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We consider manifolds of oriented flags SO(n)/SO(2)× SO(n− 3) (n ≥ 4) as 4- and 6-
symmetric spaces and indicate characteristic conditions for invariant Riemannian met-
rics under which the canonical f -structures on these homogeneous Φ-spaces belong to
the classes Kill f , NKf , and G1f of generalized Hermitian geometry.
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1. Introduction

Invariant structures on homogeneous manifolds are of fundamental importance in dif-
ferential geometry. Recall that an affinor structure F (i.e., a tensor field F of type (1,1))
on a homogeneous manifold G/H is called invariant (with respect to G) if for any g ∈ G
we have dτ(g)◦F = F ◦dτ(g), where τ(g)(xH)= (gx)H . An important place among ho-
mogeneous manifolds is occupied by homogeneous Φ-spaces [8, 9] of order k (which are
also referred to as k-symmetric spaces [17]), that is, the homogeneous spaces generated
by Lie group automorphisms Φ such that Φk = id. Each k-symmetric space has an asso-
ciated object, the commutative algebra �(θ) of canonical affinor structures [7, 8], which
is a commutative subalgebra of the algebra � of all invariant affinor structures on G/H .
In its turn, �(θ) contains well-known classical structures, in particular, f -structures in
the sense of Yano [19] (i.e., affinor structures F = f satisfying f 3 + f = 0). It should be
mentioned that an f -structure compatible with a (pseudo-)Riemannian metric is known
to be one of the central objects in the concept of generalized Hermitian geometry [14].

From this point of view it is interesting to consider manifolds of oriented flags of the
form

SO(n)/SO(2)× SO(n− 3) (n≥ 4) (1.1)

as they can be generated by automorphisms of any even finite order k ≥ 4. At the same
time, it can be proved that an arbitrary invariant Riemannian metric on these manifolds
is (up to a positive coefficient) completely determined by the pair of positive numbers
(s, t). Therefore, it is natural to try to find characteristic conditions imposed on s and t
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under which canonical f -structures on homogeneous manifolds (1.1) belong to the main
classes of f -structures in the generalized Hermitian geometry. This question is partly
considered in the paper.

The paper is organized as follows. In Section 2, basic notions and results related to
homogeneous regular Φ-spaces and canonical affinor structures on them are collected.
In particular, this section includes a precise description of all canonical f -structures on
homogeneous k-symmetric spaces.

In Section 3, we dwell on the main concepts of generalized Hermitian geometry and
consider the special classes of metric f -structures such as Kill f , NKf , and G1f .

In Section 4, we describe manifolds of oriented flags of the form

SO(n)/SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1) (1.2)

and construct inner automorphisms by which they can be generated.
In Section 5, we describe the action of the canonical f -structures on the flag manifolds

of the form (1.1) considered as homogeneous Φ-spaces of orders 4 and 6.
Finally, in Section 6, we indicate characteristic conditions for invariant Riemannian

metrics on the flag manifolds (1.1) under which the canonical f -structures on these ho-
mogeneous Φ-spaces belong to the classes Kill f , NKf , and G1f .

2. Canonical structures on regular Φ-spaces

We start with some basic definitions and results related to homogeneous regular Φ-spaces
and canonical affinor structures. More detailed information can be found in [6, 8, 9, 17,
18] and some others.

Let G be a connected Lie group, and let Φ be its automorphism. Denote by GΦ the
subgroup consisting of all fixed points of Φ and by GΦ

0 the identity component of GΦ.
Suppose a closed subgroup H of G satisfies the condition

GΦ
0 ⊂H ⊂GΦ. (2.1)

Then G/H is called a homogeneous Φ-space [8, 9].
Among homogeneous Φ-spaces a fundamental role is played by homogeneous Φ-spaces

of order k (Φk = id) or, in the other terminology, homogeneous k-symmetric spaces (see
[17]).

Note that there exist homogeneous Φ-spaces that are not reductive. That is why so-
called regular Φ-spaces first introduced by Stepanov [18] are of fundamental importance.

