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The notion of fated filters in R0-algebras is introduced. Characterizations of (fated) filters
are given. A filter generated by a set is established. By introducing the notion of finite
�-property, we show that if F is a nonempty subset of an R0-algebra L that has the finite
�-property, then there exists a maximal filter of L containing F.
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1. Introduction

In order to research the logical system whose propositional value is given in a lattice
from the semantic viewpoint, Xu [7] proposed the concept of lattice implication alge-
bras, and discussed some of their properties. Xu and Qin [8] introduced the notion of
implicative filters in a lattice implication algebra, and investigated some of their prop-
erties. Turunen [5] introduced the notion of Boolean deductive system, or equivalently,
Boolean filter in BL-algebras which rise as Lindenbaum algebras from many valued logic
introduced by Hájek [2]. Boolean filters are important because the quotient algebras in-
duced by Boolean filters are Boolean algebras, and a BL-algebra is bipartite if and only
if it has proper Boolean filter. In [6], Wang introduced the notion of R0-algebras in or-
der to provide an algebraic proof of the completeness theorem of a formal deductive
system. We note that R0-algebras are different from BL-algebras because the identity
x∧ y = x� (x→ y) holds in BL-algebras, but does not hold in R0-algebras. R0-algebras
are also different from lattice implication algebras because the identity (x → y) → y =
(y → x)→ x holds in lattice implication algebras, but does not hold in R0-algebras. Al-
though they are different in essence, they have some similarities, that is, they all have
the implication operator →. Therefore, it is meaningful to generalize some aspects of
lattice implication algebras and BL-algebras to R0-algebras. In [1], Esteva and Godo in-
troduced the MTL-algebra; the MTL-algebra is an extension of a BL-algebra, which is
obtained by eliminating the condition x∧ y = x� (x→ y) in a BL-algebra. In fact, the
MTL-algebra is an algebra induced by a left continuous t-norm and its corresponding
residuum, but the BL-algebra is an algebra induced by a continuous t-norm and its cor-
responding residuum. It is proved an that R0-algebra is a particular MTL-algebra and
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its t-norm � is a nilpotent minimum t-norm [1], which is obtained by taking a nega-
tion operator as 1− x. Hence, the theory of R0-algebras becomes one of the guides to the
development of the theory of MTL-algebras. Lianzhen and Kaitai [3] extended the no-
tions of implicative filters and Boolean filters to R0-algebras, considered the fuzzification
of such notions, and gave characterizations of fuzzy implicative filters. They also proved
that fuzzy implicative filters and fuzzy Boolean filters coincide in R0-algebras.

In this paper, we introduce the notion of fated filters, and give characterizations of
fated filters. We study how to generate a filter by a set. By introducing the notion of finite
�-property, we show that if F is a nonempty subset of an R0-algebra L that has the finite
�-property, then there exists a maximal filter of L containing F.

2. Preliminaries

Definition 2.1 [6]. Let L be a bounded distributive lattice with order-reversing involution
¬ and a binary operation→. Then (L, ∧, ∨, ¬,→) is called an R0-algebra if it satisfies the
following axioms:

(R1) x→ y =¬y→¬ x,
(R2) 1→ x = x,
(R3) (y→ z)∧ ((x→ y)→ (x→ z))= y→ z,
(R4) x→ (y→ z)= y→ (x→ z),
(R5) x→ (y∨ z)= (x→ y)∨ (x→ z),
(R6) (x→ y)∨ ((x→ y)→ (¬x∨ y))= 1.

Let L be an R0-algebra. For any x, y ∈ L, we define x� y = ¬(x →¬y) and x⊕ y =
¬x→ y. It is proved that� and⊕ are commutative, associative, and x⊕ y =¬(¬x�¬y),
and (L, ∧, ∨, �,→, 0, 1) is a residuated lattice.

Example 2.2 [3]. Let L = [0,1]. For any x, y ∈ L, we define x∧ y =min{x, y}, x∨ y =
max{x, y}, ¬x = 1− x, and

x −→ y :=
⎧
⎨

⎩

1 if x ≤ y,

¬x∨ y if x > y.
(2.1)

Then (L, ∧, ∨, ¬,→) is an R0-algebra which is neither a BL-algebra nor a lattice implica-
tion algebra.

An R0-algebra has the following useful properties.

