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A lattice model of interacting q-oscillators, proposed by V. Bazhanov and S. Sergeev in
2005 is the quantum-mechanical integrable model in 2 + 1 dimensional space-time. Its
layer-to-layer transfer matrix is a polynomial of two spectral parameters, it may be re-
garded in terms of quantum groups both as a sum of sl(N) transfer matrices of a chain
of length M and as a sum of sl(M) transfer matrices of a chain of length N for reducible
representations. The aim of this paper is to derive the Bethe ansatz equations for the q-
oscillator model entirely in the framework of 2 + 1 integrability providing the evident
rank-size duality.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The q-oscillator lattice model was formulated recently in [5, 15]. It describes a system of
interacting q-oscillators situated in the vertices of two-dimensional lattice, and therefore
it is the quantum-mechanical system in 2 + 1 dimensional space-time in the same way,
as a chain of interacting particles (or spins) is regarded as a model in 1 + 1 dimensional
space-time. Formulation of the q-oscillator model provides a definition of a layer-to-
layer transfer matrix as a polynomial of two spectral parameters. This transfer matrix
may be interpreted in terms of quantum inverse scattering method and quantum groups,
so that both sizes of the two-dimensional lattice may be interpreted as either a length
of an effective chain or as symmetry group’s rank. This was called in [5] the “rank-size”

duality. The appearance of a complete set of fundamental transfer matrices for �q(̂sl)
series is a signal that the layer-to-layer transfer matrix of q-oscillator model is closely
related to Bethe ansatz in the form of generalized Baxter’s “T-Q” equations. The subject
of this paper is the derivation of such equations in the framework of 2 + 1 dimensional
integrability.

Below in this introduction we formulate the answer, that is, we give an explicit form
of “T-Q” equations in terms of a given layer-to-layer transfer matrix. To do this, we need
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to repeat the structure of the layer-to-layer transfer matrix for q-oscillator model in more
details.

The q-oscillator model describes a system of interacting q-oscillators �v,

�v : xvyv = 1− q2+2hv , yvxv = 1− qhv , xvq
hv = qhv+1xv, yvq

hv = qhv−1yv,
(1.1)

situated in the vertices v of two-dimensional square lattice of sizes N ×M. Index v stands
for a coordinate of a vertex. Oscillators from different vertices commute (what is called
“locality”), the whole algebra of observables is thus �⊗NM , and the vertex index v corre-
sponds to the number of component of the tensor power. In this paper we imply mostly
the Fock space representation � of q-oscillators.

The two-dimensional lattice may be identified with a layer (or a section) of three-
dimensional cubic lattice, further we call it either the layer or the auxiliary lattice.

Auxiliary matrices Lα,β[�v], acting in C2⊗C2⊗�v, were introduced in [5]. The layer
transfer matrix T(u,v) may be constructed as a trace of 2d-ordered product of auxiliary
matrices L[�v]. The transfer matrix is a polynomial of two spectral parameters,

T(u,v)=
N
∑

n=0

M
∑

m=0

unvmtn,m, (1.2)

its coefficients tn,m ∈�⊗NM form a complete commutative set. Matrices L[�v] depend
on some extra C-valued free parameters, for their generic values the model is inhomoge-
neous. The layer transfer matrix (1.2) may be identically rewritten in two ways,

T(u,v)≡
N
∑

n=0

unT(slN )
ωn (v)≡

M
∑

m=0

vmT(slM)
ωm (u), (1.3)

where

T(slN )
ωn (v)=

M
∑

m=0

vmtn,m (1.4)

is the 2d transfer matrix for �q(̂slN ) chain of the length M, corresponding to the fun-
damental representation πωn in the auxiliary space (here ωn stand for the fundamental

weights of AN−1, πω0 and πωN are two scalar representations, T(slN )
0 and T(slN )

N may be writ-
ten explicitly). The same layer transfer matrix T(u,v) may be rewritten as the sum of

�q(̂slM) transfer matrices

T(slM)
ωm (u)=

N
∑

n=0

untn,m (1.5)

for the length N chain (the last part of (1.3)).
The result of this paper is the derivation of the dual Bethe ansatz equations for the

q-oscillator model. They may be formulated as follows. Let normalized transfer matrices
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be

τ(slM)
m (u)= T(slM)

ωm

(− (−q)mu
)

, τ(slN )
n (v)= T(sln)

ωn

(− (−q)nv
)

, (1.6)

and let C-numerical parameters of q-oscillator lattice be inhomogeneous enough.
Then “T-Q” equation for slM is

M
∑

m=0

(−v)mτ(slM)
m (u)Q

(

q2mu
)= 0. (1.7)

The statement is that if tn,m take their eigenvalues, then there exist M special values
v1, . . . ,vM of v, such that corresponding Q1(u), . . . ,QM(u) in (1.7) are polynomials.
(Parameter v in the “u-shift” equation (1.7) is irrelevant since a rescaling Q(u)→ uνQ(u)
changes it.) Degrees of the polynomials are uniquely defined by certain occupation num-
bers of oscillators.

In its turn, equivalent “T-Q” equation for slN is

N
∑

n=0

(−u)nτ(slN )
n (v)Q

(

q2nv
)= 0. (1.8)

If tn,m take their eigenvalues, then there exist N special values u1, . . . ,uN of u, such that
corresponding Q1(v), . . . ,QN (v) in (1.8) are polynomials. All the other forms of nested
Bethe ansatz equations follow from (1.7) or (1.8).

PolynomialsQ(u) andQ(v) may be denoted in the quantum-mechanical way as “wave
functions” of states 〈Q| and |Q〉:

Q(u)= 〈Q | u〉, Q(v)= 〈v |Q〉, (1.9)

where |u〉 and 〈v| serve the simple Weyl algebra �: uv = q2vu,

u|u〉 = |u〉u, v|u〉 = ∣∣q2u
〉

v,

〈v|u= u〈q2v
∣

∣, 〈v|v = v〈v|.
(1.10)

Let

J(u,v)=
N
∑

n=0

M
∑

m=0

(−q)−nm(−u)n(−v)mtn,m. (1.11)

Then (1.7) and (1.8) are correspondingly

〈Q|J(u,v)|u〉 = 〈v|J(u,v)|Q〉 = 0. (1.12)

The formulation of the q-oscillator model and definition of T(u,v) are locally 3d in-
variant, the quantum group interpretation (1.3) is the secondary one. In this paper we
will derive (1.11) without any quantum group technique.
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To explain our method, we need to comment a little on the classical limit.
In the classical limit q→ 1, the local q-oscillator generators become the classical dy-

namical variables, the q-oscillator model becomes a model of classical mechanics, quan-
tum evolution operators become Baecklund transformations for the dynamical variables.
In particular, T(u,v) may be understood as a partition function of a completely inho-
mogeneous free fermion six-vertex model on the square lattice (but it should not be re-
garded as a model of statistical mechanics). In its turn, J(u,v) becomes a free fermion
determinant (the sign (−)nm+n+m counts the number of fermionic loops). There exists a
well-known formula in the theory of two-dimensional free fermion models, relating T
and J :

T(u,v)= 1
2

(

J(−u,v) + J(u,−v) + J(−u,−v)− J(u,v)
)

. (1.13)

In the classical limit, equation J(u,v)= 0 defines the spectral curve. Dynamical variables
may be expressed in terms of θ-functions on the Jacobian of the spectral curve. The se-
quence of Baecklund transformations, which is the “discrete time” in the classical model,
is a sequence of linear shifts of a point on the Jacobian. The classical model was formu-
lated and solved by Korepanov [8].

Classical integrability is based on an auxiliary linear problem. Equation J(u,v) = 0 is
the condition of the existence of a solution of the linear problem. Our point is that in
quantum q �= 1 case, the linear problem is still the basic concept of the solvability. Quan-
tum J(u,v) is a well-defined determinant of an operator-valued matrix, and J(u,v)|Ψ〉 =
0 is again the condition of the existence of a solution of a quantum linear problem. The
polynomial structure of, for example, 〈v |Ψ〉 follows from a more detailed consideration
of the quantum linear problem in a special basis of diagonal “quantum Baker-Akhiezer
function” (related to a quantum separation of variables).

The structure of the paper is the following. In the first section we recall briefly some
basic notions of the classical model [8]: the linear problem, spectral curve, and details of
the combinatorial representation of the spectral curve. In the second section we repeat the
definition of the quantum model and its integrability [5, 15]. In particular, our definition
of the spectral parameters differs from that of [5]. Quantum linear problem, derivation
of (1.11), and properties of various forms of (1.12) are given in the third section. The
fourth section includes an example.

