 for all
x ∈ K . Thus 0≤P 〈T(x0),η(x0 + tη(x,x0),x0)〉 = 〈T(x0),−tη(x,x0)〉 = −t〈T(x0),η(x,x0)〉
(by (c)) and hence −t〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K . Since t > 0, we have 〈T(x0),
η(x,x0)〉 /∈ intP. Hence 〈T(x0),η(x,x0)〉 /∈ {− intP} ∪ {intP} for all x ∈ K showing
〈T(x0),η(x,x0)〉 ∈ (Y − (intP∪ (− intP))) for all x ∈ K . �

4. Variational inequality problems in H-spaces

In the recent past H-spaces have become an interesting area of research domain for study-
ing variational-type inequality [1, 14] because most of the pivotal concepts such as convex
sets, weakly convex sets, and KKM maps in Banach spaces are, respectively, replaced by
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H-convex sets, H-weakly convex sets, and H-KKM maps in H-spaces. In this section we
establish an inequality in H-space and obtain the traditional variational and variational-
type inequalities as particular cases of the newly obtained inequality. We also discuss the
uniqueness of the solutions of the inequality with examples.

Several generalizations of the celebrated Ky Fan minimax inequality [7] have already
appeared. This study requires the use of KKM theorem. In [1] Bardaro and Ceppitelli
have explained the necessity of generalizing the reformulation of the KKM theorem for
generalizing minimax inequality for functions taking values in ordered vector spaces.

In this section we prove certain results in H-spaces.

Definition 4.1 [1]. LetX be a topological space and let {ΓA} be a given family of nonempty
contractible subsets of X , indexed by finite subsets of X . A pair (X ,{ΓA}) is said to be an
H-space if A⊂ B implies ΓA ⊂ ΓB.

Let (X ,{ΓA}) be an H-space. A subset D ⊂ X is said to be H-convex if ΓA ⊂D for every
finite subset A⊂D.

A subset D ⊂ X is said to be weakly H-convex if ΓA∩D is nonempty and contractible
for every finite subset A⊂D. This is equivalent to saying that the pair (D,{ΓA∩D}) is an
H-space.

A subset K ⊂ X is said to be H-compact if there exists a compact and weakly H-convex
set D ⊂ X such that K ∪A⊂D for every finite subset A⊂ X .

In a given H-space a multifunction F : X → 2X is said to be H-KKM if ΓA ⊂∪{F(x) :
x ∈ A} for every finite subset A⊂ X .

In this section we present an application of [1, Theroem 1, page 486]. In fact we estab-
lish an inequality associated with the variational inequality or variational-type inequality.

Let X be a topological vector space, let (Y ,P) be an ordered topological vector space
equipped with closed convex pointed cone with intP �= ∅, and let L(X ,Y) be the set of
continuous linear functionals from X to Y . Let the value of f ∈ L(X ,Y) at x ∈ X be
denoted by 〈 f ,x〉. Let K be a convex set in X with 0 ∈ K and let T : K → L(X ,Y) be
any map. The variational inequality problem is to find x0 ∈ K such that 〈T(x0),v− x0〉 /∈
− intP for all v ∈ K .

Theorem 4.2. Let (X ,{ΓA}) be an H-space. Assume that X is Hausdorff. Let N be a subset
of X ×X having the following properties.

(a) For each x ∈ X , (x,x)∈N .
(b) For each fixed y ∈ X , the set N(y)= {x ∈ X : (x, y)∈N} is closed in X.
(c) For each x ∈ X , the set M(x)= {y ∈ X : (x, y) /∈N} is H-convex.
(d) There exists a compact set L ⊂ X and an H-compact set W ⊂ X such that for each

weakly H-convex set D with W ⊂D ⊂ X , ∩y∈D({x ∈ X : (x, y)∈N}∩D)⊂ L.
Then there exists x0 ∈ X such that {x0}×X ⊂N .

Proof. Define a set-valued map F : X → 2X by the rule F(y)= {x ∈ X : (x, y)∈N}. By (a),
F(y) �= ∅ for each y ∈ X . Since X is Hausdorff, by (b), F(y) is compactly closed for each
y ∈ X . We assert that F is an H-KKM map. Suppose to the contrary that F is not an H-
KKM map .Then there exists a finite set A⊂ X such that ΓA �⊂ ∪y∈AF(y). Thus there exists
some u∈ ΓA such that (u, y) /∈N for all y ∈ A. Let M(u)= {y ∈ X : (u, y) /∈N}. By (c),
M(u) is H-convex . We observe that A⊂M(u). By the H-convexity of M(u), ΓA ⊂M(u).



8 Variational inequality problems in H-spaces

Thus u∈M(u), that is, (u,u) /∈N , which is a contradiction to (a). Hence F is an H-KKM
map.

By (d) there exists a compact set L ⊂ X and an H-compact set W ⊂ X such that for
each weakly H-convex set D with W ⊂D ⊂ X , we have∩y∈D({x ∈ X : (x, y)∈N}∩D)⊂
L, that is,∩y∈D(F(y)∩D)⊂ L. Thus by [1, Theorem 1, page 486],∩y∈XF(y) �= ∅. Hence
there exists x0 ∈ X such that {x0}×X ⊂N . �

The following result is a slightly different version of Theorem 4.2.