Proposition 2.3 [4]. For any elements x, y, and z of an R0-algebra L, there exist the fol-
lowing properties:

(a1) x ≤ y if and only if x→ y = 1,
(a2) x ≤ y→ x,
(a3) ¬x = x→ 0,
(a4) (x→ y)∨ (y→ x)= 1,
(a5) x ≤ y implies y→ z ≤ x→ z,
(a6) x ≤ y implies z→ x ≤ z→ y,
(a7) ((x→ y)→ y)→ y = x→ y,
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(a8) x∨ y = ((x→ y)→ y)∧ ((y→ x)→ x),
(a9) x�¬x = 0 and x⊕¬x = 1,

(a10) x� y ≤ x∧ y and x� (x→ y)≤ x∧ y,
(a11) (x� y)→ z = x→ (y→ z),
(a12) x ≤ y→ (x� y),
(a13) x� y ≤ z if and only if x ≤ y→ z,
(a14) x ≤ y implies x� z ≤ y� z,
(a15) x→ y ≤ (y→ z)→ (x→ z),
(a16) (x→ y)� (y→ z)≤ x→ z.

3. Fated filters

Definition 3.1 [4]. A nonempty subset F of L is called a filter of L if it satisfies
(i) 1∈ F,

(ii) (for all x ∈ F) (for all y ∈ L) (x→ y ∈ F ⇒ y ∈ F).

Definition 3.2 [3]. A nonempty subset F of L is called an implicative filter of L if it satisfies
(i) 1∈ F,

(ii) (for all x, y,z ∈ L) (x→ (y→ z)∈ F, x→ y ∈ F ⇒ x→ z ∈ F).

Note that every implicative filter is a filter. The following is a characterization of filters.

Lemma 3.3 [4]. Let F be a nonempty subset of L. Then F is a filter of L if and only if it
satisfies

(i) (for all x ∈ F) (for all y ∈ L) (x ≤ y⇒ y ∈ F),
(ii) (for all x, y ∈ F) (x� y ∈ F).

Proposition 3.4. Let F be a nonempty subset of L. Then F is a filter of L if and only if it
satisfies

(∀x, y ∈ L) (∀a∈ F)
(
(x −→ a)−→ y ∈ F =⇒ x −→ y ∈ F

)
. (3.1)

Proof. Suppose that F is a filter of L. Let x, y ∈ L and a ∈ F be such that (x → a) →
y ∈ F. Since a ≤ x → a by (a2), we have x → a ∈ F by Lemma 3.3(i) and so y ∈ F by
Definition 3.1(ii). Using (a2) and Lemma 3.3, we conclude that x→ y ∈ F. Conversely,
let F be a nonempty subset of L for which (3.1) is valid. Then there exists a ∈ F. Since
(0→ a)→ a= 1→ a= a∈ F, it follows from (3.1) that 1= 0→ a∈ F. Let x ∈ F and y ∈ L
be such that x→ y ∈ F. Then (1→ x)→ y = x→ y ∈ F, and thus y = 1→ y ∈ F by (3.1).
Therefore, F is a filter of L. �

Proposition 3.5. Every filter F of L satisfies the following implication:

(∀x, y,z ∈ L)
(
(x −→ y)−→ z ∈ F =⇒ x −→ (y −→ z)∈ F

)
. (3.2)

Proof. Let x, y,z ∈ L be such that (x→ y)→ z ∈ F. Then

1= y −→ (x −→ y)≤ ((x −→ y)−→ z
)−→ (y −→ z), (3.3)
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and so ((x→ y)→ z)→ (y → z) ∈ F by Lemma 3.3(i). Using Definition 3.1(ii), we have
y→ z ∈ F. Since y→z ≤ x→(y→z) by (a2), it follows from Lemma 3.3(i) that x→(y→z)
∈ F. This completes the proof. �

The following example shows that the converse of Proposition 3.5 may not be true in
general.

Example 3.6. Let L= {0,a,b,c,d,1} be a set with the order 0≤ a≤ b ≤ c ≤ d ≤ 1, and the
following Cayley tables:

x ¬ x
0 1
a d
b c
c b
d a
1 0

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b c c 1 1 1 1
c b b b 1 1 1
d a a b c 1 1
1 0 a b c d 1

Then (L,∧,∨,¬,→) is an R0-algebra (see [3]), where x ∧ y = min{x, y} and x ∨ y =
max{x, y}. Then the set D := {a,b,c} satisfies the condition (3.2), but D is not a filter
of L.