2. The Korepanov model

We start with a short review of the integrable model of classical mechanics in discrete
2 + 1 dimensional space-time [8]. The main purpose of this section is to recall the relation
between Korepanov’s linear problem, spectral determinant, and partition function for
free fermion model. Another aim is to fix several useful definition and notations.

2.1. Linear problem. Consider a two-dimensional lattice formed by the intersection of
straight lines enumerated by the Greek letters. Let the vertices of the lattice are enumer-
ated in some way.
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ψβ ψ�
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Av

ψ�

α = avψα + bvψβ,

ψ�

β = cvψα + dvψβ.

Figure 2.1. Vertex v is formed by intersection of α- and β-lines of auxiliary lattice. Vertex linear prob-
lem is the pair of relations binding four edge variables.

Consider a particular vertex with a number v formed by the intersection of lines α
and β, as it is shown in Figure 2.1. It was mentioned in the introduction that an auxiliary
lattice is a section of three-dimensional lattice, the vertices on the auxiliary lattice are
equivalent to the edges of the three-dimensional one. In Figure 2.1, the dashed lines are
the lines of auxiliary lattice, while the solid line sprout from the vertex v is the edge of the
three-dimensional lattice.

Let four free C-valued variables

Av =
(

av,bv,cv,dv
)

(2.1)

be associated with vertex v. In addition, let C-valued variables ψα and ψβ be associated
with the ingoing edges, and letC-valued variables ψ′α and ψ′β be associated with the outgo-
ing edges, as it is shown in Figure 2.1 (a certain orientation of auxiliary lines is implied).
The local linear problem is a pair of linear relations binding the edge variables. Its stan-
dard form, the right-hand side of Figure 2.1 in matrix notations, is

(

ψ′α
ψ′β

)

= X[Av
]

(

ψα
ψβ

)

, where X
[

Av
] def=
(

av bv

cv dv

)

. (2.2)

2.2. Korepanov’s equation. Equations of motion in an integrable model arise as an as-
sociativity condition of its linear problem. To derive their local form, consider a vertex
of three-dimensional lattice (not necessarily the cubic one), and sections of it by two
auxiliary planes, as it is shown in Figure 2.2. From three-dimensional point of view, the
auxiliary linear variables belong to the faces of 3d lattice, while the dynamical variablesAv

belong to the edges of the 3d lattice. Therefore, Av are distinguished from A′v, but linear
variables on outer edges ψα, . . . ,ψ′γ, in both top and bottom auxiliary planes, are identi-
fied. Consider the bottom plane first. The linear problem rule (2.2) may be applied three
times for excluding internal edges; as a result one obtains an expression of the “primed”
linear variables in terms of “unprimed”:

⎛

⎜

⎝

ψ′α
ψ′β
ψ′γ

⎞

⎟

⎠= Xα,β
[

A1
] ·Xα,γ

[

A2
] ·Xβ,γ

[

A3
] ·
⎛

⎜

⎝

ψα
ψβ
ψγ

⎞

⎟

⎠ , (2.3)
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Figure 2.2. Left- and right-hand sides of Korepanov’s equation.

where (cf. the ordering of α, β, γ in column vectors)

Xα,β
[

A1
]=
⎛

⎜

⎝

a1 b1 0
c1 d1 0
0 0 1

⎞

⎟

⎠ , Xα,γ
[

A2
]=
⎛

⎜

⎝

a2 0 b2

0 1 0
c2 0 d2

⎞

⎟

⎠ , Xβ,γ
[

A3
]=
⎛

⎜

⎝

1 0 0
0 a3 b3

0 c3 d3

⎞

⎟

⎠ .

(2.4)

The top plane of Figure 2.2 may be considered in the same way,

⎛

⎜

⎝

ψ′α
ψ′β
ψ′γ

⎞

⎟

⎠= Xβ,γ
[

A′3
] ·Xα,γ

[

A′2
] ·Xα,β

[

A′1
] ·
⎛

⎜

⎝

ψα
ψβ
ψγ

⎞

⎟

⎠ , (2.5)

where the matrices X#,# are given by (2.4) with A′v = (a′v,b′v,c′v,d′v).
The associativity condition of linear problems (2.3) and (2.5) is the Korepanov equa-

tion

Xα,β
[

A1
] ·Xα,γ

[

A2
] ·Xβ,γ

[

A3
]= Xβ,γ

[

A′3
] ·Xα,γ

[

A′2
] ·Xα,β

[

A′1
]

, (2.6)

relating the set of 12 variables Av with the set of 12 variables A′v, v= 1,2,3. Equation (2.6)
describes a single 3d vertex. Equations of motion for three-dimensional integrable model
are the collection of (2.6) for all vertices of the 3d lattice.

The Korepanov equation needs a very important comment. Matrices X#,#[Av] by defi-
nition (2.4) act in the direct sum of one-dimensional vector spaces labelled by the indices
α, β, γ, and so forth. The matrix Xα,β[A1] in the block (α,β) coincides with X[A1] (2.2),
and in the block (γ, . . .) it is the unity matrix. In what follows, such “direct sum” imbed-
ding of 2× 2 matrices X into higher-dimensional unity matrices will always be implied.
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β1

β2

β3

α3 α2 α1

Figure 2.3. A fragment of the auxiliary square lattice.

2.3. Linear problem with periodical boundary conditions. Korepanov’s solution of the
equations of motion is based on the solution of the linear problem for the whole auxiliary
lattice. Consider the square lattice with the sizes N ×M. Let the lines of the lattice be
enumerated by

αn, βm, n= 1,2, . . . ,N , m= 1,2, . . . ,M. (2.7)

A fragment of the auxiliary lattice is shown in Figure 2.3. Notations for vertex and auxil-
iary variables for (n,m)th vertex of the plane are shown in Figure 2.4. The local auxiliary
linear problem (2.2) for (n,m)th vertex takes the form

⎛

⎝

ψ(m−1)
αn

ψ(n−1)
βm

⎞

⎠= X[An,m
] ·
⎛

⎝

ψ(m)
αn

ψ(n)
βm

⎞

⎠ , n= 1, . . .N , m= 1, . . . ,M. (2.8)

The linearity of the whole set of (2.8) with respect to ψ’s makes it possible to define the
quasi-periodical boundary conditions for them:

ψ(m+M)
αn = uψ(m)

αn , ψ(n+N)
βm

= vψ(n)
βm

, (2.9)

where u and v are C-valued spectral parameters.
Linear equations (2.8) may be iterated for the whole lattice as follows. Let

ψ(m)
α =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ψ(m)
α1

ψ(m)
α2

...

ψ(m)
αN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ψ(n)
β =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ψ(n)
β1

ψ(n)
β2

...

ψ(n)
βM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.10)

Then the repeated use of (2.8) gives

⎛

⎝

ψ(0)
α

ψ(0)
β

⎞

⎠= Xα,β

⎛

⎝

ψ(M)
α

ψ(N)
β

⎞

⎠ , (2.11)
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ψ(n)
βm

ψ(n�1)
βm

ψ(m)
αn

ψ(m�1)
αn

An,m

Figure 2.4. Notations for (n,m)th vertex of the auxiliary lattice.

where, in terms of matrix imbedding discussed right after (2.6), the (N +M)× (N +M)
monodromy matrix Xα,β may be written as

Xα,β =
�
∏

n

�
∏

m

Xαn,βm

[

An,m
]

, (2.12)

where

�
∏

n

fn
def= f1 f2 ··· fN−1 fN ,

�
∏

m

fm
def= f1 f2 ··· fM−1 fM. (2.13)

The boundary conditions (2.9) give ψ(M)
α = uψ(0)

α , ψ(N)
β = vψ(0)

β , so that (2.11) becomes

(

1−Xα,β ·
(

u 0
0 v

))

⎛

⎝

ψ(0)
α

ψ(0)
β

⎞

⎠= 0. (2.14)

The whole linear problem has a solution if and only if

J(u,v)
def= det

(

1−Xα,β ·
(

u 0
0 v

))

(2.15)

is zero. Equation J(u,v) = 0 defines the spectral curve for the model, equations of mo-
tion (2.6) for the whole three-dimensional lattice have an exact solution in terms of θ-
functions on the Jacobian of the spectral curve [8].

2.4. Free fermion model. The determinant (2.15) has the very well-known combinato-
rial representation. Usual way to derive it is to define the determinant in terms of the
Grassmanian integration and then to turn from normal symbols to matrix elements.