Let G/H be a homogeneous Φ-space, let g and h be the corresponding Lie algebras
for G and H , and let ϕ = dΦe be the automorphism of g. Consider the linear operator
A= ϕ− id and the Fitting decomposition g= g0⊕ g1 with respect to A, where g0 and g1

denote 0- and 1-component of the decomposition, respectively. Further, let ϕ= ϕs ϕu be
the Jordan decomposition, where ϕs and ϕu are semisimple and unipotent components
of ϕ, respectively, ϕs ϕu = ϕu ϕs. Denote by gγ a subspace of all fixed points for a linear
endomorphism γ in g. It is clear that h= gϕ = KerA, h⊂ g0, h⊂ gϕs .
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Definition 2.1 [6, 8, 9, 18]. A homogeneous Φ-space G/H is called a regular Φ-space if
one of the following equivalent conditions is satisfied:

(1) h= g0;
(2) g= h⊕Ag;
(3) the restriction of the operator A to Ag is nonsingular;
(4) A2X = 0⇒ AX = 0 for all X ∈ g;
(5) the matrix of the automorphism ϕ can be represented in the form

(

E 0
0 B

)

, where
the matrix B does not admit the eigenvalue 1;

(6) h= gϕs .
A distinguishing feature of a regular Φ-space G/H is that each such space is reductive,

its reductive decomposition being g= h⊕Ag (see [18]). g= h⊕Ag is commonly referred
to as the canonical reductive decomposition corresponding to a regular Φ-space G/H and
m= Ag is the canonical reductive complement.

It should be mentioned that any homogeneous Φ-space G/H of order k is regular (see
[18]), and, in particular, any k-symmetric space is reductive.

Let us now turn to canonical f -structures on regular Φ-spaces.
An affinor structure on a smooth manifold is a tensor field of type (1,1) realized as a

field of endomorphisms acting on its tangent bundle. An affinor structure F on a homo-
geneous manifold G/H is called invariant (with respect to G) if for any g ∈ G we have
dτ(g) ◦ F = F ◦ dτ(g). It is known that any invariant affinor structure F on a homoge-
neous manifold G/H is completely determined by its value Fo at the point o=H , where
Fo is invariant with respect to Ad(H). For simplicity, further we will not distinguish an
invariant structure on G/H and its value at o=H throughout the rest of the paper.

Let us denote by θ the restriction of ϕ to m.

Definition 2.2 [7, 8]. An invariant affinor structure F on a regular Φ-space G/H is called
canonical if its value at the point o=H is a polynomial in θ.

Remark that the set �(θ) of all canonical structures on a regular Φ-space G/H is
a commutative subalgebra of the algebra � of all invariant affinor structures on G/H .
This subalgebra contains well-known classical structures such as almost product structures
(P2 = id), almost complex structures (J2 =− id), f -structures ( f 3 + f = 0).

The sets of all canonical structures of the above types were completely described in
[7, 8]. In particular, for homogeneous k-symmetric spaces the precise computational for-
mulae were indicated. For future reference we cite here the result pertinent to f -structures
and almost product structures only. Put

u=
⎧

⎨

⎩

n if k = 2n+ 1,

n− 1 if k = 2n.
(2.2)

Theorem 2.3 [7, 8]. Let G/H be a homogeneous Φ-space of order k (k ≥ 3).
(1) All nontrivial canonical f -structures on G/H can be given by the operators

f (θ)= 2
k

u
∑

m=1

⎛

⎝

u
∑

j=1

ζj sin
2πmj

k

⎞

⎠

(

θm− θk−m
)

, (2.3)

where ζj ∈ {1,0,−1}, j = 1,2, . . . ,u, and not all ζj are equal to zero.
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(2) All canonical almost product structures P on G/H can be given by polynomials
P(θ)=∑k−1

m=0 amθ
m, where

(a) if k = 2n+ 1, then

am = ak−m = 2
k

u
∑

j=1

ξj cos
2πmj

k
; (2.4)

(b) if k = 2n, then

am = ak−m = 1
k

(

2
u
∑

j=1

ξj cos
2πmj

k
+ (−1)mξn

)

. (2.5)

Here the numbers ξj , j = 1,2, . . . ,u, take their values from the set {−1,1}.
The results mentioned above were particularized for homogeneousΦ-spaces of smaller

orders 3, 4, and 5 (see [7, 8]). Note that there are no fundamental obstructions to con-
sidering of higher orders k. Specifically, for future consideration we need the description
of canonical f -structures and almost product structures on homogeneous Φ-spaces of
orders 4 and 6 only.