Theorem 4.3. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with closed convex pointed cone with intP �= ∅. Let K be a convex set in X ,
with 0∈ K . Assume that X is Hausdorff. Let f : K ×K → Y be a continuous map having the
following properties.

(a) For each x ∈ X , f (x,x) /∈− intP.
(b) For each fixed v ∈ K , the set {x ∈ K : f (x,v) /∈− intP} is closed in X.
(c) For each x ∈ K , the set {v ∈ K : f (x,v)∈− intP} is H-convex.
(d) There exists a compact set L ⊂ X and an H-compact set W ⊂ X , such that for each

weakly H-convex set D with W⊂D⊂X , ∩v∈D({x∈K : f (x,v) /∈− intP}∩D)⊂ L.
Then there exists x0 ∈ K such that f (x0,v) /∈− intP for all v ∈ K .

Proof. LetN = {(x,v) : f (x,v) /∈− intP} ⊂ K ×K . By (a),N is nonempty since (x,x)∈N
for each x ∈ K . For each v ∈ K consider the set N(v) = {x ∈ X : (x,v) ∈ N} = {x ∈ X :
f (x,v) /∈ − intP}. By (b), N(v) is closed for each v ∈ K . By (c), for each x ∈ K , the set
M(x)= {v ∈ K : (x,v) /∈ N} = {v ∈ K : f (x,v)∈− intP} is H-convex . By (d), there ex-
ists a compact set L ⊂ X and an H-compact set W ⊂ X such that for each weakly H-
convex set D with W ⊂ D ⊂ X , we have ∩y∈D({x ∈ K : f (x,v) ∈ N} ∩D) ⊂ L. Thus
all the conditions of Theorem 4.2 are satisfied and hence there exists x0 ∈ K such that
{x0}×K ⊂N , that is, (x0,v)∈N for all v ∈ K . This means there exists x0 ∈ K such that
f (x0,v) /∈− intP for all v ∈ K . �

Remarks 4.4. In Theorem 4.3 we take X to be a Hausdorff topological real vector space
with dual X∗, Y =R and P = [0,∞). Clearly X is an H-space. Let K be a nonempty con-
vex subset of X . Let T : K → X∗, η : K ×K → X , θ : K ×K →R, g : K → X be continuous
functions satisfying some appropriate conditions as and when required. We consider the
following cases.

Case 1. In Theorem 4.3 if we define f : K ×K → R by the rule f (x, y) = 〈Tx, y − x〉,
then there exists x0 ∈ K such that 〈Tx0, y− x0〉 ≥ 0 for all y ∈ K , which is the variational
inequality as given in [4, Theorem 1, page 780]; also see [9, Theorem 4.32, page 116], [12,
Theorem 1, page 90].

Case 2. In Theorem 4.3 if we define f : K ×K → R by the rule f (x, y) = 〈Tx,η(y,x)〉,
then there exists x0∈K such that 〈Tx0,η(y,x0)〉 ≥ 0 for all y∈K , which is the variational-
type inequality as given in [2, Theorem 2.1, Theorem 2.2, page 184].

Case 3. In Theorem 4.3 if we define f : K ×K → R by the rule f (x, y)= 〈Tx, y− g(x)〉,
then there exists x0 ∈ K such that 〈Tx0, y− g(x0)〉 ≥ 0 for all y ∈ K , which is the varia-
tional inequality as given in [9, Proposition 6. 2.2, page 170].
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Case 4. In Theorem 4.3 if we define f : K ×K → R by the rule f (x, y) = 〈Tx,η(y,x)〉+
θ(x, y), then there exists x0 ∈ K such that 〈Tx0,η(y,x0)〉 + θ(x0, y) ≥ 0 for all y ∈ K ,
which is the variational-type inequality as given in [3, Theorem 2.1, page 346; Theorem
2.2, page 347].

The following result characterizes the uniqueness of the solution of the inequality
f (x0,v) /∈− intP obtained in Theorem 4.3.

Theorem 4.5. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with closed convex pointed cone with intP �= ∅. Let K be a convex set in X ,
with 0∈ K . Assume that X is Hausdorff. Let f : K ×K → Y be a continuous map such that

(a) f (x,v) + f (v,x) /∈ intP for all x,v ∈ K ,
(b) f (x,v) + f (v,x)=P 0 implies x = v.

Then if the problem, find x0 such that f (x0,ν) for all ν∈ K , is solvable, then it has a unique
solution.

Proof. Let x1,x2 ∈ K be such that f (x1,v) /∈ − intP and f (x2,v) /∈ − intP for all v ∈ K ;
putting v = x2 in the former inequality and v = x1 in the later inequality we see that
f (x1,x2) /∈ − intP and f (x2,x1) /∈ − intP and on adding we get f (x1,x2) + f (x2,x1) /∈
− intP. This combined with inequality (a) gives f (x1,x2) + f (x2,x1)=P 0. Hence by (b),
we have x1 = x2. �

The following examples illustrate Theorem 4.5. Example 4.6, given below, shows that
fulfillment of conditions (a) and (b) does not guarantee the existence of the solution of
the problem, stated in Theorem 4.5.