Let in this subsection ψ and ψ be the Grassmanian variables with the integration rules
∫

dψ = ∫ dψ = 0 and
∫

ψdψ = ∫ ψdψ = 1. Then the determinant (2.15) may be written as

J(u,v)=
∫

e�[ψ,ψ]�ψ�ψ, (2.16)
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where the “action” is

�=
N ,M
∑

n,m=1

{

(

ψ(m−1)
αn

,ψ(n−1)
βm

)

·X[An,m
] ·
⎛

⎝

ψ(m)
αn

ψ(n)
βm

⎞

⎠+ψ(m)
αn ψ

(m)
αn

+ψ(n)
βm
ψ(n)
βm

}

, (2.17)

and the measure is

�ψ�ψ =
N ,M
∏

n,m=1

dψ(m)
αn
dψ(m)

αn dψ(n)
βm
dψ(n)

βm
. (2.18)

Spectral parameters appear in (2.16) via

ψ(0)
αn
= uψ(M)

αn
, ψ(0)

βm
= vψ(N)

βm
. (2.19)

In terms of the Grassmanian variables, the exponent of a quadratic form is a normal
symbol of some operator L,

exp

{

(

ψα,ψβ
) ·X[Av

] ·
(

ψα
ψβ

)}

def= 〈ψα,ψβ
∣

∣Lα,β
[

Av
]∣

∣ψα,ψβ
〉

. (2.20)

The fermionic coherent states are defined by

|ψ〉 = |0〉+ |1〉ψ, 〈ψ| = 〈0|+ψ〈1|, (2.21)

and the extra summands in (2.17) correspond to the unity operators

1=
∫

|ψ〉eψψdψ dψ〈ψ|. (2.22)

It is important to note that the indices of the operator Lα,β[Av] (2.20) label copies of two-
dimensional vector spaces (2.21) C2 
 x|0〉+ y|1〉. Thus, Lα,β acts in the tensor product
of two-dimensional vector spaces, while Xα,β acts in the tensor sum of one-dimensional
vector spaces. In the basis of the fermionic states

∣

∣nα,nβ
〉= (|0,0〉,|1,0〉,|0,1〉,|1,1〉), (2.23)

operator Lα,β (2.20) is 4× 4 matrix

Lα,β
[

Av
]=

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 av bv 0
0 cv dv 0
0 0 0 zv

⎞

⎟

⎟

⎟

⎠

, where zv
def= bvcv− avdv. (2.24)

Besides, the Korepanov equation (2.6) is the equality of the exponents of the normal
symbol form of the local Yang-Baxter equation

Lα,β
[

A1
]

Lα,γ
[

A2
]

Lβ,γ
[

A3
]= Lβ,γ

[

A′3
]

Lα,γ
[

A′2
]

Lα,β
[

A′3
]

, (2.25)
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since

〈ψ|Lα,βLα,γLβ,γ|ψ〉 = exp
{

ψ ·Xα,βXα,γXβ,γ ·ψ
}

(2.26)

and so forth. Turn now to the expression of the determinant (2.15) in terms of operators
L. Let 2N+M × 2N+M matrix Lα,β be the ordered product of local L’s:

Lα,β =
�
∏

n

�
∏

m

Lαn,βm

[

An,m
]

. (2.27)

This is related to the monodromy matrix (2.12) by means of (cf. (2.20))

exp

{

(

ψα,ψβ

) ·Xα,β ·
(

ψα

ψβ

)}

= 〈ψα,ψβ

∣

∣Lα,β
∣

∣ψα,ψβ
〉

. (2.28)

Define now the boundary matrices for Lα,β,

D(u)
def=
(

1 0
0 u

)

, Dα(u)=
∏

n

Dαn(u), Dβ(v)=
∏

m

Dβm(v), (2.29)

and let

T(u,v)= Trace
α,β

(

Dα(u)Dβ(v)Lα,β
)

. (2.30)

By the construction, T(u,v) is the partition function for a free-fermion lattice model
with the inhomogeneous Boltzmann weights—matrix elements of Lαn,βm[An,m]—and u,
v-boundary conditions. It is the polynomial of u and v:

T(u,v)=
N
∑

n=0

M
∑

m=0

unvmtn,m. (2.31)

Sometimes a pure combinatorial representation of the partition function is very use-
ful. Any monomial in T(u,v) (2.30) corresponds to a non-self-intersecting path on the
toroidal lattice. A path may go through a vertex in one of five different ways as it is shown
in Figure 2.5 (or do not go through at all). A factor fv is associated with each variant, these
factors are the matrix elements of Lα,β[Av] (2.24). A monomial in T(u,v), corresponding
to path C, is

tC =
∏

along path C

fv. (2.32)

Any non-self-intersecting path on the toroidal lattice has a homotopy class

w(C)= nA+mB, (2.33)
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β

α
1 av cv

zv dv bv

Figure 2.5. Six variants of bypassing the vertex. Vertex factors fv are matrix elements of L. Note that
in the variant zv the path is not self-intersecting.

where A is the toroidal cycle along the α-lines, and B is the toroidal cycle along the β-lines
of Figure 2.3. Then the element tn,m of (2.31) is

tn,m =
∑

C:w(C)=nA+mB

tC. (2.34)

The determinant J(u,v) (2.15) is related to tn,m via

J(u,v)=
N
∑

n=0

M
∑

m=0

(−)nm+n+munvmtn,m, (2.35)

where the sign (−)nm+n+m counts the number of fermionic loops on the toroidal square
lattice. The determinant J may be expressed in terms of T and vice versa:

J(u,v)= 1
2

(

T(−u,−v) +T(−u,v) +T(u,−v)−T(u,v)
)

,

T(u,v)= 1
2

(

J(−u,−v) + J(−u,v) + J(u,−v)− J(u,v)
)

.
(2.36)

The last equality is very well known in the two-dimensional free-fermion model as the
formula relating the lattice partition function and fermionic determinant.

Now we may finish the collection of notions and definitions of the Korepanov model of
classical integrable dynamics on three-dimensional lattice and proceed to the description
of their quantum analogues.

3. Quantum model

In the previous section, we did not pay any attention to the structure of vertex variables
Av (2.1), they were defined simply as the list of elements of X (2.2). The key point for the
quantization of the model is that it is possible do define a local Poisson structure on Av

[5] such that the transformation

A1⊗A2⊗A3 −→ A′1⊗A′2⊗A′3, (3.1)
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defined by the Korepanov equation (2.6), is a symplectic map. Symplectic structure ad-
mits an immediate quantization. We will skip here all the details and proceed directly
to the ansatz for quantized Av, X[Av] and L[Av]. The aim of this section is just to give
precise definition of T(u,v) (1.2).

3.1. The quantum Korepanov and tetrahedron equations. The local q-oscillator algebra
� is defined by (1.1). The Fock space � representation for q-oscillators corresponds to

Spec
(

hv
)= 0,1,2, . . . ∀v. (3.2)

Quantized dynamical variables (2.1) are the q-oscillator generators and a pair ofC-valued
parameters, �v ∼ (�v;λv,μv):

�v =
(

av = λvq
hv , bv = yv, cv =−q−1λvμvxv, dv = μvq

hv
)

. (3.3)

Quantized X (2.2) and L (2.24) are given by

X
[

�v
]=
(

λvqhv yv

−q−1λvμvxv μvqhv

)

, (3.4)

Lα,β
[

�v
]=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 λvqhv yv 0
0 −q−1λvμvxv μvqhv 0
0 0 0 −q−1λvμv

⎞

⎟

⎟

⎟

⎟

⎠

. (3.5)

One may verify directly that the quantum Korepanov equation

Xα,β
[

�1
]

Xα,γ
[

�2
]

Xβ,γ
[

�3
]

R= RXβ,γ
[

�3
]

Xα,γ
[

�2
]

Xα,β
[

�1
]

(3.6)

is equivalent to the auxiliary tetrahedron equation (the quantum local Yang-Baxter equa-
tion)

Lα,β
[

�1
]

Lα,γ
[

�2
]

Lβ,γ
[

�3
]

R= RLβ,γ
[

�3
]

Lα,γ
[

�2
]

Lα,β
[

�1
]

. (3.7)

Here the intertwining operator R = R123 acts in the tensor product of representation
spaces �1 ⊗�2 ⊗�3 of three q-oscillators �1,2,3. Parameters λv, μv of �v are the pa-
rameters of R. Both (3.6) and (3.7) are equivalent to the following set of six equations:

Rqh2 x1 = λ2

λ3

(

qh3 x1− q

λ1μ3
qh1 x2y3

)

R, Rx2 =
(

x1x3 +
q2

λ1μ3
qh1+h3 x2

)

R,

Rqh2 x3 = μ2

μ1

(

qh1 x3− q

λ1μ3
qh3 y1x2

)

R, Ry2 =
(

y1y3 + λ1μ3q
h1+h3 y2

)

R,

Rqh1+h2 = qh1+h2 R, Rqh2+h3 = qh2+h3 R.