Corollary 2.4 [7, 8]. Any homogeneous Φ-space of order 4 admits (up to sign) the only
canonical f -structure

f0(θ)= 1
2

(

θ− θ3) (2.6)

and the only almost product structure

P0(θ)= θ2. (2.7)

Corollary 2.5. On any homogeneous Φ-space of order 6, there exist (up to sign) only the
following canonical f -structures:

f1(θ)= 1√
3

(

θ− θ5), f2(θ)= 1
2
√

3

(

θ− θ2 + θ4− θ5),

f3(θ)= 1
2
√

3

(

θ + θ2− θ4− θ5), f4(θ)= 1√
3

(

θ2− θ4),

(2.8)

and only the following almost product structures:

P1(θ)=− id, P2(θ)= θ

3
+ θ2 +

θ3

3
+ θ4 +

θ5

3
,

P3(θ)= θ3, P4(θ)=−2θ2

3
+
θ3

3
− 2θ5

3
.

(2.9)

3. Some important classes in generalized Hermitian geometry

The concept of generalized Hermitian geometry created in the 1980s (see [14]) is a nat-
ural consequence of the development of Hermitian geometry. One of its central objects
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is a metric f -structure, that is, an f -structure compatible with a (pseudo-)Riemannian
metric g = 〈·,·〉 in the following sense:

〈 f X ,Y〉+ 〈X , f Y〉 = 0 for any X ,Y ∈X(M). (3.1)

Evidently, this concept is a generalization of one of the fundamental notions in Hermitian
geometry, namely, almost Hermitian structure J . It is also worth noticing that the main
classes of generalized Hermitian geometry (see [5, 6, 12–14]) in the special case f = J
coincide with those of Hermitian geometry (see [11]).

In what follows, we will mainly concentrate on the classes Kill f , NKf , and G1f of
metric f -structures defined below.

A fundamental role in generalized Hermitian geometry is played by a tensor T of type
(2,1) which is called a composition tensor [14]. In [14] it was also shown that such a tensor
exists on any metric f -manifold and it is possible to evaluate it explicitly:

T(X ,Y)= 1
4
f
(∇ f X( f ) f Y −∇ f 2X( f ) f 2Y

)

, (3.2)

where∇ is the Levi-Civita connection of a (pseudo-)Riemannian manifold (M,g),X ,Y ∈
X(M).

The structure of a so-called adjoint Q-algebra (see [14]) on X(M) can be defined by
the formula X ∗Y = T(X ,Y). It gives the opportunity to introduce some classes of met-
ric f -structures in terms of natural properties of the adjoint Q-algebra. For example, if
T(X ,X)= 0 (i.e., X(M) is an anticommutative Q-algebra), then f is referred to as a G1 f -
structure. G1f stands for the class of G1 f -structures.

A metric f -structure on (M,g) is said to be a Killing f -structure if

∇X( f )X = 0 for any X ∈X(M) (3.3)

(i.e., f is a Killing tensor) (see [12, 13]). The class of Killing f -structures is denoted by
Kill f . The defining property of nearly Kähler f -structures (or NK f -structures) is

∇ f X( f ) f X = 0. (3.4)

This class of metric f -structures, which is denoted by NKf , was determined in [5] (see
also [2, 4]). It is easy to see that for f = J the classes Kill f and NKf coincide with the
well-known class NK of nearly Kähler structures [10].