Example 4.6. Let X = R and define f : X × X → R by f (x,v) = −e−x|x − v|. Clearly
f (x,v) + f (v,x)=−(e−x + e−v)|x− v| ≤ 0. Furthermore f (x,v) + f (v,x)= 0 implies that
x = v. It is clear that there is no x0 ∈ K satisfying f (x0,v) = −e−x0|x0 − v| ≥ 0 for all
v ∈ X .

In Example 4.7 the function f : X ×X →R satisfies conditions (a) and (b) of Theorem
4.5 and at the same time the problem stated in Theorem 4.5 has a unique solution.

Example 4.7. Let X = [0,∞) and define f : X ×X → R by f (x,v) = −x2|x− v|. Clearly
f (x,v) + f (v,x) = −(x2 + v2)|x− v| ≤ 0. Furthermore f (x,v) + f (v,x) = 0 implies that
either x2 + v2 = 0 or |x− v| = 0; since x2 and v2 are nonnegative, when x2 + v2 = 0, we
have x = 0 and v = 0 and when |x− v| = 0 we have certainly x = v. Thus conditions (a)
and (b) of Theorem 4.5 hold. In this example we have a unique solution x0 = 0 to the
problem of Theorem 4.5, for f (x0,v) ≥ 0 for all v ∈ X implies −x2

0|x0 − v| ≥ 0 for all
v ∈ X ; since |x0− v| �= 0, the only solution is x0 = 0.

We explore some characteristics of generalized vector variational inequality problems
in H-spaces.

Theorem 4.8. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅ and K ⊂ X . Let
L(X ,Y) be the set of all linear functionals fromX to Y and let T : K → L(X ,Y) be a mapping.
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Let η : K ×K → X be a vector valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K ;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty.
Then f (x′)−〈T(x′),η(x,x′)〉 /∈− intP for all x,x′ ∈ K .

Proof. Define a set-valued mapping F : K→2X by the rule F(x)={x′ ∈ X : f (x′)−〈T(x′),
η(x,x′)〉 /∈− intP} for each x ∈ K . Clearly F(x) is nonempty for each x ∈ K .

It is enough to prove that F is an H-KKM mapping. If not, then there exists a finite set
A ⊂ K such that ΓA �⊆ ∪{F(x) : x ∈ A}. Let z ∈ ΓA such that z /∈ ∪{F(x) : x ∈ A}. Thus
z /∈ F(x) for all x ∈ A, that is, f (z)−〈T(z),η(x,z)〉 ∈ − intP for all x ∈ A. Since f is T-
η-invex in X , at z, we have f (x)− f (z)− 〈T(z),η(x,z)〉 /∈ − intP for all x ∈ A. By (a),
f (z) /∈− intP, so by Lemma 3.1(i) we have f (x)−〈T(z),η(x,z)〉 /∈− intP for all x ∈ A.
Thus f (x)−〈T(z),η(x,z)〉 ∈ − intP for all x ∈ A, that is, 〈T(z),η(x,z)〉− f (x)∈− intP
for all x ∈A and we obtain f (z)− f (x)∈− intP for all x ∈ A. Hence x ∈ Bz for all x ∈A.
Thus A ⊂ Bz and by H-convexity of Bz, ΓA ⊂ Bz . Since z ∈ ΓA, we have z ∈ Bz, that is,
f (z)− f (z)∈− intP giving 0∈− intP, which is a contradiction because by the pointed-
ness condition of P, 0 ∈ P∩ (−P) implies that 0 /∈ (intP)∪ (− intP). Hence F is an H-
KKM mapping. �
Theorem 4.9. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C ⊂D ⊂ X ,∩{x∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L.
Then there exists x0 ∈ K such that f (x0)−〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K .

Proof. As in the proof of Theorem 4.8, for each x ∈ K the set-valued mapping F(x)=
{x′ ∈ X : f (x′)−〈T(x′)η(x,x′)〉 /∈−intP} is anH-KKM mapping. We show that∩{F(x) :
x ∈ X} �= ∅. By [1, Theorem 1, page 486] we need to show that F is closed. Let {zn} ⊂
F(x) be a sequence in F(x) where zn→ z, then we show that z ∈ F(x). Since the map z �→
f (z)−〈T(z),η(x,z)〉 is continuous, we have f (z)−〈T(zn),η(x,zn)〉 → f (z)−〈T(z)η(x,z)〉.
But we have f (zn)−〈T(zn),η(x,zn)〉 /∈−intP. Thus f (zn)−〈T(zn),η(x,zn)〉∈(Y−{−intP}).
But (Y − {− intP}) is closed. Therefore f (z)− 〈T(z),η(x,z)〉 ∈ (Y − {− intP}) giving
f (z)−〈T(z),η(x,z)〉 /∈ − intP. Hence z ∈ F(x). Thus there exists x0 ∈ ∩{F(x) : x ∈ X},
such that f (x0)−〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K . This proves the theorem. �

The following result is a direct consequence of Theorem 4.9.
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Theorem 4.10. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C⊂D⊂X , ∩{x ∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L;
(f) 〈T(x′),η(x,x′)〉 ≥P 0 for all x,x′ ∈ K , x �= x′.