(3.8)

Classical equations (2.6) and (2.25) follow from (3.6) and (3.7) in the q→ 1 limit of the
well-defined automorphism �′

v = R�vR−1. For irreducible representations of �v, R is
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defined uniquely, its matrix elements for the Fock space representation are given in [5].
Remarkably, Figure 2.2 may be used for the graphical representation of both classical and
quantum equations, in the quantum case the solid 3d cross in Figure 2.2 stands for R.

Integrable model of quantum mechanics may be formulated purely in terms of ma-
trices L (3.5). The intertwiner R is related to evolution operators, it is another subject
and we will not consider it here. Below we recall the definition of integrable model of
quantum mechanics from [5, 15].

3.2. Transfer matrix T. For the square lattice N ×M of the previous section, define the
“monodromy” of quantized L’s literally by (2.27)

Lα,β =
�
∏

n

�
∏

m

Lαn,βm

[

�n,m
]

, (3.9)

and its trace (cf. (2.30))

T(u,v)= Trace
α,β

(

Dα(u)Dβ(v)Lα,β
)

, (3.10)

where boundary matrices D are defined by (2.29). To distinguish the classical and quan-
tum cases, we use the boldface letters for the quantized T and its decomposition (2.31):

T(u,v)=
N
∑

n=0

M
∑

m=0

unvmtn,m. (3.11)

Since the arguments of L’s are local q-oscillator generators, T(u,v) ∈�⊗NM is by defi-
nition a layer-to-layer transfer matrix, its graphical representation is again the classical
Figure 2.3. The model is integrable since

T(u,v)T(u′,v′)= T(u′,v′)T(u,v), (3.12)

that is, the coefficients tn,m in (3.11) form the set of the integrals of motion.
Now we give the technical proof of the commutativity (3.12). The commutativity of

layer-to-layer transfer matrices follows from a proper tetrahedron equation [6]. In addi-
tion to Lα,β[�v] (3.5), define

˜Lα,β
[

�0
]=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 λ0(−q)h0 y0 0

0 q−1λ0μ0x0 μ0(−q)h0 0

0 0 0 q−1λ0μ0

⎞

⎟

⎟

⎟

⎟

⎠

, (3.13)

where �0 ∼ (�0;λ0,μ0). The constant tetrahedron equation for L and ˜L,

˜Lα,α′
[

�0
]

˜Lβ,β′
[

�0
]

Lα,β[�]Lα′,β′[�]= Lα′,β′[�]Lα,β[�]˜Lβ,β′
[

�0
]

˜Lα,α′
[

�0
]

, (3.14)
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may be verified directly, it is just 16× 16 matrix equation with the operator-valued en-
tries. Another technical relation is

Dα(u)Dα′(u′)˜Lα,α′
[

�0
]=
(

u

u′

)h0

˜Lα,α′
[

�0
]

(

u′

u

)h0

Dα(u)Dα′(u′), (3.15)

where D is given by (2.29). Combining (3.14) for the whole lattice, we come to

˜Lα,α′ ˜Lβ,β′Lα,βLα′,β′ = Lα′,β′Lα,β˜Lβ,β′ ˜Lα,α′ , (3.16)

where besides the “monodromies” (2.27) of L[Av],

Lα,β =
�
∏

n,m

Lαn,βm

[

�n,m
]

, Lα′,β′ =
�
∏

n,m

Lα′n,β′m
[

�n,m
]

, (3.17)

we used

˜Lα,α′ =
�
∏

n

˜Lαn,α′n
[

�0
]

, ˜Lβ,β′ =
�
∏

m

˜Lβm,β′m
[

�0
]

. (3.18)

Multiplying (3.16) by Dα(u)Dβ(v)Dα′(u′)Dβ′(v′) and taking into account (3.15), we get

˜Lα,α′

(

u′v
uv′

)h0

˜Lβ,β′ ·Dα(u)Dβ(v)Lα,β ·Dα′(u′)Dβ′(v
′)Lα′,β′

=Dα′(u′)Dβ′(v
′)Lα′,β′ ·Dα(u)Dβ(v)Lα,β ·

(

u′

u

)h0

˜Lβ,β′ ˜Lα,α′

(

v

v′

)h0

.

(3.19)

Now taking the trace over the representation space �0 of �0 and denoting

Mα,β,α′,β′ = Trace
�0

(

˜Lα,α′

(

u′v
uv′

)h0

˜Lβ,β′

)

, (3.20)

we come to the final similarity relation

Mα,β,α′,β′ ·Dα(u)Dβ(v)Lα,β ·Dα′(u′)Dβ′(v
′)Lα′,β′

=Dα′(u′)Dβ′(v
′)Lα′,β′ ·Dα(u)Dβ(v)Lα,β ·Mα,β,α′,β′ ,

(3.21)

and therefore two transfer matrices T(u,v)= Traceα,β(Dα(u)Dβ(v)Lα,β) commute.
In the limit q→ 1 coefficients of (3.11) become the involutive moduli of the spectral

curve (2.15). Since the moduli of the classical spectral curve are independent and the
spectral curve defines completely the solution of the classical model [8], the set of inte-
grals of motion tn,m is complete.

The combinatorial representation for T(u,v) (3.10) is equivalent to the combinato-
rial representation for T(u,v) (2.30). The vertex factors of L[Av] (2.24) in Figure 2.5 are
to be replaced by corresponding elements of L[�v] (3.5). Equations (2.32) and (2.34)
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remain unchanged. In particular, with the help of the combinatorial representation one
may easily see that

T(u,0)=
∏

n

(

1 +u
∏

m

λn,mq
hn,m

)

, T(0,v)=
∏

m

(

1 + v
∏

n

μn,mq
hn,m

)

, (3.22)

so that the basic integrals of motion are q�n and q	m ,

�n =
∑

m

hn,m, 	m =
∑

n

hn,m. (3.23)

Eigenvalues of �n and 	m fix a subspace in the state space of the model.

3.3. Transfer matrix (3.10) and 2d quantum inverse scattering method. The transfer
matrix (3.10) may be identically rewritten as the trace of 2d monodromy matrix

T(u,v)= Trace
β

(

Dβ(v)
�
∏

n

L
(n)
β (u)

)

, (3.24)

where

L
(n)
β (u)= Trace

αn

(

Dαn(u)
�
∏

m

Lαn,βm

[

�n,m
]

)

. (3.25)

Equations (3.14) and (3.15) provide in particular

˜L(0)
α,α′ ·

(

u′

u

)h0

˜L(0)
βm,β′m

·Dα(u)L(m)
α,βm ·Dα′(u′)L

(m)
α′,β′m

=Dα′(u′)L
(m)
α′,β′m

·Dα(u)L(m)
α,βm ·

(

u′

u

)h0

˜L(0)
βm,β′m

· ˜L(0)
α,α′ ,

(3.26)

and therefore

Rβ,β′

(

u

u′

)

Lβ(u)Lβ′(u
′)= Lβ′(u

′)Lβ(u)Rβ,β′

(

u

u′

)

, (3.27)

where

Rβ,β′

(

u

u′

)

= Trace
�0

{

(

u′

u

)h0 �
∏

m

˜Lβm,β′m
[

�0
]

}

. (3.28)

In the same way, the other direction of the lattice may be chosen, and the dual Lax
operator

L(m)
α (v)= Trace

βm

(

Dβm(v)
�
∏

n

Lαn,βm

[

�n,m
]

)

(3.29)

may be considered.
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Further in this subsection we recall the structure of 2d Lax operator (3.25) and its
R-matrix (3.28). Matrix L

(n)
β , as the matrix in the auxiliary space Vβ = (C2)⊗M with

operator-valued matrix elements from �⊗M , has a block-diagonal structure. Let, in the
concordance with (2.21) and (2.23), |0〉 and |1〉 be the basis of C2. Define ϕ0, ϕj , ϕj, j′ ,
and so forth as the following elements of Vβ:

ϕ0 = |0〉⊗ ···⊗ |0〉,
ϕj = |0〉⊗ ···|1〉 jth place⊗···⊗ |0〉,

(3.30)

and so forth, in general ϕj1,..., jm has |1〉 on j1th, . . . , jmth places, j1 < ··· < jm. In the basis
of ϕ,

L
(n)
β (u)ϕ0 = ϕ0L

(n)
0 (u), where L0(u)= 1 +u

∏

m

λn,mq
hn,m . (3.31)

Next

L
(n)
β (u)ϕk =

M
∑

j=1

ϕjL
(n)
j,k (u), (3.32)

where Lj,k(u) are matrix elements of Lax operator for the vector representation of

�q(̂slM), they are given in [5]. In general,

Lβ(u)=
M
⊕

m=0

Lωm(u), (3.33)

where block ωm corresponds to M!/m!(M−m)!-dimensional vector space πωm ∈Vβ with
the basis ϕj1,..., jm , j1 < ··· < jm.

