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For the Riemann-Liouville transform �α, α∈R+, associated with singular partial differ-
ential operators, we define and study the Weyl transforms Wσ connected with �α, where
σ is a symbol in Sm, m∈R. We give criteria in terms of σ for boundedness and compact-
ness of the transform Wσ .
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1. Introduction

In his book [14], Wong studies the properties of pseudodifferential operators arising in
quantum mechanics, first envisaged by Weyl [13], as bounded linear operators on L2(Rn)
(the space of square integrable functions on Rn with respect to the Lebesgue measure).
For this reason, M. W. Wong calls the operators treated in his book Weyl transforms.

Here, we consider the singular partial differential operators

Δ1 = ∂

∂x
,

Δ2 = ∂2

∂r2
+

2α+ 1
r

∂

∂r
− ∂2

∂x2
, (r,x)∈]0,+∞[×R, α� 0.

(1.1)

We associate to Δ1 and Δ2 the Riemann-Liouville transform �α defined on �∗(R2) (the
space of continuous functions on R2, even with respect to the first variable) by

�α( f )(r,x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α

π

∫∫ 1

−1
f
(

rs
√

1− t2,x+ rt
)(

1− t2)α−1/2(
1− s2)α−1

dtds if α > 0,

1
π

∫ 1

−1
f
(

r
√

1− t2,x+ rt
) dt√

1− t2 if α= 0.

(1.2)

For more general integral transforms, we can see [2].
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The transform �α generalizes the mean operator defined by

�0( f )(r,x)= 1
2π

∫ 2π

0
f (r sinθ,x+ r cosθ)dθ. (1.3)

The mean operator �0 and its dual play an important role and have many applications,
for example, in image processing of the so-called synthetic aperture radar (SAR) data
[5, 6], or in the linearized inverse scattering problem in acoustics [3].

In [1], we have defined a convolution product and a Fourier transform �α associated
with �α, and, we have established many harmonic analysis results (inversion formula,
Paley-Wiener, and Plancherel theorems, etc.).

Using these results, we define and study, in this paper the Weyl transforms associated
with �α, we give criteria in terms of symbols to prove the boundedness and compactness
of these transforms. To obtain these results, we have first defined the Fourier-Wigner
transform associated with the operator �α, and we have established for it an inversion
formula.

More precisely, in Section 2, we recall some properties of harmonic analysis for the
operator �α. In Section 3, we define the Fourier-Wigner transform associated with �α,
study some of its properties, and prove an inversion formula.

In Section 4, we introduce the Weyl transformWσ associated with �α, with σ a symbol
in class Sm, form∈R, and we give its connection with the Fourier-Wigner transform. We
prove that for σ sufficiently smooth, Wσ is a compact operator from L2(dν), the space of
square integrable functions on [0,+∞[×R, with respect to the measure

dν(r,x)= 1
2αΓ(α+ 1)

√
2π

r2α+1dr⊗ dx, (1.4)

into itself.
In Section 5, we defineWσ for σ in a certain space Lp(dν⊗dγ), with p ∈ [1,2], and we

establish that Wσ is again a compact operator.
In Section 6, we define Wσ for σ in another function space, and use this to prove in

Section 7 that for p > 2, there exists a function σ ∈ Lp(dν⊗ dγ), with the property that
the Weyl transform Wσ is not bounded on L2(dν).

For more Weyl transforms, we can see [8, 15].

2. Riemann-Liouville transform associated with the operators Δ1 and Δ2

In this section, we recall some properties of the Riemann-Liouville transform that we use
in the next sections. For more details, see [1].

For all (μ,λ)∈ C×C, the system

Δ1u(r,x)=−iλu(r,x),

Δ2u(r,x)=−μ2u(r,x),

u(0,0)= 1,
∂u

∂r
(0,x)= 0, ∀x ∈R,

(2.1)
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admits a unique solution given by

ϕμ,λ(r,x)= jα
(

r
√

μ2 + λ2
)

exp(−iλx), (2.2)

where jα is the modified Bessel function defined by

jα(s)= 2αΓ(α+ 1)
Jα(s)
sα

= Γ(α+ 1)
+∞∑

k=0

(−1)k

k!Γ(α+ k+ 1)

(
s

2

)2k

, (2.3)

and Jα is the Bessel function of first kind and index α (see [7, 12]).
Moreover, we have

sup
(r,x)∈R2

∣
∣ϕμ,λ(r,x)

∣
∣= 1 iff (μ,λ)∈ Γ, (2.4)

where Γ is the set defined by

Γ=R2∪ {(iμ,λ); (μ,λ)∈R2, |μ|� |λ|}. (2.5)

Proposition 2.1. The eigenfunction ϕμ,λ given by (2.2) has the following Mehler integral
representation:

ϕμ,λ(r,x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α

π

∫∫ 1

−1
cos

(
μrs
√

1− t2)e−iλ(x+rt)(1− t2)α−1/2(
1− s2)α−1

dtds if α > 0,

1
π

∫ 1

−1
cos

(
rμ
√

1− t2)e−iλ(x+rt) dt√
1− t2 if α= 0.

(2.6)

This result shows that

ϕμ,λ(r,x)=�α
(

cos(μ.)exp(−iλ.))(r,x), (2.7)

where �α is the Riemann-Liouville transform associated with the operators Δ1 and Δ2,
given in the introduction.