Then there exists x0 ∈ K such that
(i) f (x)−T(x), η(x0,x) /∈− intP for all x ∈ K ;

(ii) 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K ;
(iii) f (x)− f (x0) /∈− intP for all x ∈ K ;
(iv) { f (x)−〈T(x),η(x0,x)〉}−{ f (x0)−〈T(x0),η(x,x0)〉} /∈− intP for all x ∈ K .

Proof. (i) Theorem 4.9 gives the existence of x0 ∈ K . Since T is η-monotone (Proposition
2.13) 〈T(x0),η(x,x0)〉 + 〈T(x),η(x0,x)〉 ≤P 0 for all x ∈ K . By (f), at x′ = x0, we have
−〈T(x),η(x0,x)〉 ≥P 〈T(x0),η(x,x0)〉 ≥P 0 (by (f)) for all x ∈ K and hence by (a) f (x)−
〈T(x),η(x0,x)〉 ≥P 0 for all x ∈ K , that is, f (x)−〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K .

(ii) From (f), at x′ = x0, we have 〈T(x0),η(x,x0)〉 ≥P 0 for all x ∈ K . As in the proof
of (i) −〈T(x),η(x0,x)〉 ≥P 0. Thus 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 ≥P 0 for all x ∈ K ,
that is, 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K .

(iii) By T-η-invexity of f , f (x)− f (x0)− 〈T(x0),η(x,x0)〉 ≥P 0 for all x ∈ K , that
is, f (x)− f (x0) ≥P 〈T(x0),η(x,x0)〉 ≥P 0 (by (f)) for all x ∈ K , that is, f (x)− f (x0) /∈
− intP for all x ∈ K .

(iv) Addition of (ii) and (iii) gives { f (x)− 〈T(x),η(x0,x)〉} − { f (x0)− 〈T(x0),η(x,
x0)〉} ≥P 0 for all x ∈ K , that is, { f (x)−〈T(x),η(x0,x)〉}−{ f (x0)−〈T(x0),η(x,x0)〉} /∈
− intP for all x ∈ K . �

Theorem 4.11. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K ;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C⊂D⊂X , ∩{x ∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L;
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(f) 〈T(x′),η(x,x′)〉 ≥P 0 for all x,x′ ∈ K , x �= x′.
Then there exists x0 ∈ K such that { f (x)−〈T(x),η(x0,x)〉}−{ f (x0)−〈T(x0),η(x,x0)〉} /∈
− intP for all x ∈ K .

Proof. Theorem 4.9 gives the existence of x0 ∈ K . Since f isT-η-invex inK f (x)− f (x0)−
〈T(x0),η(x,x0)〉 /∈ − intP for all x ∈ K , that is, f (x)− f (x0)−〈T(x0),η(x,x0)〉 ≥P 0 for
all x ∈ K . Thus f (x)−〈T(x),η(x0,x)〉− f (x0) ≥P 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 for
all x ∈ K . Again since T is η-monotone, we have 〈T(x0),η(x,x0)〉 + 〈T(x),η(x0,x)〉 /∈
intP for all x ∈ K , that is, 〈T(x0),η(x,x0)〉 + 〈T(x),η(x0,x)〉 ≤P 0 for all x ∈ K . Thus
−〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 ≥P 0 for all x ∈ K , that is,−〈T(x),η(x0,x)〉≥P 〈T(x0),
η(x,x0)〉 for all x ∈ K . Since 〈T(x0),η(x,x0)〉 ≥P 0, we have,−〈T(x),η(x0,x)〉 ≥P−〈T(x0),
η(x,x0)〉 for all x ∈ K . From the above we conclude that f (x)−〈T(x),η(x0,x)〉− f (x0)≥P

〈T(x0),η(x,x0)〉− 〈T(x0),η(x,x0)〉, that is, f (x)−〈T(x),η(x0,x)〉− f (x0) + 〈T(x0),η(x,
x0)〉 ≥P 〈T(x0),η(x,x0)〉 ≥P 0. Hence { f (x) − 〈T(x),η(x0,x)〉} − { f (x0) − 〈T(x0),η(x,
x0)〉} ≥P 0 for all x ∈ K , that is, { f (x)−〈T(x),η(x0,x)〉}−{ f (x0)−〈T(x0),η(x,x0)〉} /∈
− intP for all x ∈ K . �

Theorem 4.12. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K ;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C⊂D⊂X , ∩{x ∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L;
(f) 〈T(x′),η(x,x′)〉 ≥P 0 for all x,x′ ∈ K , x �= x′.

Then there exists x0 ∈ K such that f (x)− f (x0) /∈− intP for all x ∈ K .

Proof. Theorem 4.9 gives the existence of x0 ∈ K . Since f isT-η-invex inK f (x)− f (x0)−
〈T(x0),η(x,x0)〉 /∈ − intP for all x ∈ K , that is, f (x)− f (x0)−〈T(x0),η(x,x0)〉 ≥P 0 for
all x ∈ K . By (f), at x′ = x0, we have 〈T(x0),η(x,x0)〉 ≥P 0. Hence f (x)− f (x0)≥P 0, that
is, f (x)− f (x0) /∈− intP for all x ∈ K . �

Theorem 4.13. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K ;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
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(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C⊂D⊂X , ∩{x ∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L;
(f) 〈T(x′),η(x,x′)〉 ≥P 0 for all x,x′ ∈ K , x �= x′;
(g) 〈T(x′),η(x,x′)〉− 〈T(x),η(x′,x)〉 ≥P 0 for all x,x′ ∈ K , x �= x′.