Matrix Rβ,β′ (3.28) has the block structure as well,

Rβ,β′(u)=
M
⊕

m,m′=0

λm0 μ
m′
0 Rωm,ωm′ (u), (3.34)

where λ0, μ0 are extra parameters of �0 (3.28), and Rωm,ωm′ is the �q(̂slM) R-matrix for
the representations πωm ⊗ πωm′ . In particular, in the sector πω1 ⊗ πω1 with the basis ϕj
(3.30), one can obtain the fundamental R-matrix (we used the Fock space (3.2) for �0

for the calculation of the trace in (3.28)):

Rβ,β′(u)ϕj ⊗ϕk = λ0μ0
u

(

u− q2
)

(u− 1)

∑

j′,k′
ϕj′ ⊗ϕk′Rj,k

j′,k′(u), (3.35)

where

R
j,k
j,k(u)= u− 1, R

j, j
j, j = q−1(u− q2),

R
j,k
k, j(u)= q−1(1− q2) for j < k, R

j,k
k, j(u)= q−1u

(

1− q2) for j > k.
(3.36)
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Lax operator L
(n)
β (u) (3.25) has the center q�n (3.23), while q	m is the center of L

(m)
α (v)

(3.29). The quantum space of Lβ is �⊗M , it may be decomposed as

�⊗M =
∞
⊕

J=0

πJω1 , (3.37)

where J is the eigenvalue of �, and πJω1 is the rank-J symmetrical tensor representation

of �q(̂slM) (dominant weight Jω1).
We would like to conclude this subsection by the example of M = 2 containing the

six-vertex model. The block-diagonal structure of L (3.25) is

L(u)=

⎛

⎜

⎜

⎝

1 +uλ1λ2qh1+h2 0 0

0 L(u) 0

0 0 μ1μ2
(

qh1+h2 + q−2uλ1λ2
)

⎞

⎟

⎟

⎠

, (3.38)

where index n of (3.25) is omitted, and 2× 2 central block is

L(u)=
⎛

⎝

μ1
(

qh1 −uλ1λ2qh2−1
) −q−1uλ1μ1x1y2

−q−1y1λ2μ2x2 μ2
(

qh2 −uλ1λ2qh1−1
)

⎞

⎠ . (3.39)

Fixed integer � = h1 + h2 in the quantum space corresponds to spin �/2 representation
of sl2. For spin 1/2 representation (�= 1), matrix elements of (3.39) may be presented by

qh1 =
(

q 0
0 1

)

, qh2 =
(

1 0
0 q

)

, x1y2 =
(

0 0
1− q2 0

)

, y1x2 =
(

0 1− q2

0 0

)

,

(3.40)

and in the homogeneous case λ1 = λ2 = μ1 = μ2 = 1 the matrix (3.39) becomes exactly
the six-vertex R-matrix.

Let the chain of Lax matrices (3.25) be given, n = 1,2, . . . ,N . Six-vertex model corre-
sponds to the choice �n = 1 for all n. The values of two extra integrals of motion, 	1 and
	2 of (3.23), are related to the total spin of the chain: 	1 is the number of “spins up,” 	2

is the number of “spins down.”

4. Quantum curve

Solution of the classical equations of motion is based on the notion of the spectral curve
J(u,v)= 0 (2.15). In the previous section we succeeded in construction of the “quantum
partition function” T(u,v) producing the set of the integrals of motion, but we did not
answer the question: what is the quantum analogue of J(u,v)= 0?

The answer is the following (we are repeating the introduction). Let u, v be an addi-
tional auxiliary Weyl pair,

� : uv = q2vu (4.1)
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serving two variants of “quantum-mechanical” notations

〈

Q | u〉=Q(u), u|u〉 = |u〉u, v|u〉 = ∣∣q2u
〉

v, (4.2)

or

〈

v |Q〉=Q(v), 〈v|v = v〈v|, 〈v|u= u〈q2v
∣

∣. (4.3)

For the given layer-to-layer transfer matrix T(u,v) (3.10), (3.11), define

J(u,v)=
N
∑

n=0

M
∑

m=0

(−q)−nm(−u)n(−v)mtn,m. (4.4)

One may easily see that in the limit q→ 1 (4.4) becomes (2.35). Operator J(u,v) belongs
to �⊗NM ⊗�. Let |t〉 ∈�⊗NM be an eigenvector of T(u,v),

tn,n|t
〉= |t〉tn,m, (4.5)

so that

J(u,v)
(|t〉⊗ id

)= (|t〉⊗ id
)

J(u,v), (4.6)

where J(u,v)∈�, (1.11). Define a linear space Ψ by

J(u,v)|Ψ〉 = 0 or 〈Ψ|J(u,v)= 0. (4.7)

The linear space may be decomposed with respect to the basis |t〉,

|Ψ〉 =
⊕

t

|t〉⊗ |Qt〉 or 〈Ψ| =
⊕

t

〈t|⊗ 〈Qt

∣

∣. (4.8)

The point is that 〈Qt| and |Qt〉 have a simple and predictable structure, in particular
〈Qt | u〉 and 〈v |Qt〉may be defined as polynomials.

Functions 〈Q | u〉 and 〈v | Q〉 (index t is usually omitted) obey the linear difference
equations (4.7),

〈Ψ|J(u,v)|t〉⊗ |u〉 = 0, 〈t|⊗ 〈v|J(u,v)|Ψ〉 = 0, (4.9)

which are exactly (1.7) and (1.8).
In this section, we will derive (4.4) and (4.7) as a solution of quantized linear problem

(2.2) for the whole auxiliary lattice. A nontrivial problem is how to define a quantized
linear problem in such a way that each linear variable belongs to the same subspace (sub-
space (4.7) in the final solution). This is the problem of consistency of linear problem and
invariance of quantum curve.

4.1. Generalized matrix of coefficients of linear problem. Consider the linear problem
(2.2) on an arbitrary lattice with u,v-periodical boundary conditions. The set of local
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linear problems

(

ψ′α
ψ′β

)

= Xv ·
(

ψα
ψβ

)

, Xv =
(

av bv

cv dv

)

(4.10)

may be rewritten for the whole lattice in a matrix form,

∑

j

�k, jψj = 0. (4.11)

The fragments in (4.11), corresponding to (4.10), are

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

... 0 0
. . .

0 1 0 −av −bv 0
0 0 1 −cv −dv 0
. . . 0 0 1 0 . . .
. . . 0 0 0 1 . . .
. . .

...
... 0 0

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...
ψ′α
ψ′β
ψα
ψβ
...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.12)

In the quantum world, matrix elements �k, j are noncommutative operators �k, j . There-
fore (4.11) may have two slightly different forms,

(A)
∑

j

�k, j
∣

∣ψj
〉= 0 or (B)

∑

j

〈

ψj

∣

∣�k, j = 0. (4.13)

Let the operators �k, j obey the following exchange relations:

�k, j�k′, j′ − �k′, j�k, j′ = �k′, j′�k, j − �k, j′�k′, j , k �= k′, j �= j′,

�k, j�k′, j = �k′, j�k, j .
(4.14)

The aim of this subsection is to establish fundamental properties of such � and the form
of solution of (4.13)(A) and (B).