Let F be a nonempty subset of L. Then the least filter containing F is called the filter
generated by F and denoted by 〈F〉.

The next statement gives a description of elements of 〈F〉.
Theorem 3.7. If F is a nonempty subset of L, then

〈F〉 =
{

x ∈ L

∣
∣
∣
∣
∣

a1 −→
(
a2 −→

(··· −→ (an −→ x
)···))= 1

for some a1,a2, . . . ,an ∈ F

}

. (3.4)

Proof. Denote

G :=
{

x ∈ L

∣
∣
∣
∣
∣

a1 −→
(
a2 −→

(··· −→ (an −→ x
)···))= 1

for some a1,a2, . . . ,an ∈ F

}

. (3.5)

Obviously, G 
= ∅ and F ⊆G. Let x, y ∈ L and z ∈G be such that (x→ z)→ y ∈G. Then
there exist a1,a2, . . . ,an,b1,b2, . . . ,bm ∈ F such that

a1 −→
(
a2 −→

(··· −→ (an −→
(
(x −→ z)−→ y)

)···))= 1, (3.6)

b1 −→
(
b2 −→

(··· −→ (bm −→ z
)···))= 1. (3.7)

Using (R4) repeatedly, (3.7) implies that

b1 −→
(
b2 −→

(··· −→ (bm −→ (x −→ z)
)···))

= x −→ (b1 −→
(
b2 −→

(··· −→ (bm −→ z
)···)))

= x −→ 1= 1.

(3.8)
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Since x→ z ≤ ((x→ z)→ y)→ y, we have

b1 −→
(
b2 −→

(··· −→ (bm −→
((

(x −→ z)−→ y
)−→ y

))···))= 1, (3.9)

that is, ((x → z)→ y)→ (b1 → (b2 → (··· → (bm → y)···))) = 1. It follows from (3.6)
and (a6) that

1= a1 −→
(
a2 −→

(··· −→ (an −→
(
(x −→ z)−→ y

))···))

≤ a1 −→
(
a2 −→

(··· −→ (an −→
(
b1 −→

(
b2 −→

(··· −→ (bm −→ y
)···))))···)),

(3.10)

so that

a1 −→
(
a2 −→

(··· −→ (an −→
(
b1 −→

(
b2 −→

(··· −→ (bm −→ y
)···))))···))= 1.

(3.11)

Consequently,

1= x −→ 1

=x−→(a1−→
(
a2−→

(···−→(an−→
(
b1−→

(
b2−→

(···−→(bm−→ y
)···))))···)))

=a1−→
(
a2−→

(···−→(an−→
(
b1−→

(
b2−→

(···−→(bm−→(x−→ y)
)···))))···)),

(3.12)

which shows that x→ y ∈ G. Using Proposition 3.4, we know that G is a filter of L. Now
let H be a filter of L containing F and let x ∈G. Then

a1 −→
(
a2 −→

(··· −→ (an −→ x
)···))= 1 (3.13)

for some a1,a2, . . . ,an ∈ F ⊆H . Since H is a filter of L, it follows that x ∈H so that G⊆H .
Therefore, G= 〈F〉, completing the proof. �

Proposition 3.8. For any x,a1,a2, . . . ,an ∈ L,

(
a1� a2�···� an

)−→ x = 1⇐⇒ a1 −→
(
a2 −→

(··· −→ (an −→ x
)···))= 1.

(3.14)

Proof. We will prove (3.14) by induction on n. If n= 1, then it is clear. If n= 2, then we
have

(
a1� a2

)−→ x = 1⇐⇒¬(a1 −→¬a2
)−→ x = 1

⇐⇒¬x −→ (a1 −→¬a2
)= 1⇐⇒ a1 −→

(¬x −→¬a2
)= 1

⇐⇒ a1 −→
(
a2 −→ x

)= 1.

(3.15)

Assume that (3.14) holds for n= k, that is,

(
a1� a2�···� ak

)−→ x = 1⇐⇒ a1 −→
(
a2 −→

(··· −→ (ak −→ x
)···))= 1.