The following relations between the classes mentioned are evident:

Kill f ⊂NKf ⊂G1f . (3.5)

A special attention should be paid to the particular case of naturally reductive spaces.
Recall that a homogeneous Riemannian manifold (G/H ,g) is known to be a naturally
reductive space [15] with respect to the reductive decomposition g= h⊕m if

g
(

[X ,Y]m,Z
)= g

(

X , [Y ,Z]m

)

for any X ,Y ,Z ∈m. (3.6)
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It should be mentioned that if G/H is a regular Φ-space, G a semisimple Lie group, then
G/H is a naturally reductive space with respect to the (pseudo-)Riemannian metric g in-
duced by the Killing form of the Lie algebra g (see [18]). In [2–5] a number of results
helpful in checking whether the particular f -structure on a naturally reductive space be-
longs to the main classes of generalized Hermitian geometry were obtained.

4. Manifolds of oriented flags

In linear algebra a flag is defined as a finite sequence L0, . . . ,Lm of subspaces of a vector
space L such that

L0 ⊂ L1 ⊂ ··· ⊂ Lm, (4.1)

Li 
= Li+1, i= 0, . . . ,m− 1 (see [16]).
A flag (4.1) is known to be full if for any i = 0, . . . ,n− 1,dimLi+1 = dimLi + 1, where

n= dimL. It is readily seen that having fixed any basis {e1, . . . ,en} of L we can construct a
full flag by setting L0 = {0}, Li =�(e1, . . . ,ei), i= 1, . . . ,n.

We call a flag Li1 ⊂ Li2 ⊂ ··· ⊂ Lin (here and below the subscript denotes the dimension
of the subspace) oriented if for any Lij and its two bases {e1, . . . ,eij} and {e′1, . . . ,e′i j}detA >

0, where e′t = Aet for any t = 1, . . . , i j . Moreover, for any two subspaces Lik ⊂ Lij their
orientations should be set in accordance.

The notion of a flag manifold enjoys several interpretations (see, e.g., [1]). However,
the most relevant to the case is the following.

Definition 4.1. For any vector space L and any fixed set (i1, i2, . . . , ik) consider the set M
of all (oriented) flags of L of the form Li1 ⊂ Li2 ⊂ ··· ⊂ Lik (Lij 
= Lij+1 , j = 1, . . . ,k− 1).
Then M with a transitive action of a Lie group G is called a flag manifold (manifold of
oriented flags). Equivalently, a flag manifold (manifold of oriented flags) can be defined as
a manifold of the form G/K , where G is a Lie group acting on M transitively and K is an
isotropy subgroup at some point L0

i1 ⊂ L0
i2 ⊂ ··· ⊂ L0

ik (L0
i j 
= L0

i j+1
, j = 1, . . . ,k− 1) of M.

And now let us turn to the manifold of oriented flags

SO(n)/SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1). (4.2)

Proposition 4.2. The set of all oriented flags

L1 ⊂ L3 ⊂ ··· ⊂ L2m+1 ⊂ Ln = L (4.3)

of a vector space L with respect to the action of SO(n) is isomorphic to

SO(n)/SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1). (4.4)

Proof. Fix some basis {e1, . . . ,en} in Ln. Consider the isotropy subgroup Io at the point

o= (

�
(

e1
)⊂�

(

e1,e2,e3
)⊂ ··· ⊂�

(

e1, . . . ,e2m+1
)⊂�

(

e1, . . . ,en
))

. (4.5)
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By the definition for any A∈ Io,

A : �
(

e1
)−→�

(

e1
)

,

A : �
(

e1,e2,e3
)−→�

(

e1,e2,e3
)

, . . . ,

A : �
(

e1, . . . ,e2m+1
)−→�

(

e1, . . . ,e2m+1
)

,

A : �
(

e1, . . . ,en
)−→�

(

e1, . . . ,en
)

.

(4.6)

As {e1, . . . ,en} is a basis, it immediately follows that

A : �
(

e1
)−→�

(

e1
)

,

A : �
(

e2,e3
)−→�

(

e2,e3
)

, . . . ,

A : �
(

e2m,e2m+1
)−→�

(

e2m,e2m+1
)

,

A : �
(

e2m+2, . . . ,en
)−→�

(

e2m+2, . . . ,en
)

.