Define

det�
def=
∑

σ

(−)σ
�
∏

j

�σj , j ≡
∑

σ

(−)σ�σ1,1�σ2,2�σ3,3 . . . , (4.15)

where σ are the permutations of the indices 1,2,3, . . . . According to the first relation of
(4.14), the definition (4.15) is invariant with respect to the ordering of j, for instance

∑

σ

(−)σ�σ1,1�σ2,2�σ3,3 ··· =
∑

σ

(−)σ�σ2,2�σ1,2�σ3,3 ··· = ··· , (4.16)

and in general

det� =
∑

σ

(−)σ
�
∏

j

�στj ,τj , (4.17)
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where τ is any permutation of 1,2,3, . . . . Define next the algebraic supplements A j,k of �
(adjoint matrix) as (4.15)-determinants of the minors of �,

∑

k

A j,k�k, j =
∑

k

�k, jA j,k = det�. (4.18)

The first equality here follows from (4.17), the last one in the definition of A j,k. The
second line of (4.14) provides

∑

k

A j,k�k, j′ =
∑

k

�k, j′A j,k = 0 if j �= j′. (4.19)

Therefore (det�)−1A j,k and A j,k(det�)−1 are two variants of inverse matrices,

∑

k

(det�)−1A j,k�k, j′ =
∑

k

�k, j′A j,k(det�)−1 = δj, j′ , (4.20)

or since the inverse matrix must be both left-inverse and right-inverse,

∑

j

�k, j(det�)−1A j,k0 =
∑

j

A j,k0 (det�)−1�k, j = δk,k0 . (4.21)

The main property of the elements of inverse matrices is the commutativity of their ma-
trix elements with the same k0, for example, for the variant (A),

[

(det�)−1A j,k0 , (det�)−1A j′,k0

]= 0. (4.22)

It is a particular case of the following statement:

∑

j

�k, jm j = εk, εk ∈ C=⇒
[

m j ,m j′
]= 0. (4.23)

To prove (4.23), consider

ck,k′ =
∑

j< j′

(

�k, j�k′, j′ − �k′, j�k, j′
)(

m jm j′ −m j′m j
)

, k < k′. (4.24)

Due to the first relation of (4.14) and definition (4.23), ck,k′ = εkεk′ − εk′εk = 0. From the
other side, let A(2)

j, j′|k,k′ be the matrix of the second algebraical supplements of �:

∑

k<k′
A(2)
i,i′|k,k′

(

�k, j�k′, j′ − �k′, j�k, j′
)= δi, jδi′, j′ det�, i < i′, j < j′. (4.25)

Then 0=∑k<k′ A(2)
i,i′|k,k′ck,k′ = det� · (m jm j′ −m j′m j), what proves the commutativity of

m j . The commutativity (4.22) corresponds to εk = δk,k0 .
For εk = δk,k0 with fixed k0, let

m j, j0 =
(

m j0

)−1
m j = A−1

j0,k0
A j,k0 , m′

j, j0 = A j,k0 A−1
j0,k0

. (4.26)
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Then the set m j, j0 , as well as the set m′
j, j0 , is commutative (k0 is fixed) and besides

det� ·m j, j0 =m′
j, j0 ·det�. (4.27)

Inverse relations (4.21) give

∑

j

�k, jm j, j0 = δk,k0 A−1
j0,k0

det�,
∑

j

m′
j, j0�k, j = δk,k0 det�A−1

j0,k0
. (4.28)

Equations (4.28) give the formal solution of the linear problem (4.13)(A) and (B): let
|ψj0〉 or 〈ψj0| for some j0 defined by det� · |ψj0〉 = 0 or 〈ψj0| ·det� = 0. Then

(A)
∣

∣ψj
〉=m j, j0

∣

∣ψj0

〉

or (B)
〈

ψj

∣

∣= 〈ψj0

∣

∣m′
j, j0 . (4.29)

A common feature of all |ψj〉 or 〈ψj| is

(A) det� ·∣∣ψj
〉= 0 or (B)

〈

ψj

∣

∣ ·det� = 0 ∀ j. (4.30)

4.2. Extended algebra of observables. To establish the relation between the algebra of
matrix elements (4.14) and our case of X (3.4), we have to introduce the extended algebra
of observables Av =�v⊗�v. Define

X
[

Av
]=
(

λvqhv νvyv

νvxv μvqhv

)

, (4.31)

where qhv , xv, yv are generators of q-oscillator �v (1.1) and λv, μv, νv are the generators
of Weyl algebra �v:

λvμv = q2μvλv, ν2
v =−μvλv. (4.32)

The q-oscillators and the Weyl algebra elements for different vertices always commute.
Matrix �, defined according to (4.12) for vertex matrix X[Av] (4.31), belongs exactly

to the class (4.14) since

νxνy− λqhμqh = νyνx−μqhλqh,
[

νy,μqh]= [νx,λqh]= 0,
(4.33)

and elements of Av for different vertices commute. Determinant of � has a combinatorial
representation of Figure 2.5, (2.32), (2.34), (2.35) with

Lα,β
[

Av
]=

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 λvqhv νvyv 0
0 νvxv μvq

hv 0
0 0 0 ν2

v

⎞

⎟

⎟

⎟

⎠

. (4.34)

Let

det�
def= J[A]=

∑

(−)nm+n+munvmJn,m[A], (4.35)
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where u and v are C-valued spectral parameters introduced according to (2.9). Let locally

λv = λveQv , μv = μvePv and therefore ν2
v =−q−1λvμvePv+Qv ,

[

Qv,Pv
]= logq2.

(4.36)

In the combinatorial representation of the determinant (Figure 2.5, (2.32), (2.34), (2.35)),
consider a path Cn,m of the homotopy class n� +m
. A monomial summand, corre-
sponding to this path, may be factorized as

JCn,m = tCn,meφ(Cn,m). (4.37)

Monomial tCn,m gathers all the q-oscillators andC-valued parameters λv, μv and−q−1λvμv,
and therefore it is exactly the Cn,m-monomial of T(u,v) (up to unessential renormaliza-
tion of xv and yv). Operator φ is a sum of local Qv and Pv. One may easily see,

[

φ
(

Cn,m
)

,φ
(

C′n′,m′
)]= (nm′ −mn′) logq2 ∀C,C′. (4.38)

Let C1,0 and C0,1 be two particular fixed paths. Due to (4.38), all

˜φ
(

Cn,m
)= φ

(

Cn,m
)−nφ(C1,0

)−mφ
(

C0,1
)

(4.39)

commute. Therefore one may diagonalize them simultaneously and without lost of gen-
erality (since λv, μv are free) put

˜φ
(

Cn,m
)≡ 0. (4.40)

Under this condition,

φ
(

Cn,m
)−→ nφ

(

C1,0
)

+mφ
(

C0,1
)≡ nQ0 +mP0, (4.41)

and exponent of φ(Cn,m), together with the combinatorial factor (−)nm+n+munvm, become

(−)nm+n+menQ0+mP0unvm = (−q)−nm(−u)n(−v)m, u= eQ0u, v = eP0v. (4.42)

Therefore, on the subspace (4.40), J[A] becomes exactly J(u,v) (4.4).
Definition of u, v (4.42) on the subspace (4.40) may be written in terms of λv, μv as

u
∏

m

λnm
˜φ=0�−→ u

∏

m

λnm, v
∏

n

μnm
˜φ=0�−→ v

∏

n

μnm. (4.43)

4.3. Structure of a solution of linear problem. Turn now to the structure of linear spaces
|Ψ〉 and 〈Ψ| defined by

(A) J[A]|Ψ〉 = 0, (B) 〈Ψ|J[A]= 0. (4.44)

According to (4.22), (4.26), (4.27), each of |ψj〉 and 〈ψj| belongs to these subspaces, and
there exist sets of commutative operators m j and m′

j (4.29) such that |ψj〉 =m j|Ψ〉 and
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〈ψj| = 〈Ψ|m′
j . In particular, one may consider the linear spaces |Ψ〉 and 〈Ψ| in the basis

of diagonal m j , m′
j :

(A)
∣

∣ψj
〉= |Ψ〉mj or (B)

〈

ψj

∣

∣=mj〈Ψ|, (4.45)

where mj are eigenvalues of m j , and so forth. Every local pair of linear equations (4.10)
takes the form

(A)

(

1− λvq
hvAv− νvyvBv

)|Ψ〉 = 0,
(

1− νvxvCv−μvq
hvDv

)|Ψ〉 = 0,
or (B)

〈Ψ|(1−Avλvq
hv −Bvνvyv

)= 0,

〈Ψ|(1−Cvνvxv−Dvμvq
hv
)= 0,

(4.46)

where in the notations of (4.10) Av = mα/mα′ , Bv = mβ/mα′ , Cv = mα/mβ′ , and Dv =
mβ/mβ′ .

The linear spaces |Ψ〉 and 〈Ψ| belong to a module of �⊗NM ⊗�⊗NM . Its “physical”
part is �⊗NM , the artificial Weyl part may be defined in many inequivalent ways. Let |n〉
be the state of �⊗NM with nv bosons in the vertex v,n= {nv}. We will focus on the formal
states of �⊗NM for (4.44) on the basis of (4.45):

(A)
∣

∣Ψn
〉= (〈n|⊗ id

)∣

∣Ψ
〉

or
〈

Ψn

∣

∣= 〈Ψ∣∣(|n〉⊗ id
)

. (4.47)

Equations (4.46) give for (4.47)

(A)

(

1− λvAv
)∣

∣Ψ0
〉= 0 ∀v,

∣

∣Ψn
〉=
∏

v

ν−nv
v

(

μvDv;q2
)

n

Cnv
v

√
(

q2;q2
)

nv

∣

∣Ψ0
〉

or

(B)

〈

Ψ0
∣

∣

(

1−μvDv
)= 0 ∀v,

〈

Ψn

∣

∣= 〈Ψ0
∣

∣

∏

v

(

λvAv;q2
)

nv
ν−nv

v

Bnv
v

√
(

q2;q2
)

nv

.