(3.16)
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Then

(
a1� a2�···� ak � ak+1

)−→ x = 1

⇐⇒¬((a1� a2�···� ak
)−→¬ak+1

)−→ x = 1

⇐⇒¬x −→ ((a1� a2�···� ak
)−→¬ak+1

)= 1

⇐⇒ (a1� a2�···� ak
)−→ (¬x −→¬ak+1

)= 1

⇐⇒ (a1� a2�···� ak
)−→ (ak+1 −→ x

)= 1

⇐⇒ a1 −→
(
a2 −→

(··· −→ (ak −→
(
ak+1 −→ x

))···))= 1,
(3.17)

which shows that (3.14) holds for n= k+ 1. This completes the proof. �

Combining Theorem 3.7 and Proposition 3.8, the following corollary is straightfor-
ward.

Corollary 3.9 [4]. If F is a nonempty subset of L, then

〈F〉 =
{

x ∈ L

∣
∣
∣
∣
∣

(
a1� a2�···� an

)−→ x = 1

for some a1,a2, . . . ,an ∈ F

}

. (3.18)

A subset F of L is said to have the finite �-property if a1 � a2 � ··· � an 
= 0 for any
finite members a1,a2, . . . ,an of F.

Example 3.10. Let L= {0,a,b,c,d,1} be an R0-algebra in Example 3.6. The set {c,d} sat-
isfies the finite�-property, but the set {a,b,c} does not satisfy the finite�-property since
a� b=¬(a→¬b)=¬(a→ c)=¬1= 0.

The following corollary is an immediate consequence of Corollary 3.9.

Corollary 3.11. If F is a nonempty subset of L, then 〈F〉 is a proper filter of L if and only
if F has the finite �-property.

Theorem 3.12. Let F be a filter of L that satisfies

(∀x ∈ L) (x ∈ F ⇐⇒¬x ∈ L \F). (3.19)

Then F is a maximal filter of L.

Proof. Let F be a filter that satisfies the condition (3.19). Since 1 ∈ F, we get 0 = ¬1 ∈
L \F and so F is proper. If G is a filter of L and F � G, then there exists a∈G \F ⊆ L \F.
Thus ¬a ∈ F � G. By (a9) and Lemma 3.3, we have 0 = a�¬a ∈ G and thus G = L.
Therefore, F is a maximal filter of L. �

Proposition 3.13. Let F be a proper filter of L. Then F satisfies condition (3.19) if and only
if it satisfies

(∀x, y ∈ L) (x⊕ y ∈ F =⇒ x ∈ F or y ∈ F). (3.20)
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Proof. Assume that F satisfies the condition (3.20). Let x ∈ L be such that ¬x ∈ L \ F.
Then x⊕¬x =¬x→¬x = 1∈ F, and so x ∈ F by (3.20). Suppose that x ∈ F. If ¬x ∈ F,
then 0= x�¬x ∈ F since F is closed under�. This is a contradiction because F is proper.
Hence, ¬x ∈ L \ F. Conversely, suppose that F satisfies (3.19). Let x, y ∈ L be such that
x⊕ y ∈ F. If x /∈ F, then ¬x ∈ F by (3.19). Since F is a filter, it follows from ¬x→ y =
x⊕ y ∈ F that y ∈ F. Hence, (3.20) is valid. �

Corollary 3.14. Every proper filter F of L satisfying the condition (3.20) is maximal.

The following example shows that there exists a maximal filter F which does not satisfy
the condition (3.19).

Example 3.15. Let L = {0,a,b,c,1} be a set with the order 0 ≤ a ≤ b ≤ c ≤ 1, and the
following Cayley tables:

x ¬ x
0 1
a c
b b
c a
1 0

−→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b b 1 1 1
c a a b 1 1
1 0 a b c 1

Then (L,∧,∨,¬,→) is an R0-algebra (see [3]), where x ∧ y = min{x, y} and x ∨ y =
max{x, y}. This is neither a BL-algebra nor a lattice implication algebra because c∧ a 
=
c� (c→ a) and (b→ c)→ c 
= (c→ b)→ b, respectively. It is not difficult to verify that the
set F = {1,c} is a maximal filter of L and ¬b ∈ L \F but b /∈ F.

Theorem 3.16. Let F be a nonempty subset of L. If F has the finite �-property, then there
exists a maximal filter of L containing F.