(4.7)

Thus L= Ln can be decomposed into the sum of A-invariant subspaces

L=�
(

e1
)⊕�

(

e2,e3
)⊕···⊕�

(

e2m,e2m+1
)⊕�

(

e2m+2, . . . ,en
)

. (4.8)

The matrix of the operator A in the basis {e1, . . . ,en} is cellwise-diagonal:

A= diag
{

A1
1×1,A3

2×2, . . . ,A2m+1
2×2 ,An

(n−2m−1)×(n−2m−1)

}

. (4.9)

Since A ∈ SO(n), its cells A1,A3, . . . ,A2m+1,An are orthogonal matrices. All the flags we
consider are oriented, thus for any i ∈ {1,3, . . . ,2m + 1,n},detAi > 0. This proves that
A1 = (1), A3 ∈ SO(2), . . . ,A2m+1 ∈ SO(2), An ∈ SO(n− 2m− 1).

Therefore

Io = SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1). (4.10)

This completes the proof. �

Proposition 4.3. The manifold of oriented flags

SO(n)/SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1) (4.11)

is a homogeneous Φ-space. It can be generated by inner automorphisms Φ of any finite order
k, where k is even, k > 2 and k ≥ 2m+ 2:

Φ : SO(n)−→ SO(n), A−→ BAB−1, (4.12)
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where

B = diag
{

1,ε1, . . . ,εm,−1, . . . ,−1
}

,

εt =

⎛

⎜

⎜

⎜

⎝

cos
2πt
k

sin
2πt
k

−sin
2πt
k

cos
2πt
k

⎞

⎟

⎟

⎟

⎠

.
(4.13)

Proof. Here

G= SO(n), H = SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1). (4.14)

We need to prove that the group of all fixed points GΦ satisfies the condition

GΦ
0 ⊂H ⊂GΦ. (4.15)

By definition GΦ = {A | BAB−1 = A} = {A | BA = AB}. Equating the correspondent el-
ements of AB and BA and solving systems of linear equations it is possible to calculate
that

GΦ = {±1}× SO(2)×···× SO(2)
︸ ︷︷ ︸

m

×SO(n− 2m− 1). (4.16)

�

5. Canonical f -structures on 4- and 6-symmetric space SO(n)/SO(2)× SO(n− 3)

Let us consider SO(n)/SO(2)× SO(n− 3) (n ≥ 4) as a homogeneous Φ-space of order
4. According to Proposition 4.3 it can be generated by the inner automorphism Φ : A→
BAB−1, where

B = diag

{

1,

(

0 1
−1 0

)

,−1, . . . ,−1
︸ ︷︷ ︸

n−3

}

. (5.1)

Therefore (1.1) is a reductive space. It is not difficult to check that the canonical reductive
complement m consists of matrices of the form

S=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 s12 s13 s14 ··· s1n

−s12 0 0 s24 ··· s2n

−s13 0 0 s34 ··· s3n

−s14 −s24 −s34 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
−s1n −s2n −s3n 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈m. (5.2)

According to Corollary 2.4 the only canonical f -structure on this homogeneous Φ-space
is determined by the formula

f0(θ)= 1
2

(

θ− θ3). (5.3)
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Its action can be written in the form:

f0 : S−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 s13 −s12 0 ··· 0
−s13 0 0 −s34 ··· −s3n

s12 0 0 s24 ··· s2n

0 s34 −s24 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 s3n −s2n 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.4)

Now let us consider (1.1) as a 6-symmetric space generated by the inner automor-
phism Φ : A→ BAB−1, where

B = diag

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1,

⎛

⎜

⎜

⎜

⎝

1
2

√
3

2

−
√

3
2

1
2

⎞

⎟

⎟

⎟

⎠

,−1, . . . ,−1
︸ ︷︷ ︸

n−3

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

. (5.5)

Taking Corollary 2.5 into account we can represent the action of the canonical f -
structures on this homogeneous Φ-space as follows:

f1(θ)= 1√
3

(

θ− θ5) : S−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 s13 −s12 0 ··· 0
−s13 0 0 −s34 ··· −s3n

s12 0 0 s24 ··· s2n

0 s34 −s24 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 s3n −s2n 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

f2(θ)= 1
2
√

3

(

θ− θ2 + θ4− θ5) : S−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 ··· 0
0 0 0 −s34 ··· −s3n