(4.48)

Here we used the representation

x|n〉 = |n− 1〉
√

1− q2n, y|n〉 = |n+ 1〉
√

1− q2+2n. (4.49)

Turn first to the conditions for Ψ0 in (4.48). Since the total Fock vacuum is the eigen-
state of q-oscillator counterpart of J[A], one may consider directly

(A) 0= (〈0|⊗ id
)

J[A]|Ψ〉 = J0
[

�⊗NM]∣∣Ψ0
〉

or

(B) 0= 〈Ψ|J[A]
(|0〉⊗ id

)= 〈Ψ0
∣

∣J0
[

�⊗NM],

(4.50)
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where

J0
[

�⊗NM]=
∏

m

(

1− v
∏

n

μnm

)

∏

n

(

1−u
∏

m

λnm

)

. (4.51)

Evidently, J0 commutes with all ˜φ (4.39) and therefore allows the projection �⊗NM →�
(4.40). Simply applying (4.43),

J0
[

�⊗NM] ˜φ=0�−→ J0(u,v)=
∏

m

(

1− v
∏

n

μnm

)

∏

n

(

1−u
∏

m

λnm

)

. (4.52)

Now the state of the Weyl algebra u, v may be chosen in the most convenient way. For the
case (A) the proper basis is 〈v| of (4.2)-(4.3), and for the case (B) the proper basis is |u〉.
If u= un for the case (A) or v = vm for the case (B),

un =
∏

m

λ−1
nm, vm =

∏

n

μ−1
nm, (4.53)

then

(A)
〈

v |Ψ0
〉= 1 or (B)

〈

Ψ0 | u
〉= 1. (4.54)

Let further |t〉 and 〈t| be the eigenstates of tnm, (4.5). Analogously to (4.47) let

(A)
∣

∣Ψt
〉= (〈t|⊗ id

)|Ψ〉 or (B)
〈

Ψt

∣

∣= 〈Ψ|(|t〉⊗ id
)

. (4.55)

It follows from the second lines of (4.48)

(A)
∣

∣Ψt
〉=�t(ν,μ)

∣

∣Ψ0
〉

or (B)
〈

Ψt

∣

∣= 〈Ψ0
∣

∣�′
t(ν,λ), (4.56)

where, for example, �t is a polynomial of μv of a total power not more that the number
of bosons in |t〉, its structure with respect to νv is rather simple. In addition, since we
consider the eigenstates in the Fock counterpart of A⊗NM , polynomials �t and �′

t must
commute with all ˜φ (4.39) and therefore must allow the projection �⊗NM →� (4.40):

�t −→w−JPt(v), �′
t −→ P′t (u)w−K , (4.57)

where w2 = −vu, w-factor comes from νv factors; J and K are integers; Pt and P′t are
polynomials of a power not higher than the total number of bosons in the state |t〉.

Taking now into account (4.54), we come to the final statement: in the restricted alge-
bra �⊗NM ⊗� the equations

(A)
(〈t|⊗ 〈v|)J(u,v)|Ψ〉 = 0, (B) 〈Ψ|J(u,v)

(|t〉⊗ |u〉)= 0 (4.58)

have the solutions

(A) if u= un, then
〈

v |Ψ〉= v−Jn/2Qn(v),

(B) if v = vm, then
〈

Ψ | u〉= u−Km/2Qm(u),
(4.59)
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where un, vm are given by (4.53), and the integers Jn, Km and degrees of polynomials Qn,
Qm are not higher than the total number of bosons.

In the next section, considering the examples, we will see that Jn and Km are the eigen-
values of �n and 	m (3.23) and, moreover, the degrees of Qm and Qn are exactly Km
and Jn.

In the next section we will add q−�n and q−	m to the definition of un and vm. This
allows one to cancel the half-integer prefactors v−Jn/2 of Qn(v) and u−Km/2 of Qm(u).
The corresponding values of un and vm may be obtained via conditions Q(0) = 1 and
Qn(0)= 1.

5. Examples

Let us illustrate (4.9) for the six-vertex model first, and then for an arbitrary square lattice.

5.1. Six-vertex chain. Consider the lattice with M = 2 and arbitrary N . This is the case
of six-vertex model, where (4.9) becomes the Baxter equation. It follows from (3.38),

∑

n

untn,0 =
∏

n

(

1 +uλn,1λn,2q
hn,1+hn,2

)

,

∑

n

untn,1 = t(u),

∑

n

untn,2 =
∏

n

μn,1μn,2
(

qhn,1+hn,2 + q−2uλn,1λn,2
)

,

(5.1)

where t(u) is the transfer matrix for the Lax operator (3.39). Its opposite elements are

t0,1 =
∏

n

(

μn,1q
hn,1
)

+
∏

n

(

μn,2q
hn,2
)

,

tN ,1 =
∏

n

(− q−1λn,1λn,2μn,2q
hn,1
)

+
∏

n

(− q−1λn,2λn,1μn,1q
hn,2
)

.
(5.2)

Applying the rule (4.4) unvm �→ (−q)−nm(−u)n(−v)m, we come to

J(qu,v)v−1 =−t(u) + v−1
∏

n

(

1− q−1uλn,1λn,2q
hn,1+hn,2

)

+ v
∏

n

μn,1μn,2
(

qhn,1+hn,2 − q−1uλn,1λn,2
)

.
(5.3)

Equation 〈Q|J(qu,v)v−1|u〉 = 0 is exactly Baxter’s equation for �q(̂sl2),

Q(u)t(u)=Q(q−2u
)

φ(u) +Q
(

q2u
)

φ′(u), (5.4)

where

φ(u)= v−1
∏

n

(

1− q−1uλn,1λn,2q
hn,1+hn,2

)

,

φ′(u)= v
∏

n

μn,1μn,2
(

qhn,1+hn,2 − q−1uλn,1λn,2
)

.
(5.5)
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Condition Q(0)= 1 gives (see (5.2))

v−1 + v
∏

n

μn,1μn,2q
hn,1+hn,2 =

∏

n

μn,1q
hn,1 +

∏

n

μn,2q
hn,2 , (5.6)

which has two solutions corresponding to two Baxter’s functions Q: the first one is

v = v1
def=
(

∏

n

μn,1q
hn,1

)−1

, (5.7)

so that Q = Q1(u) is a polynomial of the degree
∑

nhn,1 =	1 (see (3.23)), this value of
the degree follows from the second line of (5.2); the second solution is

v = v2
def=
(

∏

n

μn,2q
hn,2

)−1

, (5.8)

and corresponding Q = Q2(u) is the polynomial of the power
∑

nhn,2 = 	2. In some
sense, two functions Q correspond to two sheets of classical q = 1 spectral hyperellip-
tic curve v−1φ(u) + vφ′(u)= t(u). Note that we consider now the Bethe ansatz equations

for �q(̂sl2) chain with arbitrary �n, this is the inhomogeneity of highest spin. Six-vertex
case corresponds to �n = 1 for all n.

In the inhomogeneous case the spectrum of t(u) follows from (5.4) and just the con-
dition Q �= 0 (without fixing v and considering the polynomial structure of Q). Let us
fix �n = 1, the six-vertex case, and a priori the Fock space representation. Simply sub-
stituting u = (λn,1λn,2)−1 and u = q2(λn,1λn,2)−1 into (5.4) and excluding Q, one comes
to

t
(

1
λn,1λn,2

)

t
(

q2

λn,1λn,2

)

=
∏

k

qμk,1μk,2

(

1− q2 λk,1λk,2

λn,1λn,2

)(

1− q−2 λk,1λk,2

λn,1λn,2

)

(5.9)

with n = 1, . . . ,N . These N equations and conditions (5.2) do produce the whole spec-
trum of t(u) for inhomogeneous six-vertex model.

Equations (5.9) may be obtained in the other way—viaQ(v)= 〈v|Q〉. ConditionQ(0)
= 1 fixes u= un,

un =
(

λn,1λn,2q
hn,1+hn,2

)−1
, (5.10)

corresponding Q =Qn(v) is a polynomial of the power �n = hn,1 + hn,2. In the six-vertex
case �n = 1, therefore Qn(v)= v− ζn, and equating to zero each v-term of the right-hand
side of (4.9), one comes to

ζn =− t
(

q3un
)

∏

k qμk,1μk,2
(

1− q−2un/uk
) =−

∏

k

(

1− q2un/uk
)

t
(

qun
) . (5.11)

The second equality gives (5.9).
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5.2. �q(̂slM) equations. Let the lattice have arbitrary N and M. We will consider (4.9)
for 〈Q | u〉 =Q(u) and for 〈u |Q〉 =Q(u)—the last function was not mentioned before,
but it is interesting to discuss what it is.

