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The notion of fated filters in Ry-algebras is introduced. Characterizations of (fated) filters
are given. A filter generated by a set is established. By introducing the notion of finite
O-property, we show that if F is a nonempty subset of an Ry-algebra L that has the finite
O-property, then there exists a maximal filter of L containing F.
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1. Introduction

In order to research the logical system whose propositional value is given in a lattice
from the semantic viewpoint, Xu [7] proposed the concept of lattice implication alge-
bras, and discussed some of their properties. Xu and Qin [8] introduced the notion of
implicative filters in a lattice implication algebra, and investigated some of their prop-
erties. Turunen [5] introduced the notion of Boolean deductive system, or equivalently,
Boolean filter in BL-algebras which rise as Lindenbaum algebras from many valued logic
introduced by Héjek [2]. Boolean filters are important because the quotient algebras in-
duced by Boolean filters are Boolean algebras, and a BL-algebra is bipartite if and only
if it has proper Boolean filter. In [6], Wang introduced the notion of Ry-algebras in or-
der to provide an algebraic proof of the completeness theorem of a formal deductive
system. We note that Ry-algebras are different from BL-algebras because the identity
XA y=x0(x— y) holds in BL-algebras, but does not hold in Ry-algebras. Ry-algebras
are also different from lattice implication algebras because the identity (x — y) — y =
(y = x) — x holds in lattice implication algebras, but does not hold in Ry-algebras. Al-
though they are different in essence, they have some similarities, that is, they all have
the implication operator —. Therefore, it is meaningful to generalize some aspects of
lattice implication algebras and BL-algebras to Ry-algebras. In [1], Esteva and Godo in-
troduced the MTL-algebra; the MTL-algebra is an extension of a BL-algebra, which is
obtained by eliminating the condition x A y = x ® (x — y) in a BL-algebra. In fact, the
MTL-algebra is an algebra induced by a left continuous #-norm and its corresponding
residuum, but the BL-algebra is an algebra induced by a continuous #-norm and its cor-
responding residuum. It is proved an that Ry-algebra is a particular M TL-algebra and
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2 Filters of Ry-algebras

its t-norm O is a nilpotent minimum #-norm [1], which is obtained by taking a nega-
tion operator as 1 — x. Hence, the theory of Ry-algebras becomes one of the guides to the
development of the theory of M TL-algebras. Lianzhen and Kaitai [3] extended the no-
tions of implicative filters and Boolean filters to Ry-algebras, considered the fuzzification
of such notions, and gave characterizations of fuzzy implicative filters. They also proved
that fuzzy implicative filters and fuzzy Boolean filters coincide in Ry-algebras.

In this paper, we introduce the notion of fated filters, and give characterizations of
fated filters. We study how to generate a filter by a set. By introducing the notion of finite
O-property, we show that if F is a nonempty subset of an Ry-algebra L that has the finite
O-property, then there exists a maximal filter of L containing F.

2. Preliminaries

Definition 2.1 [6]. Let L be a bounded distributive lattice with order-reversing involution
- and a binary operation —. Then (L, A, Vv, =, —) is called an Ry-algebra if it satisfies the
following axioms:

R)x—=y="-y—x,

(R2) 1 = x=x,

R3) (y=2)A((x—~y) = (x=2)=y—2

R4) x=(y—2)=y—(x—2),

R3) x—(yvz)=(x—y)V(x—2),

(R6) (x = )V ((x = y) = (=xV y)) = 1.

Let L be an Ry-algebra. For any x,y € L, we definexo y = =(x - =y) and x® y =
—x — y.Itis proved that ® and @ are commutative, associative, and x ® y = =(=x 0 7y),
and (L, A, V, ©, —, 0, 1) is a residuated lattice.

Example 2.2 [3]. Let L = [0,1]. For any x,y € L, we define x A y = min{x,y}, x vV y =
max{x, y}, "x=1—-x,and

1 ifx<y, 2.1)
X—y:= .
4 xvy ifx>y.

Then (L, A, V, =, —) is an Ry-algebra which is neither a BL-algebra nor a lattice implica-
tion algebra.

An Ry-algebra has the following useful properties.