Then there exists x0 ∈ K such that f (x)−〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K .

Proof. Theorem 4.9 gives the existence of x0 ∈ K . By condition (g), at x′ = x0, 〈T(x0),η(x,
x0)〉− 〈T(x),η(x0,x)〉 /∈−intP for all x ∈ K , that is, 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 ≥P

0 for all x ∈ K . Since f is T-η-invex in K , we have f (x)− f (x0)−〈T(x0),η(x,x0)〉 ≥P 0
for all x ∈ K . Adding the above two inequalities, we get f (x)− f (x0)−〈T(x),η(x0,x)〉 ≥P

0 for all x ∈ K , that is, f (x)−〈T(x),η(x0,x)〉 ≥P f (x0)≥P 0 for all x ∈ K . Hence f (x)−
〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K . �

Theorem 4.14. Let (X ,{ΓA}) be an H-space and let (Y ,P) be an ordered topological vector
space equipped with a closed convex pointed cone P such that intP �= ∅. Let L(X ,Y) be
the set of all linear functionals from X to Y and let T : K → L(X ,Y) be a mapping. Let
η : K ×K → X be a vector-valued function and let f : K → Y be continuous. Assume that
the following conditions hold:

(a) f (x) /∈− intP for all x ∈ K ;
(b) f : K → Y is T-η-invex in K ;
(c) for each u ∈ K the set Bu = {x ∈ X : f (u)− f (x) ∈ − intP} is either H-convex or

empty;
(d) the mapping v �→ f (v)−〈T(v),η(x,v)〉 of K into Y is continuous;
(e) there exists a compact set L⊂ X and an H-compact C ⊂ X , such that, for each weakly

H-convex set D with C⊂D⊂X , ∩{x ∈D : f (x′)−〈T(x′),η(x,x′)〉 /∈− intP} ⊂ L;
(f) 〈T(x′),η(x,x′)〉 ≥P 0 for all x,x′ ∈ K , x �= x′.

Then there exists x0 ∈ K such that
(A) 〈T(x0),η(x,x0)〉−〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K ;
(B) { f (x)−T(x), η(x0,x)}−{ f (x0)−〈T(x0),η(x,x0)〉} /∈− intP for all x ∈ K .

Proof. Theorem 4.12 gives the existence of x0 ∈ K with f (x)− f (x0) /∈ − intP, that is,
f (x)− f (x0)≥P 0 for all x ∈ K .

(A) Since f is T-η-invex in K , f (x0)− f (x)−〈T(x),η(x0,x)〉 /∈− intP for all x ∈ K ,
that is, f (x0)− f (x)−〈T(x),η(x0,x)〉 ≥P 0 for all x ∈ K ; adding this with f (x)−
f (x0) ≥P 0, we get −〈T(x),η(x0,x)〉 ≥P 0. By condition (f) at x′ = x0, we have
〈T(x0),η(x,x0)〉 ≥P 0. Hence 〈T(x0),η(x,x0)〉− 〈T(x),η(x0,x)〉 /∈ − intP for all
x ∈ K .

(B) Addition of (A) with f (x)− f (x0)≥P 0 gives (B). �

5. Variational inequality problem in n-manifolds

In this section, we study the concept of T-η-invex functions and its application in gener-
alized vector variational inequality problems (in short, GVVI) on the manifolds.

Let X and Y be differentiable manifolds with tangent bundles τX and τY , respectively.
Let K be a closed convex cone in the manifold X and let P be a closed, convex, pointed
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ordered cone in Y with intP �= ∅. Let η : K ×K → τX be an application and let T : K →
L(τX ,τY) be the linear application.

The generalized vector variational inequality problem (GVVI)X on the X can be formu-
lated as follows:

(GVVI)X Find x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K .

Definition 5.1 [11]. Let ϕ : X → Rn be a differential vector function. dϕu : τ(X ,u) →
τ(Rn,ϕ(u)) ≡ Rn is called the differential of ϕ at u ∈ X , if dϕu(v) = dϕ(u)(v) for all
v ∈ τ(X ,u).

Definition 5.2 [11]. A differential vector function ϕ : X →Rn is said to be invex at u∈ X
with respect to η (shortly, ϕ is η-invex) if there exists an application η : K ×K → τX such
that ϕ(x)−ϕ(u)≥ dϕu(η(x,u)) for all x ∈ K .

Definition 5.3. An H-space is called an H-differentiable manifold if it is also a differen-
tiable manifold.

Example 5.4. R is an H-differentiable manifold.

In this section we prove some results in H-differentiable manifold (X ,{ΓA}).