0 0 0 s24 ··· s2n

0 s34 −s24 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 s3n −s2n 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

f3(θ)= 1
2
√

3

(

θ + θ2− θ4− θ5) : S−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 s13 −s12 0 ··· 0
−s13 0 0 0 ··· 0
s12 0 0 0 ··· 0
0 0 0 0 ··· 0

. . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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f4(θ)= 1√
3

(

θ2− θ4) : S−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 s13 −s12 0 ··· 0
−s13 0 0 s34 ··· s3n

s12 0 0 −s24 ··· −s2n

0 −s34 s24 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −s3n s2n 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5.6)

6. Canonical f -structures and invariant Riemannian metrics on
SO(n)/SO(2)× SO(n− 3)

Let us consider manifolds of oriented flags of the form (1.1) as 4- and 6-symmetric spaces.
Our task is to indicate characteristic conditions for invariant Riemannian metrics under
which the canonical f -structures on these homogeneous Φ-spaces belong to the classes
Kill f , NKf , and G1f .

We begin with some preliminary considerations.

Proposition 6.1. The reductive complement m of the homogeneous space SO(n)/SO(2)×
SO(n− 3) admits the decomposition into the direct sum of Ad(H)-invariant irreducible
subspaces m=m1⊕m2⊕m3.

Proof. The explicit form of the reductive complement of (1.1) was indicated in Section 5.
Put

m1 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 a1 a2 0 ··· 0
−a1 0 0 0 ··· 0
−a2 0 0 0 ··· 0

0 0 0 0 ··· 0
. . . . . . . . . . . . . . . . . . . .

0 0 0 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1, a2 ∈R

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

,

m2 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 ··· 0
0 0 0 c1 ··· cn−3

0 0 0 d1 ··· dn−3

0 −c1 −d1 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 −cn−3 −dn−3 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1, . . . ,cn−3 ∈R, d1, . . . ,dn−3 ∈R

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

,

m3 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 b1 ··· bn−3

0 0 0 0 ··· 0
0 0 0 0 ··· 0
−b1 0 0 0 ··· 0
. . . . . . . . . . . . . . . . . . . . . . .
−bn−3 0 0 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1, . . . ,bn−3 ∈R

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(6.1)
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Since SO(2)× SO(n− 3) is a connected Lie group, mi (i= 1,2,3) is Ad(H)-invariant if
and only if [h,mi]⊂mi. It can easily be shown that this condition holds.

We claim that for any i ∈ {1,2,3} there exist no such nontrivial subspaces mi and m̂i

that mi =mi⊕ m̂i and [h,mi]⊂mi, [h,m̂i]⊂ m̂i.
To prove this we identify m and {(a1,a2,b1, . . . ,bn−3,c1, . . . ,cn−3,d1, . . . ,dn−3)}. In what

follows we are going to represent any H ∈ h in the form

H = diag
{

0,H1,H2
}

, (6.2)

where

H1 =
(

0 h
−h 0

)

, (6.3)

H2 =

⎛

⎜

⎜

⎜

⎝

0 h12 ··· h1n−3

−h12 0 ··· h2n−3

. . . . . . . . . . . . . . . . . . . . . . .
−h1n−3 −h2n−3 ··· 0

⎞

⎟

⎟

⎟

⎠

. (6.4)

Put F(H)(M)= [H ,M] for any H ∈ h, M ∈m. In the above notations we have

F(H)|m1 :
(

a1 a2
)T −→H1

(

a1 a2)T ,

F(H)|m2 :
(

c1 ···cn−3 d1 ···dn−3
)T −→

(

H2 hE
−hE H2

)

(

c1 ···cn−3 d1 ···dn−3
)T

,

F(H)|m3 :
(

b1 ···bn−3
)T −→H2

(

b1 ···bn−3
)T
.

(6.5)

First, let us prove that m3 cannot be decomposed into the direct sum of Ad(H)-
invariant subspaces.