ProrosITION 2.3 [4]. For any elements x, y, and z of an Ry-algebra L, there exist the fol-
lowing properties:
(al) x < yifandonly if x — y =1,

x=y)viy—-x=1
x < yimpliesy - z<x -z,
x < yimpliesz—x<z—y,
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(a8
(29
(al)) xoy<xAyandxO(x— y)<xAY,
(all) (xoy) —z=x—- (y — 2),

Jxvy=((x—=y)—y)Ay—x) —x),
)
)
)
(al2) x<y—(x0y),
)
)
) x
)

x0x=0andx® —x=1,

(al3)xoy<zifandonlyifx <y -z,
(al4 x<y1mplzesx®z<y®z,
(al5 y<(y—-2)—-(x-2),
(al6) x—=y)o(y—2z)<x—z

3. Fated filters

Definition 3.1 [4]. A nonempty subset F of L is called a filter of L if it satisfies
(i) 1€F,
(ii) (forallx e F) (forallye L) (x - ye F=> y € F).

Definition 3.2 [3]. A nonempty subset F of L is called an implicative filter of L if it satisfies
(i) 1€F,
(ii) (forallx,y,z€e L) (x - (y—2z)EF,x - y€F=>x—-z€F).

Note that every implicative filter is a filter. The following is a characterization of filters.

LemMA 3.3 [4]. Let F be a nonempty subset of L. Then F is a filter of L if and only if it
satisfies

(i) (forallx € F) (forallye L) (x <y =y €F),

(ii) (forallx,y € F) (x© y € F).

ProposiTioN 3.4. Let F be a nonempty subset of L. Then F is a filter of L if and only if it
satisfies

(Vx,yeL) (VaeF)((x—a)—yeF=x— y€eF). (3.1)

Proof. Suppose that F is a filter of L. Let x,y € L and a € F be such that (x — a) —
y € F. Since a < x — a by (a2), we have x — a € F by Lemma 3.3(i) and so y € F by
Definition 3.1(ii). Using (a2) and Lemma 3.3, we conclude that x — y € F. Conversely,
let F be a nonempty subset of L for which (3.1) is valid. Then there exists a € F. Since
(0~a)—a=1—-a=acF,itfollowsfrom (3.1)that1 =0 —-a€F.LetxcFandy €L
be such thatx — y € F. Then (1 - x) - y=x— y € F,and thus y =1 — y € F by (3.1).
Therefore, F is a filter of L. O

ProrosITION 3.5. Every filter F of L satisfies the following implication:
(Vx,y,z€l) ((x—y)—z€F=x— (y—2z)€F). (3.2)
Proof. Letx,y,z € L be such that (x — y) — z€ F. Then

l=y —(x—y)<((x—y) —2) —(y—2), (3.3)
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and so ((x — y) — z) = (y — z) € F by Lemma 3.3(i). Using Definition 3.1(ii), we have
y —z € F.Since y -z < x— (y—z) by (a2), it follows from Lemma 3.3(i) that x—(y—z2)
€ F. This completes the proof. O

The following example shows that the converse of Proposition 3.5 may not be true in
general.

Example 3.6. Let L = {0,a,b,¢,d,1} be aset with theorder 0 <a <b <c¢ <d <1, and the
following Cayley tables:

X | X - 10 a b ¢ d 1
01 o1 1 1 1 1 1
a|d a|d 1 1 1 1 1
b|c blc ¢ 1 1 1 1
cl|b c|/b b b 1 1 1
d|a d|la a b ¢c 1 1
110 1 /0 a b c d 1

Then (L, A,V,7,—) is an Ry-algebra (see [3]), where x A y = min{x,y} and x vV y =
max{x, y}. Then the set D := {a,b,c} satisfies the condition (3.2), but D is not a filter
of L.

Let F be a nonempty subset of L. Then the least filter containing F is called the filter
generated by F and denoted by (F).
The next statement gives a description of elements of (F).

TueoreM 3.7. If F is a nonempty subset of L, then

@ (@ — (o — (@, —2x) ) = 1
F) = el . 3.4
(F) {x for some ay,az,...,a, € F (3.4)
Proof. Denote
@ (0 — (- @y —2)-)) =1
G:= eL . 3.5
{x for some ay,ay,...,a, € F (3.5)

Obviously, G# @ and F < G. Let x, y € L and z € G be such that (x — z) — y € G. Then
there exist aj,as,...,a,,b1,b2,...,b, € F such that

a—(@— (- —(am—(x—2)—p)-))=1 (3.6)
bp— (bp— (- — (by—2)-++)) =L (3.7)
Using (R4) repeatedly, (3.7) implies that
by — (by— (- — (b — (x—2)) - --))
=x— (bh— (bp— (- — (b —2) ")) (3.8)

=x—1=1
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Since x — z < ((x — z) — y) — y, we have
by — (b — (- — (b — (x—2) —y) —p)---)=1L (39

thatis, (x = 2) = y) = (bi = (by = (-+- = (byy = y)--+))) = 1. It follows from (3.6)
and (a6) that