Theorem 5.5. Let (X ,{ΓA}) be an H-differentiable manifold with the tangent bundle τX
and K a nonempty closed conex subset of X . Let ϕ : X →Rn be a linear application. Let P be
a closed, convex, and ordered pointed cone in Rn with intP �= ∅. Let L(τX ,Rn) denote the
set of linear maps from τX to τRn ≡Rn. Let T : K → L(τX ,Rn) and η : K ×K → τX be an
application such that η(x,u)∈ τ(X ,u) for all x,u∈ K . Suppose that

(a) (−ϕ) is T-η-invex on K ,
(b) for each u∈ K , U(u)= {x ∈ X : ϕ(x)−ϕ(u)∈− intP} is either H-convex or empty,
(c) the application u �→ 〈T(u),η(x,u)〉 of K into Rn is continuous (or at least hemicon-

tinuous) for all x ∈ K ,
(d) there exists a compact set L ⊂ X and an H-compact set C ⊂ X such that for each

weakly H-convex set D with C ⊂D ⊂ X , ∩{〈T(u), η(x,u)〉 /∈− intP : x ∈D} ⊂ L.
Then (GVVI)K is solvable, that is, there exists x0 ∈ K such that 〈T(x0),η(x,x0)〉 /∈ − intP
for all x ∈ K .

Proof. Let F : K → 2X be a set-valued application defined by the rule F(x) = {u ∈ K :
〈T(u), η(x,u)〉 /∈ − intP} for all x ∈ X . We prove that ∩{F(x) : x ∈ K} �= ∅. It can be
proved by showing that F is an H-KKM, mapping on the manifold X . If F is not an H-
KKM then there exists a finite subset A⊂ X such that ΓA �⊂ ∪{F(x) : x ∈A}. Assume there
exist w ∈ ΓA such that w /∈∪{F(x) : x ∈A}. This implies that w /∈ F(x) for all x ∈A, that
is, 〈T(w),η(x,w)〉 ∈ − intP for all x ∈ A. Since (−ϕ) is T-η-invex on K , −ϕ(x) +ϕ(u) +
〈T(u),η(x,u)〉 /∈− intP for all x,u∈ K ; equivalently ϕ(x)−ϕ(u)−〈T(u),η(x,u)〉 /∈ intP
for all x, u ∈ K . At w ∈ K , we have ϕ(x)− ϕ(w)− 〈T(w),η(x,w)〉 /∈ intP for all x ∈ K .
Hence ϕ(x)− ϕ(w)− 〈T(w),η(x,w)〉 /∈ intP for all x ∈ A (since A is a nonempty finite
subsets of X). Thus we get ϕ(x)−ϕ(w)∈− intP for all x ∈ A and by assumption (b) we
get x ∈U(w). Hence A⊂ B(w). By the H-convexity of U(w) we get ΓA ⊂U(w) for every
finite subset A ⊂ U(w). Since w ∈ ΓA, w ∈ U(w) ⊂ X . Hence 0 = ϕ(w)−ϕ(w) ∈ − intP
which is a contradiction since 0 /∈− intP. Hence F is an H-KKM map.
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Next we prove that F is closed. Let {yn} be a sequence in F(x) such that yn → y. We
need to show that y ∈ F(x). Since the application yn �→ 〈T(yn),η(x, yn)〉 is continuous,
yn → y gives 〈T(yn),η(x, yn)〉 → 〈T(y),η(x, y)〉. Also yn ∈ F(x) gives 〈T(y),η(x, y)〉 /∈
− intP for all x ∈ (Rn − {− intP}). Since (Rn − {− intP}) is a closed set, 〈T(yn),η(x,
yn)〉 ∈ (Rn − {− intP}) for all x ∈ K , showing 〈T(y),η(x, y)〉 /∈ − intP for all x ∈ Rn.
Hence y ∈ F(x). By [1, Theorem 1, page 486], we get ∩{F(x) : x ∈ K} �= ∅. Hence there
exists an x0 ∈ K , such that 〈T(x0),η(x,x0)〉 /∈− intP for all x ∈ K . �

Theorem 5.6. Let (X ,{ΓA}) and (Y ,{ΓB}) be H-differentiable manifolds with the tangent
bundle τX and τY , respectively, and K a nonempty closed convex subset of X . Let P be a
closed, convex, and pointed ordered cone Y in such that intP �= ∅. Let L(τX ,τY) denote the
set of linear maps from τX to τY and η : K ×K → τX an application. Let ϕ : X → Y be a
linear application and let eu = τϕu : τX → τY be the corresponding bundle map defined by
eu(v)∈ τ(Y ,ϕ(u))− for all v ∈ τ(X ,u), where τ(Y ,ϕ(u))− = {w ∈ τ(Y ,ϕ(u)) : w /∈ intP}.
Let T : K → L(τX ,τY) be defined by the rule T(u), v = (dϕu − eu)(v) for all v ∈ τ(X ,u).
Let

(a) (−ϕ) be a differentiable η-invex on K ,
(b) for each u∈ K , U(u)= {x ∈ X : ϕ(x)−ϕ(u)∈− intP} is either H-convex or empty,
(c) the application u �→ dϕu − eu, η(x,u) of K into τY is continuous (or at least hemi-

continuous) for all x ∈ X .
(d) there exists a compact set L ⊂ X and an H-compact set V ⊂ X such that for each

weakly H-compact set D with V ⊂ D ⊂ X , ∩{〈dϕu − eu, η(x,u)〉 /∈ − intP, x ∈
D} ⊂ L.

Then (GVVI)K is solvable, that is, there exists x0 ∈ K such that 〈dϕx0 − ex0 ,η(x,x0)〉 /∈
− intP for all x ∈ K .

