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It was first proved by Birkhoff and Frink, and the result now belongs to the folklore,
that any algebraic lattice is up to isomorphism the lattice of subuniverses of a universal
algebra. A study of subsystems of a transition system yields a new algebraic concept, that
of a strongly algebraic lattice. We give here a representation theorem to the manner of
Birkhoff and Frink of such lattices.
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A transition system is a pair (S, e ), where

(i) Sis a set of states,

(ii) — € S X § is the transition relation.
We write s> s’ for (s,s") € —-
Nondeterministic transition systems, those (S, e ) for which the set of successors

of any element s € S is an arbitrary set, are easily seen to be coalgebras of the covariant
powerset functor %: Sets — Sets from the category of sets to itself.

Observe that any unary algebra (S, %) gives rise to a unique transition system (S, o )
but the converse in the general case is false.

A subsystem of a transition system (S, —>, ) isa subset X of S which has the following
stability property: s—> s ands € X imply s’ € X. The empty set and the universe S are
subsystems of (S, — ), they are said to be trivial. It is straightforward to check that the
set Subs(S) of subsystems of (S, — ) is stable for arbitrary unions and intersections.

Given a subset X of S, we denote by (X) the subsystem of (S, — ) generated by X. It

is the intersection of all subsystems of (S, o ) containing X. The notation _*_ will be
S

used to denote the reflexive and transitive closures of the binary relation — on . The
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2 The lattice of subsystems of a transition system

subsystem (X) is then characterized as follows:
(X)={x'EX:EIxEX,x**>Sx’}. (1)
Hence for s € S, writing (s) the subsystem ({s}), we get
(s)={s'€S:5**>Ss’}. (2)

The mapping (—) : P(S) — P(S) defined from the set of subsets of S to itself is a closure
operator on S. The previous characterization of (X) permits to see that

(X)=1{x €S:IxeX, x € (x)} = (3)

xeX

We say that the closure operator (—) is completely additive. One can notice that
(i) subsystems (s) of (S, o ), s € S, satisfy the following finiteness condition: for

all families (X;, i € I) of subsystems of (S, o ) if (s) < Ujer X, then there exists
an index iy € I such that (s) < X;,,
(ii) (s") < (s) if and only ifs—*>s s,
These observations prompt us to initiate the following definitions.

Definition 1. Let (E, <) be an ordered set which admits arbitrary suprema. An element a
in E is called s-compact (s for strongly compact), if for all covering a < \/;c;a; of a there
exists an index 7 for which a < g;.

Consider a sup-complete lattice (E, <) (i.e., an ordered set admitting arbitrary supre-
ma). As a poset, (E, <) can be viewed as a cocomplete category. Let a be in E, it is equiv-
alent to say that a is s-compact or in categorical terms, every morphism f : a — colim;a;
factors uniquely into a morphism f : a — a; (for some i € I). This means that the covari-
ant hom-functor [a, —] preserves all (small) colimits. Such an object a is called absolutely
presentable (see [2]).

Definition 2. A sup-complete lattice (L, <) is called s-algebraic (or strongly algebraic), if
each element a of L can be written as supremum of s-compact elements less than a.

Any s-algebraic lattice is obviously algebraic, but the converse is not true. In fact given
a group (G, *), the lattice (Sg(G), <) of subgroups of G is algebraic (see [1]). Further
algebraic elements in (Sg(G)) are finitely generated subgroups of G. It is easy to verify
that (Sg(Z, +), ) the lattice of subgroups of the additive group (Z,+) is not s-algebraic.

Consider the sup-complete lattice (L, <) as a cocomplete category; it will be called s-
algebraic if every element in L is a colimit of absolutely presentable objects in L. Hence
an s-algebraic lattice viewed as a category is locally absolutely presentable with the set of
s-compact elements as set of absolutely presentable objects.

The basic example is that of a complete lattice of subsystems of a transition system;
this seems also to be a generic s-algebraic lattice as shown by the following representation
theorem.
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THEOREM 3. Let (L, <) be an s-algebraic lattice. There exist a transition system (S, — )

and an isomorphism from L onto the lattice Subs(S) of subsystems of (S, — ).

Proof. We denote by S the set of s-compact elements of L. Define on S a binary relation
—> as follows: for alla,b € S, a o bif and only if b < a. Let | x be the set of elements

x" € L such that x” < x. For all x in L, the set SN | x of s-compact elements less than x is
a subsystem of S. In fact ifa—>s banda € SN | x, then we have b < a, hence b € Sn | x.

On deduces the mapping
Y : L — Subs(S), x— SN | x. (4)

Let us check that y is order preserving and reflecting. To this end, let us consider x
and x” in L. If x < x’, then | x €| x" and therefore SN | x € SN | &/, that is, y(x) < y(x').
Conversely if y(x) < y(x’), since each element of L can be written as a supremum of
s-compact elements less than itself, we have x = V y/(x) <V y(x') = x.

Finally let us show that y is a one-to-one mapping by exhibiting its inverse. For that
set the mapping

¢:Subs(S) —L, X —\/X. (5)

For all x € L, we have ¢y(x) = \/{a | ais s-compact and a < x} = x. Further, for all sub-
system X of (S, — ),

(X)) =yp(vX) =S+ \/X (6)

It is clear that X = S() | VX. Let a € L such that a < vX and a € S. By s-compacity of g,
there exists x € X such that a < x, that is, x—>=a by definition. Since X is a subsystem

of (S, — ) and x € X, we obtain a € X. One deduces the inclusion SN | \/ X < X which

induces the equality SN | VX = X, hence y¢(X) = X.

The fact that y preserves arbitrary suprema follows from the fact that each order iso-
morphism between complete lattices is automatically an isomorphism of complete lattice.
The theorem is proved. O

Since the s-algebraic lattice (L, <) as a poset is a locally absolutely presentable category,
it is isomorphic to the free cocompletion [S% Set] of the set S of s-compact elements,
under all (small) colimits. This free cocompletion is, of course, isomorphic to the lattice
of down-closed subsets of S which are precisely the subsystems of S. Therefore Theorem 3
gives a theoretical lattice version of the categorical well-known result stating that: every
locally absolutely presentable category is isomorphic to the presheaf category.
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