1=a1—»(a2—>(---—>(an—*((x—*Z)—'}’))"'))

Say— (@ — (- — (@ — (b — (b — (- — (by — )=+ ) +)),
(3.10

so that

o —(@— (- —(a—b—l— (= (bn—y))))) ) =

Consequently,
l=x—1
—x— (@ (@ — (= (ag— (b — (b — (- (b —y) - )))) ---)))

—ar— (@ — (- (@ (b — (s (- (b — (=) - )))) =),
(3.12)

which shows that x — y € G. Using Proposition 3.4, we know that G is a filter of L. Now
let H be a filter of L containing F and let x € G. Then

a—(a— (- —(ap—x)--))=1 (3.13)

for some a;,as,...,a, € F < H. Since H is a filter of L, it follows that x € H so that G < H.
Therefore, G = (F), completing the proof. O

ProposriTiON 3.8. For any x,a1,as,...,4, € L,

(momo---0a,) —x=1l<=a —(a—(-—(a,—x)---))=1
(3.14)

Proof. We will prove (3.14) by induction on n. If n = 1, then it is clear. If n = 2, then we
have

(amoa) —x=1= -(a; — @) —x=1
=-x—(ag— @;)=l=a — (~x— a) =1 (3.15)
=a — (ap—x)=1

Assume that (3.14) holds for n = k, that is,

(moamo--oa4) —x=1l=a —(aa— (- — (agg—x)--+)) =1
(3.16)
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Then

(10amo- - 0ar@agy) —x=1
= (11040 - 0a) — ar) —x=1
= x— (11040 0a) — "ak) =1
=S (@00 -0a) — (x— "ar1) =1
= (010a,0---0a;) — (agy — x) =1
=a—(a— (- —(@— (@ —x)--)) =1,
(3.17)
which shows that (3.14) holds for n = k + 1. This completes the proof. O

Combining Theorem 3.7 and Proposition 3.8, the following corollary is straightfor-
ward.

CoROLLARY 3.9 [4]. If F is a nonempty subset of L, then

(F) = {xeL (3.18)

(aloaze---oan)—wc:l}

for some ay,a,...,a, € F
A subset F of L is said to have the finite ©-property if a; © a, © - - - © a, # 0 for any
finite members a;,a,,...,a, of F.

Example 3.10. Let L = {0,a,b,c,d, 1} be an Ry-algebra in Example 3.6. The set {c,d} sat-
isfies the finite ®-property, but the set {a, b, c} does not satisfy the finite ®-property since
a0b==(a—-b)=—(a—c)=-1=0.

The following corollary is an immediate consequence of Corollary 3.9.

CoRroOLLARY 3.11. IfF is a nonempty subset of L, then (F) is a proper filter of L if and only
if F has the finite ©-property.

THEOREM 3.12. Let F be a filter of L that satisfies
(Vxel) (x€F< —-xe€L\F). (3.19)

Then F is a maximal filter of L.

Proof. Let F be a filter that satisfies the condition (3.19). Since 1 € F, we get 0 = =1 €
L\ F and so F is proper. If G is a filter of L and F & G, then there existsa€ G\ F < L\ F.
Thus —a € F ¢ G. By (a9) and Lemma 3.3, we have 0 = ¢ ® =g € G and thus G = L.
Therefore, F is a maximal filter of L. O

ProrosITION 3.13. Let F be a proper filter of L. Then F satisfies condition (3.19) if and only
if it satisfies

(Vx,yel) (xeyeF=xecForyecF). (3.20)
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Proof. Assume that F satisfies the condition (3.20). Let x € L be such that -x € L\ F.
Then x® ~x = -x — —x =1 € F,and so x € F by (3.20). Suppose that x € F. If -x € F,
then 0 = x ® =x € F since F is closed under ©. This is a contradiction because F is proper.
Hence, —x € L\ F. Conversely, suppose that F satisfies (3.19). Let x, y € L be such that
x@®yeF.Ifx&F, then ~x € F by (3.19). Since F is a filter, it follows from —x — y =
x @ y € F that y € F. Hence, (3.20) is valid. O

CoROLLARY 3.14. Every proper filter F of L satisfying the condition (3.20) is maximal.

The following example shows that there exists a maximal filter F which does not satisfy
the condition (3.19).