The proof is by reductio ad absurdum. Suppose there exists an Ad(H)-invariant
subspace W ⊂m3. This implies that for any H2 of the form (6.4) and x = (x1 ···xn−3)T ∈
W , H2x belongs to W .

It is possible to choose a vector v1 = (α1 ···αn−3)T ∈W such that α1 
= 0. Indeed, the
nonexistence of such a vector yields that for any w = (w1 ···wn−3)T ∈W , w1 = 0. Take
such w ∈W that, for some 1 < i≤ n− 3,wi 
= 0 and the skew-symmetric matrixK = {ki j}
with all elements except k1i =−ki1 = 1 equal to zero. Then Kw = (wi∗···∗) /∈W .

Consider the following system of vectors {v1, . . . ,vn−3}, where

v2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 ··· 0
−1 0 0 ··· 0
0 0 0 ··· 0
. . . . . . . . . . . . . . .
0 0 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

v1 =
(

α2−α10···0
)T

,
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v3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 ··· 0
0 0 0 ··· 0
−1 0 0 ··· 0
. . . . . . . . . . . . . . .
0 0 0 ··· 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

v1 =
(

α30−α1 ···0
)T

, . . . ,

vn−3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ··· 0 1
0 0 ··· 0 0
. . . . . . . . . . . . . . .
0 0 ··· 0 0
−1 0 ··· 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

v1 =
(

αn0···0−α1
)T
.

(6.6)

Obviously,

dim�
(

v1, . . . ,vn−3
)= rank

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 α2 α3 ··· αn−3

α2 −α1 0 ··· 0
α3 0 −α1 ··· 0
. . . . . . . . . . . . . . . . . . . . . . .
αn−3 0 0 ··· −α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= n− 3. (6.7)

This contradicts our assumption.
Continuing the same line of reasoning, we see that neither m1 nor m2 can be decom-

posed into the sum of Ad(H)-invariant summands. �

It is not difficult to check that the space in question possesses the following property.

Proposition 6.2.

[

mi,mi+1
]⊂mi+2 (modulo 3). (6.8)

Denote by g0 the naturally reductive metric generated by the Killing form B: g0 =
−B|m×m. In our case B =−(n− 1)TrXTY , X ,Y ∈ so(n).

Proposition 6.3. The decomposition h⊕m1⊕m2⊕m3 is B-orthogonal.

Proof. For the explicit form of m and h see Sections 5 and 6. It can easily be seen that for
any X ∈m, Y ∈ h, TrXTY = 0. It should also be noted that it was proved in [18] that h is
orthogonal to m with respect to B.

For any almost product structure P put

m− = {

X ∈m|P(X)=−X}

, m+ = {

X ∈m|P(X)= X
}

. (6.9)

Suppose that P is compatible with g0, that is, g0(X ,Y)= g0(PX ,PY) (e.g., this is true for
any canonical almost product structure P [6]). Clearly, m− and m+ are orthogonal with
respect to g0, since for any X ∈m+, Y ∈m−,

g0(X ,Y)= g0
(

P(X),P(Y)
)= g0(X ,−Y)=−g0(X ,Y). (6.10)
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Let us consider the action of the canonical almost product structures on the 6-
symmetric space (1.1). Here we use notations of Corollary 2.5.

For P2(θ) = (1/3)θ + θ2 + (1/3)θ3 + θ4 + (1/3)θ5 m− = m1 ∪m2, m+ = m3, therefore
m3⊥m1, m3⊥m2.

For P3(θ)= θ3 m− =m1∪m3, m+ =m2, thus m2⊥m1. The statement is proved. �

It can be deduced from Propositions 6.1 and 6.3 that any invariant Riemannian metric
g on (1.1) is (up to a positive coefficient) uniquely defined by the two positive numbers
(s, t). It means that

g = g0|m1 + sg0|m2 + tg0|m3 . (6.11)

Definition 6.4. (s, t) are called the characteristic numbers of the metric (6.11).
It should be pointed out that the canonical f -structures on the homogeneous Φ-space

(1.1) of the orders 4 and 6 are metric f -structures with respect to all invariant Riemann-
ian metrics, which are proved by direct calculations.