Proof. First we show that (−ϕ) is T-η-invex on K . Since −ϕ : X → Y is a differentiable
η-invex on K , we have (−ϕ)(x)− (−ϕ)(u)− d(−ϕ)u(η(x,u)) /∈ − intP for all x,u ∈ K ,
that is, (−ϕ)(x)− (−ϕ)(u) + dϕu(η(x,u)) /∈ − intP and this implies that −ϕ(x) +ϕ(u)+
dϕu(η(x,u)) /∈−intP. The definition of eu, eu(η(x,u))∈T(Y ,ϕ(u))− implies eu(η(x,u)) /∈
intP, that is, −eu(η(x,u)) /∈ − intP. Hence −ϕ(x) + ϕ(u) + dϕu(η(x,u))− eu(η(x,u)) /∈
− intP for all x,u ∈ K , that is, −ϕ(x) + ϕ(u) + 〈T(u),η(x,u)〉 /∈ − intP for all x,u ∈ K .
Thus −ϕ is T-η-invex on K .

Construct a set-valued mappingG : K → 2X by the ruleG(x)= {z ∈ K : (dϕz − ez)(η(x,
z)) /∈ − intP}. We show that G is an H-KKM mapping. Suppose to the contrary that G
is not an H-KKM application. Then there exists a finite subset A ⊂ X such that ΓA �⊂
∪{G(x) : x ∈A}. Let w ∈ ΓA be such that w /∈∪{G(x) : x ∈A}. So w /∈G(x) for all x ∈A,
that is, (dϕw − ew)(η(x,w)) ∈ − intP for all x ∈ A. Since −ϕ is S− η− invex on X , we
have −ϕ(x) +ϕ(u) + 〈S(u), η(x,u)〉 /∈− intP for all x, u∈ K , equivalently ϕ(x)−ϕ(u)−
〈S(u),η(x,u)〉 /∈ intP for all x,u∈ X (by Remark 3.2(F)). At point w in X , we get ϕ(x)−
ϕ(w)−〈S(w),η(x,w)〉 /∈ intP for all x ∈ X (since ΓA is a nonempty contractible subset of
X). Thus ϕ(x)−ϕ(w)−〈S(w), η(x,w)〉 /∈ intP for all x ∈ A (since A is a nonempty finite
subsets of K ), that is, ϕ(x)−ϕ(w)− (dϕw − ew)(η(x,w)) /∈ intP for all x ∈ A. Therefore
ϕ(x)−ϕ(w)∈− intP for all x ∈ A, giving x ∈ B(w). Hence A⊂ B(w). By H-convexity of
B(w), we get ΓA ⊂ B(w) for every finite subset A ⊂ B(w). Since w ∈ ΓA, w ∈ B(w) ⊂ X .
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Hence 0 = ϕ(w)− ϕ(w) ∈ − intP gives a contradiction that 0 /∈ − intP. Hence G is an
H-KKM.

Next we prove that G is closed. Let {zn} be a sequence in G(x) such that zn → z, then
we show that z ∈ G(x). Again since the application zn �→ (dϕxn − ezn)(η(x,zn)) is finite
dimensional, we have (dϕxn − ezn)(η(x,zn))→ (dϕz − ezn)(η(x,z)) as zn → z. As we have
assumed zn ∈G(x), so that (dϕxn − ezn)(η(x,zn)) /∈− intP for all x ∈ (Y −{− intP}). But
(Y −{− intP}) is a closed set; therefore, (dϕz − ezn)(η(x,z))∈ (Y −{− intP}) for all x ∈
X implying that (dϕz − ez)(η(x,z)) /∈ − intP for all x ∈ X . Hence z ∈ G(x). Thus G is
closed.

By [1, Theorem 1, page 486], we get ∩{G(x) : x ∈ X} �= ∅. Hence there exists an x0 ∈
K such that (dϕx0 − ex0 )(η(x,x0)) /∈ − intP for all x ∈ K , that is, x0 solves the problem.

�

6. Complementarity problem solution using fixed point theorems in manifolds

In this section we are interested in studying the behavior of continuous functions on
manifolds with particular interest in finding the solutions of complementarity problems
in the presence of fixed points or coincidences. Though the complementarity problem is
a classical problem, the techniques involved in this section may prove enlightening to take
a brief look at some development of the problems.

Let M be a closed manifold and let f : M →M be a map. Then for each k there is
the induced homomorphism on homology with rational coefficients fk : Hk(M;Q)→
Hk(M;Q). For each k we may choose a basis for the finite-dimensional rational vector
space Hk(M;Q) and write fk as a matrix with respect to this basis. Denote by tr( fk) the
trace of the matrix. If we define the Lefschetz number by L( f ) =∑∞

k=0 (−1)ktr( fk), then
L( f ) is independent of the choices involved and hence is a well-defined, rational-valued
function of f and L( f ) depends only on the homotopy class of f [15].

Let X be a closed, convex, and oriented Riemannian n-manifold, modeled on the
Hilbert space H with Riemannian metric g. It is well known that the tangent bundle
τ(X) can be identified with the cotangent bundle τ∗(X) by the Riemannian metric, be-
cause H∗, the dual of H , can be identified with H [10]. If v, w ∈ τx(X), then we write
gx(v,w)= 〈v,w〉x. Let F : X →H be an operator. The complementarity problem is to find
x0 ∈ X such that F(x0)∈ τ∗(X) and gx0 (Fx0,x0)= 〈Fx0,x0〉x0 = 0.