Example 3.15. Let L = {0,a,b,c,1} be a set with the order 0 <a < b < ¢ <1, and the
following Cayley tables:

X | 7x — |0 a b ¢ 1
01 0 1 1 1 1 1
a|c a c 1 1 1 1
b|b b b b1 1 1
cla C a a b 1 1
110 1 0 a b c 1

Then (L,A,V,—,—) is an Ry-algebra (see [3]), where x A y = min{x,y} and x VvV y =
max{x, y}. This is neither a BL-algebra nor a lattice implication algebra because c A a #
cO(c—a)and (b — ¢) — ¢ # (c — b) — b, respectively. It is not difficult to verify that the
set F = {1,c} is a maximal filter of Land =b € L\ Fbut b € F.

THEOREM 3.16. Let F be a nonempty subset of L. If F has the finite ©-property, then there
exists a maximal filter of L containing F.

Proof. Let Q:= {G| G is a proper filter of L containing F}. Then Q # & since (F) € Q.
Suppose that G; = G, < ... is a chain of elements of Q and let H = |J; G;. Then (i) F < H,
(ii) 0 ¢ H (because 0 ¢ G; for all i), (iii) 1 € H, and (iv) if x € H and x — y € H, then
there exists i such that x € G; and x — y € G;. It follows from Definition 3.1(ii) that y €
G; € H. This shows that H is a proper filter of L containing F, and so H € Q). Using Zorn’s
lemma, Q) has a maximal element. This completes the proof. O

Example 3.17. Let L = {0,a,b,c,d, 1} be an Ry-algebra in Example 3.6. Then {c,d} satis-
fies the finite ®-property, and we know that F = {1,¢,d} is a maximal proper filter of L
containing {c,d}.

Definition 3.18. A nonempty subset F of L is called a fated filter of L if it satisfies
(i) 1€F,
(ii) (forallx,y € L) (forallae F) (a— ((x - y) = x) EF > x € F).

Example 3.19. Let L = {0,a,b,c,d,1} be an Ry-algebra in Example 3.6. It is not difficult
to verify that the set F := {1,¢,d} is a fated filter of L.

THEOREM 3.20. Every fated filter is a filter.
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Proof. Let F be a fated filter of L and let x,y € L be such that x € F and x — y € F.
Replacing a and x by x and y, respectively, in Definition 3.18(ii), we have

x— ((y—y)—y)=x—-(1—y)=x—y€EF, (3.21)

and so y € F by Definition 3.18(ii). Hence, F is a filter of L. O
The following example shows that the converse of Theorem 3.20 is not true in general.

Example 3.21. Let L = {0,a,b,¢,1} be a Ro-algebra in Example 3.15. Then F = {1,c} isa
filter of L but not a fated filter of L sinceb & Fandc— ((b—-a) - b)=1€F.

TaEOREM 3.22. A filter F of L is fated if and only if it satisfies
(Vx,yel) (x—y)—xeF=x€cF). (3.22)

Proof. Assume that F is a fated filter of L and let x, y € L be such that (x — y) - x € F.
Since 1 = ((x = y) = x) = (x = y) — x € F and 1 € F, it follows from Definition 3.18(ii)
that x € F. Thus (3.22) is valid. Conversely, let F be a filter of L that satisfies the condition
(3.22). Letac Fand x,y € Lbe such thata — ((x - y) - x) € F. Then (x - y) - x €F
by Definition 3.1(ii), and so x € F by (3.22). Therefore, F is a fated filter of L. O

THEOREM 3.23. Let F be a filter of L. Then F is a fated filter if and only if it is an implicative
filter.

Proof. Let F be a fated filter of L and assume that x — (y — z) € Fand x — y € F for all
x,¥,z € L. Using (R4) and (al5), we have

x—((y—2)=y—(x—2)<(x—y) — (x — (x — 2)), (3.23)

and so (x = y) = (x — (x — z)) € F by Lemma 3.3(i). Since x — y € F, it follows from
Definition 3.1(ii) that x — (x — z) € F. Since

(x—2)—2z) —(x—2)=x— ((x—2) —2) —z)=x — (x —2) EF,
(3.24)

it follows from Theorem 3.22 that x — z € F. Therefore, F is an implicative filter of L.
Conversely, suppose that F is an implicative filter of L. Let x, y € L be such that (x — y) —
x € F. Since ~x < x — y and — is involution, we have

(X — y) — x =% — x= % — (~x — 0) (3.25)

by (a5). Since F is a filter, we get —x — (—x — 0) € F by Lemma 3.3(i). Since F is an
implicative filter and =x — —x = 1 € F, it follows from Definition 3.2(ii) that x = ~x —
0 € F. Hence, by Theorem 3.22, we conclude that F is a fated filter of L. O
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