Equations 〈Q|J(u,v)|u〉 = 0 and 〈u|J(u,v)|Q〉 = 0 read correspondingly

M
∑

m=0

Q
(

q2mu
)

(−v)mτm(u)= 0,
M
∑

m=0

τ
(

q−2mu
)

(−v)mQ
(

q−2mu
)= 0, (5.12)

where

τm(u)=
N
∑

n=0

(−q)nm(−u)ntnm (5.13)

(cf. (1.5), (1.6)). Combinatorially, one can obtain the following summation formulae:
analogue of (5.1)

∑

n

untn,0 =
∏

n

(

1 +u
∏

m

λn,mq
hn,m

)

,

∑

n

untn,M =
∏

n

(

∏

m

μn,mq
hn,m +u

∏

m

−q−1λn,mμn,m

)

,

(5.14)

and analogue of (5.2)

∑

m

vmt0,m =
∏

m

(

1 + v
∏

n

μn,mq
hn,m

)

,

∑

m

vmtN ,m =
∏

m

(

∏

n

λn,mq
hn,m + v

∏

n

−q−1λn,mμn,m

)

.

(5.15)

Let us fix notations for the inhomogeneities (cf. (4.53))

un =
(

∏

m

λnmq
hnm

)−1

, vm =
(

∏

n

μnmq
hnm

)−1

. (5.16)

It follows from (5.14),

τ0(u)=
∏

n

(

1− u

un

)

, τM(u)=
∏

m

vm
∏

n

(

1− q−2�n
u

un

)

. (5.17)

For the normalizationQ(0)=Q(0)= 1 both equations in (5.12) are equivalent to the first
line of (5.15):

M
∑

m=0

(−v)mτm(0)=
∏

m

(

1− v

vm

)

= 0. (5.18)
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Suppose that Q(u) ∼ uK and Q(u) ∼ uK when u→∞. Then (5.12) and the second line of
(5.15) provide the following conditions for K and K :

∏

m

(

1− q2K−2	m
v

vm

)

= 0,

∏

m

(

1− q−2K−2N−2	m
v

vm

)

= 0.

(5.19)

The charges �n and 	m are given by (3.23). Equation (5.18) has the solutions v = vm,
m = 1,2,3, . . . ,M. In what follows, we will assume the generic set of μnm, so that all vm
are different. Let v = vm correspond to Q(u) = Qm(u) and Q(u) = Qm(u). Then (5.19)
defines the leading u→∞ asymptotic

Qm(u) ∼ u	m , Qm(u) ∼ u	m , (5.20)

where

	m =−
∑

n

(

1 + hn,m
)

. (5.21)

Thus, for the Fock space representation all Qm(u) are polynomials of the power 	m.
Functions Qm(u) are rational functions, below we construct them in terms of Qm(u).

Instead of the Fock space representation Spec(h)= 0,1,2, . . . ,∞, one may consider the
anti-Fock space, Spec(h)=−1,−2,−3, . . . ,−∞. Then equations in (4.46) are to be solved
in a different way, and as a result Qm(u) become polynomials and Qm(u) become rational
functions.

The dual “T-Q” equations for slN correspond to the evident exchange N ↔M, u↔ v,
and �↔	.

Turn now to the form of Qm for the Fock space representation. The detailed “arith-
metical” consideration of (5.12) as a set of linear equations allows one to conclude for
instance

QM(u)= WM(u)
V(u)

, (5.22)

where

WM(u)= det
∥

∥Qj
(

q2iu
)

vij
∥

∥

i, j=1,...,M−1, (5.23)

and V(u)/V(q2u) = v1v2 ···vM(τM(qMu)/τ0(q2u)). All the other Qm correspond to
(5.22) and (5.23) with permuted set of indices of Qj . Inhomogeneity of vm is important
in this consideration since ifQm(0)= 1, thenWM(0)= v1 ···vM−1

∏

1≤i< j<M(vi− vj), and
therefore WM(u) is not zero. As well, for the generic vm all Qm(u) are functionally inde-
pendent, their Wronskian

W(u)= det
∥

∥Qj
(

q2(i−1)u
)

vi−1
j

∥

∥

i, j=1,...,M (5.24)
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obeys

W(u)
W
(

q2u
) = v1v2 ···vM τM

(

qMu
)

τ0(u)
(5.25)

with the initial condition W(0)=∏1≤i< j≤M(vi− vj), therefore W(u) �= 0.
Using these “arithmetical” considerations, one may express the fundamental transfer

matrices τm(u) of slM via determinants det‖Qj(q2piu)v
pi
j ‖i, j=1,...,M , where pi is a subset

of (0,1, . . . ,M). Moreover, for more general sets of pi, any transfer matrix of slM may be
expressed as such a determinant [4].

The nested Bethe ansatz equations (see [17] and, e.g., [7]) may be derived from the
generalized “T-Q” equations in an “arithmetical” way as well. Let

�m(u)= det
∥

∥Qj
(

q2iu
)

vij
∥

∥

i, j=1,...,m,

�m(u)= det
∥

∥Qj
(

q2iu
)

vij
∥

∥

j=1,...,m; i=0,2,...,m,
(5.26)

with �0 = 1 and �0 = 0. Function �m(u) is a polynomial of the power 	1 + 	2 + ···+
	m. Equations

�m(u)�m−1(u)=�m−1(u)�m(u) +
1
vm

�m−1
(

q2u
)

�m
(

q−2u
)

(5.27)

form= 1,2, . . . ,M− 1 are just the determinant identities for (5.26). Form=M the system
(5.27) should be completed by an equation, following from (5.12):

τ1(u)�M−1(u)= τ0(u)�M−1(u) + v1 ···vM−1τM(u)�M−1
(

q2u
)

, (5.28)

where τ0 and τM are given by (5.17). The nested Bethe ansatz equations are a closed
system of algebraic equations for roots of �m(u) following from (5.27), (5.28).

6. Conclusion

This paper has a modest aim just to give a correct form of “T-Q” equations. We can say
nothing about their solution. But we would like to note that from the point of view of
three-dimensional models, the thermodynamical limit is the limit N ,M →∞ with non-
singular ratio N : M. The nested Bethe ansatz equations were never investigated in this
limit since �m(u) (5.26) with finite m has a finite number of roots. In addition, an exci-
tation corresponds to a change of the structure of occupation numbers. From slM point
of view of the previous section, it corresponds not only to a change of 	m related to the
powers of �-operators, but as well it corresponds to a change of �n which is a change of
the slM-structure of the nested Bethe ansatz.

Let us better conclude this paper by a brief comparison of two exactly integrable mod-
els in 2 + 1 dimensional space-time. From the point of view of the algebra of observables,
these models should be called “q-oscillator model” and “Weyl-algebra model.” The last
one is a quantum-mechanical reformulation of Zamolodchikov-Bazhanov-Baxter model
of statistical mechanics, which has a long history [1–3, 18, 19]. Both models are based on
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two slightly different forms of local linear problem, the linear problem for Weyl-algebra
model may be found in [16]. Solution of both classical models may be expressed in terms
of algebraic geometry [8, 10]. Equations of motion may be understood as a canonical
mapping conserving certain symplectic structure [5, 14]. Poisson structure allows an im-
mediate quantization [5, 16]. Quantum-mechanical integrals of motion may be com-
bined into a direct sum of transfer matrices for fundamental representations of either slN
or slM [5, 13, 15], and finally, the solvability of the models is based on quantized auxiliary
linear problem and remarkable features of their operator-valued matrices of coefficients,
as can be seen in this paper and [12].

The continuous limit of both classical models may be illustrative. Equations of motion
for six fields qj , q∗j , j = 1,2,3, follow from the action

A=
∫

d3x
[

q∗1 ∂1q1 + q∗2 ∂2q2 + q∗3 ∂3q3 +V
(

q∗,q
)]

, (6.1)

where for the classical continuous limit of q-oscillator model V = q∗1 q
∗
2 q

∗
3 − q1q2q3, this

is nothing but the model of three-wave resonant interaction [9]. For the classical contin-
uous limit of Weyl-algebra model the potential is V = (q∗1 − q2)(q∗2 − q3)(q∗3 − q1) [11].
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