Recall that in case of an arbitrary Riemannian metric g the Levi-Civita connection has
its Nomizu function defined by the formula (see [15])

α(X ,Y)= 1
2

[X ,Y]m +U(X ,Y), (6.12)

where X ,Y ∈m, the symmetric bilinear mapping U is determined by means of the for-
mula

2g
(

U(X ,Y),Z
)= g

(

X , [Z,Y]m

)

+ g
(

[Z,X]m,Y
)

, X ,Y ,Z ∈m. (6.13)

Suppose g is an invariant Riemannian metric on the homogeneous Φ-space (1.1) with
the characteristic numbers (s, t) (s, t > 0). The following statement is true.

Proposition 6.5.

U(X ,Y)= t− s

2

([

Xm2 ,Ym3

]

+
[

Ym2 ,Xm3

])

+
t− 1

2s

([

Xm1 ,Ym3

]

+
[

Ym1 ,Xm3

])

+
s− 1

2t

([

Xm1 ,Ym2

]

+
[

Ym1 ,Xm2

])

.
(6.14)

Outline of the proof. First we apply (6.11) and the definition of g0 to (6.13). We take four
matrices X = {xi j}, Y = {yi j}, Z = {zi j}, and U = {ui j} and calculate the right-hand and
left-hand sides of the equality obtained. After that we can represent it in the form

c12z12 + c13z13 +
n
∑

i=1

c1 iz1 i +
n
∑

i=1

c2 iz2 i +
n
∑

i=1

c3 iz3 i = 0, (6.15)

where c12, c13, c1 i, c2 i, c3 i (i= 1, . . . ,n) depend on elements of the matrices X ,Y , and U .
As (6.15) holds for any Z ∈m, it follows in the standard way that

c12 = c13 = c1 i = c2 i = c3 i = 0, (i= 1, . . . ,n). (6.16)
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Using (6.16), we calculate ui j = ui j(X ,Y). To conclude the proof, it remains to transform
the formula for U(X ,Y) into (6.14), which is quite simple. �

In the notations of Section 2 we have the following statement.

Theorem 6.6. Consider SO(n)/SO(2)× SO(n− 3) as a 4-symmetric Φ-space. Then the
only canonical f -structure f0 on this space is

(1) a Killing f -structure if and only if the characteristic numbers of a Riemannian met-
ric are (1,4/3);

(2) a nearly Kähler f -structure if and only if the characteristic numbers of a Riemann-
ian metric are (1, t), t > 0;

(3) a G1 f -structure with respect to any invariant Riemannian metric.

Proof. Application of (6.12) to the definitions of the classes Kill f , NKf , and G1f yields
that

(1) f ∈Kill f if and only if (1/2)[X , f X]m +U(X , f X)− f (U(X ,X))= 0;
(2) f ∈NKf if and only if (1/2)[ f X , f 2X]m +U( f X , f 2X)− f (U( f X , f X))= 0;
(3) f ∈G1f if and only if f (2U( f X , f 2X)− f (U( f X , f X)) + f (U( f 2X , f 2X)))= 0.

The proof is straightforward. For example, it is known that f0 is a nearly Kähler f -
structure in the naturally reductive case, which means that (1/2)[ f0X , f 2

0 X]m = 0 for any
X ∈m (see [5]). Making use of Propositions 6.2 and 6.5, we obtain U( f0X , f0X)∈ Ker f0
for any X ∈ m, U( f0X , f 2

0 X) = 0 for any X ∈ m if and only if s = 1. Thus we have (2).
Other statements are proved in the same manner. �

The similar technique is used to prove the following.

Theorem 6.7. Consider SO(n)/SO(2)× SO(n− 3) as a 6-symmetric space. Let (s, t) be the
characteristic numbers of an invariant Riemannian metric. Then

(1) f1 is a Killing f -structure if and only if s = 1, t = 4/3; f2, f3, f4 do not belong to
Kill f for any s and t;

(2) f1 is an NK f -structure if and only if s= 1; f2 and f3 are NK f -structures for any s
and t; f4 is not an NK f -structure for any s and t;

(3) f1, f2, f3, f4 are G1 f -structures for any s and t.
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