Theorem 6.1. Let X be a closed, convex, and oriented Riemannian n-manifold, modeled on
the Hilbert space H with Riemannian metric g and let f : X → X be a map with Lefschetz
number L( f ). Let F : X → H be an operator. Then there exists a unique x0 ∈ X such that
F(x0)∈ τ∗(X) and gx0 (Fx0,x0)= 〈Fx0,x0〉x0 = 0.

Proof. Since X is nonempty, closed, and convex endowed with the Riemannian metric
g, for every y ∈ X , there is an unique x ∈ X closest to y− F(y). Thus ‖x− y + F(y)‖ ≤
‖z− y + F(y)‖ for every z ∈ X , that is, 〈x,z− x〉x ≥ 〈y− F(y),z− x〉x for all z ∈ X . Let
f : X → X be defined by f (y)= y− F(y) + x for every y ∈ X , where x is the unique ele-
ment corresponding to y. Now for every y ∈ X , (1X − f )(y)= 1X(y)− f (y)= F(y)− x
and at the unique x ∈ X , we have (1X − f )(x)= F(x)− x = (F − 1X)(x), that is, 1X − f =
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F − 1X at the unique x ∈ X . Define G : X × I → X by the rule

G(y, t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1X − f )
(
(1− 2t)y + 2tx

)
, 0≤ t ≤ 1

2
,

(F − 1X)
(
(2t− 1)y + 2(1− t)x

)
,

1
2
≤ t ≤ 1.

(6.1)

G(y,0) = (1X − f )(y) and G(y,1) = (F − 1X) for each y ∈ X . At t = 1/2, G(y,1/2) =
(1X − f )(x) = (F − 1X)(x). So G is continuous by Pasting lemma. Thus G : (1X − f ) �
(F − 1X). Thus, the coincidence index set of f is given by I f = (1X − f )∗ 0X = (F −
1X)∗ 0X and I f �= 0. Since f : X → X is a mapping with L( f ) = I f �= 0, by [15, Theo-
rem 7.16, Lefschitz fixed-point theorem], f has a fixed point. Let the fixed point be y0

in X , that is, f (y0) = y0. Let x0 be the unique element that corresponds to y0. Thus we
have 〈x0,z− x0〉x0 ≥ 〈y0 − F(y0),z− x0〉x0 for all z ∈ X , giving 〈x0,z− x0〉x0 ≥ 〈 f (y0)−
y0,z − x0〉x0 for all z ∈ X , that is, 〈2x0 − y0,z − x0〉x0 ≥ 0 for all z ∈ X . At y = y0, we
get f (y0) = y0− F(y0) + x0, that is, x0 = F(y0). We show that F(y0) ∈ τ∗(X). By defini-
tion of coincidence index set, we have I f = (1X − f )∗ 0X = (F − 1X)∗ 0X = IF , which
means that f and F have the same fixed point in X , that is, f (y0)= y0 = F(y0). So, we get
x0 = y0. Putting x0 = y0 in 〈2F(y0)− y0,z− x0〉x0 ≥ 0, we get 〈F(y0),z− y0〉y0 ≥ 0 for all
z ∈ X , that is, F(y0) ∈ T∗(X). Again putting z = 0 and z = 2y0 in 〈F(y0),z− y0〉y0 ≥ 0,
respectively, we get 〈F(y0), y0〉y0 ≤ 0 and 〈F(y0), y0〉y0 ≥ 0. Hence 〈F(y0), y0〉y0 = 0. �

Theorem 6.2. Let f : Sn → Sn, n ≥1, be a map of degree m �= (−1)n+1. Let T : Sn → Sn be
any operator. Then there exists a y0 ∈ SnT(y0), z− y0 ≥ 0 for all z ∈ Sn.

Proof. Since Sn ⊂ Rn+1 is closed, for each y ∈ Sn, there exists a unique x ∈ Sn closest to
y−T(y), that is, ‖x− y +T(y)‖ ≤ ‖z− y +T(y)‖ for all z ∈ Sn. Thus 〈x,z− x〉 ≥ 〈y−
T(y),z− x〉 for all z ∈ Sn, that is, 〈x− y +T(y),z− x〉 ≥ 0 for all z ∈ Sn. Define f : Sn →
Sn by the rule f (y) = x. This is well defined since x is unique in Sn corresponding to
each y ∈ Sn. Obviously f is a homeomorphism. Replacing x by f (y) in the inequality
〈x− y +T(y),z− x〉 ≥ 0 we get 〈 f (y)− y +T(y),z− f (y)〉 ≥ 0 for all z ∈ Sn. Since Sn is
a closed n-manifold, and f : Sn→ Sn, n≥ 1, is a map of degree m �= (−1)n+1, f has a fixed
point and is homotopic to the identity map i : Sn→ Sn, that is, there is an element y0 ∈ Sn

such that f (y0)= y0. Taking y = y0 in the inequality 〈 f (y)− y +T(y),z− f (y)〉 ≥ 0, we
get 〈T(y0),z− y0〉 ≥ 0 for all z ∈ Sn. �
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