Proof. Let Ω := {G | G is a proper filter of L containing F}. Then Ω 
= ∅ since 〈F〉 ∈Ω.
Suppose that G1 ⊆G2 ⊆ . . . is a chain of elements of Ω and let H =⋃i Gi. Then (i) F ⊆H ,
(ii) 0 /∈H (because 0 /∈ Gi for all i), (iii) 1 ∈H , and (iv) if x ∈H and x→ y ∈H , then
there exists i such that x ∈ Gi and x→ y ∈ Gi. It follows from Definition 3.1(ii) that y ∈
Gi ⊆H . This shows that H is a proper filter of L containing F, and so H ∈Ω. Using Zorn’s
lemma, Ω has a maximal element. This completes the proof. �

Example 3.17. Let L= {0,a,b,c,d,1} be an R0-algebra in Example 3.6. Then {c,d} satis-
fies the finite �-property, and we know that F = {1,c,d} is a maximal proper filter of L
containing {c,d}.
Definition 3.18. A nonempty subset F of L is called a fated filter of L if it satisfies

(i) 1∈ F,
(ii) (for all x, y ∈ L) (for all a∈ F) (a→ ((x→ y)→ x)∈ F ⇒ x ∈ F).

Example 3.19. Let L = {0,a,b,c,d,1} be an R0-algebra in Example 3.6. It is not difficult
to verify that the set F := {1,c,d} is a fated filter of L.

Theorem 3.20. Every fated filter is a filter.
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Proof. Let F be a fated filter of L and let x, y ∈ L be such that x ∈ F and x → y ∈ F.
Replacing a and x by x and y, respectively, in Definition 3.18(ii), we have

x −→ ((y −→ y)−→ y
)= x→ (1−→ y)= x −→ y ∈ F, (3.21)

and so y ∈ F by Definition 3.18(ii). Hence, F is a filter of L. �

The following example shows that the converse of Theorem 3.20 is not true in general.

Example 3.21. Let L= {0,a,b,c,1} be a R0-algebra in Example 3.15. Then F = {1,c} is a
filter of L but not a fated filter of L since b /∈ F and c→ ((b→ a)→ b)= 1∈ F.

Theorem 3.22. A filter F of L is fated if and only if it satisfies

(∀x, y ∈ L)
(
(x −→ y)−→ x ∈ F =⇒ x ∈ F

)
. (3.22)

Proof. Assume that F is a fated filter of L and let x, y ∈ L be such that (x→ y)→ x ∈ F.
Since 1→ ((x→ y)→ x)= (x→ y)→ x ∈ F and 1∈ F, it follows from Definition 3.18(ii)
that x ∈ F. Thus (3.22) is valid. Conversely, let F be a filter of L that satisfies the condition
(3.22). Let a∈ F and x, y ∈ L be such that a→ ((x→ y)→ x)∈ F. Then (x→ y)→ x ∈ F
by Definition 3.1(ii), and so x ∈ F by (3.22). Therefore, F is a fated filter of L. �

Theorem 3.23. Let F be a filter of L. Then F is a fated filter if and only if it is an implicative
filter.

Proof. Let F be a fated filter of L and assume that x→ (y→ z)∈ F and x→ y ∈ F for all
x, y,z ∈ L. Using (R4) and (a15), we have

x −→ (y −→ z)= y −→ (x −→ z)≤ (x −→ y)−→ (x −→ (x −→ z)
)
, (3.23)

and so (x→ y)→ (x→ (x→ z)) ∈ F by Lemma 3.3(i). Since x→ y ∈ F, it follows from
Definition 3.1(ii) that x→ (x→ z)∈ F. Since

(
(x −→ z)−→ z

)−→ (x −→ z)= x −→ (((x −→ z)−→ z
)−→ z

)= x −→ (x −→ z)∈ F,
(3.24)

it follows from Theorem 3.22 that x → z ∈ F. Therefore, F is an implicative filter of L.
Conversely, suppose that F is an implicative filter of L. Let x, y ∈ L be such that (x→ y)→
x ∈ F. Since ¬x ≤ x→ y and ¬ is involution, we have

(x −→ y)−→ x ≤¬x −→ x =¬x −→ (¬x −→ 0) (3.25)

by (a5). Since F is a filter, we get ¬x → (¬x → 0) ∈ F by Lemma 3.3(i). Since F is an
implicative filter and ¬x→¬x = 1∈ F, it follows from Definition 3.2(ii) that x =¬x→
0∈ F. Hence, by Theorem 3.22, we conclude that F is a fated filter of L. �
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