We denote by
(i) �∗,c(R2) the subspace of �∗(R2) consisting of functions with compact support;

(ii) dν(r,x) the measure defined on [0,+∞[×R by

dν(r,x)= cαr2α+1dr⊗ dx, (2.8)

with cα = 1/
√

2π2αΓ(α+ 1);
(iii) Lp(dν) the space of measurable functions f on [0,+∞[×R, satisfying

‖ f ‖p,ν =
(∫

R

∫ +∞

0

∣
∣ f (r,x)

∣
∣pdν(r,x)

)1/p

< +∞ if p ∈ [1,+∞[,

‖ f ‖∞,ν = esssup
(r,x)∈[0,+∞[×R

∣
∣ f (r,x)

∣
∣ < +∞ if p = +∞;

(2.9)
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(iv) dγ(μ,λ) the measure defined on Γ by

∫∫

Γ
f (μ,λ)dγ(μ,λ)= cα

{∫

R

∫ +∞

0
f (μ,λ)

(
μ2 + λ2)αμdμdλ

+
∫

R

∫ |λ|

0
f (iμ,λ)

(
λ2−μ2)αμdμdλ

}

;

(2.10)

(v) Lp(dγ), p ∈ [1,+∞], the space of measurable functions on Γ satisfying

‖ f ‖p,γ =
(∫∫

Γ

∣
∣ f (μ,λ)

∣
∣pdγ(μ,λ)

)1/p

< +∞ if p ∈ [1,+∞[,

‖ f ‖∞,γ = esssup
(μ,λ)∈Γ

∣
∣ f (μ,λ)

∣
∣ < +∞ if p = +∞.

(2.11)

Defintion 2.2. (i) The translation operator associated with Riemann-Liouville transform
is defined on L1(dν), for all (r,x),(s, y)∈ [0,+∞[×R, by

�(r,x) f (s, y)= Γ(α+ 1)√
πΓ(α+ 1/2)

∫ π

0
f
(√
r2 + s2 + 2rscosθ,x+ y

)

sin2α θdθ. (2.12)

(ii) The convolution product associated with the Riemann-Liouville transform of f ,g ∈
L1(dν) is defined by

∀(r,x)∈ [0,+∞[×R, f ∗ g(r,x)=
∫

R

∫ +∞

0
�(r,−x) f̌ (s, y)g(s, y)dν(s, y), (2.13)

where f̌ (s, y)= f (s,−y).

We have the following properties.
(i) We have the following product formula:

�(r,x)ϕμ,λ(s, y)= ϕμ,λ(r,x)ϕμ,λ(s, y). (2.14)

(ii) Let f be in L1(dν). Then, for all (s, y)∈ [0,+∞[×R, we have

∫

R

∫∞

0
�(s,y) f (r,x)dν(r,x)=

∫

R

∫∞

0
f (r,x)dν(r,x). (2.15)

(iii) If f ∈ Lp(dν), 1 � p� +∞, then for all (s, y)∈ [0,+∞[×R, the function �(s,y) f
belongs to Lp(dν), and we have

∥
∥�(s,y) f

∥
∥
p,ν � ‖ f ‖p,ν. (2.16)

(iv) For f ,g ∈ L1(dν), f ∗ g belongs to L1(dν), and the convolution product is com-
mutative and associative.

(v) For f ∈ L1(dν), g ∈ Lp(dν), 1 < p� +∞, the function f ∗ g ∈ Lp(dν) and

‖ f ∗ g‖p,ν � ‖ f ‖1,ν‖g‖p,ν. (2.17)
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(vi) For f , g∈�∗,c(R2), such that supp f ⊂ [−a1,a1]× [−a2,a2] and suppg ⊂ [−b1,
b1]× [−b2,b2], the function f ∗ g belongs to �∗,c(R2) and

supp( f ∗ g)⊂ [− (a1 + b1
)
,a1 + b1

]× [− (a2 + b2
)
,a2 + b2

]
. (2.18)

Defintion 2.3. The Fourier transform associated with the Riemann-Liouville operator is
defined on L1(dν), by

∀(μ,λ)∈ Γ, �α( f )(μ,λ)=
∫

R

∫ +∞

0
f (r,x)ϕμ,λ(r,x)dν(r,x), (2.19)

where Γ is the set defined by the relation (2.5).

We have the following properties.
(i) Let f be in L1(dν). For all (r,x)∈ [0,+∞[×R, we have

∀(μ,λ)∈ Γ, �α
(
�(r,−x) f

)
(μ,λ)= ϕμ,λ(r,x)�α( f )(μ,λ). (2.20)

(ii) For f ,g ∈ L1(dν), we have

∀(μ,λ)∈ Γ, �α( f ∗ g)(μ,λ)=�α( f )(μ,λ)�α(g)(μ,λ). (2.21)

(iii) For f ∈ L1(dν), we have

∀(μ,λ)∈ Γ, �α( f )(μ,λ)= B◦ �̃α( f )(μ,λ), (2.22)

where, for every (μ,λ)∈R2,

�̃α( f )(μ,λ)=
∫

R

∫ +∞

0
f (r,x) jα(rμ)exp(−iλx)dν(r,x), (2.23)

∀(μ,λ)∈ Γ, B f (μ,λ)= f
(√

μ2 + λ2,λ
)

. (2.24)

(iv) For f ∈ L1(dν) such that �α( f )∈ L1(dγ), we have the inversion formula for �α,
for almost every (r,x)∈ [0,+∞[×R,

f (r,x)=
∫∫

Γ
�α( f )(μ,λ)ϕμ,λ(r,x)dγ(μ,λ). (2.25)

Proposition 2.4. Let f be in Lp(dν), with p ∈ [1,2]. Then, �α( f ) belongs to Lp
′
(dγ),

with 1/p+ 1/p′ = 1, and ‖�α( f )‖p′,γ � ‖ f ‖p,ν.

Proof. The mapping �̃α given by the relation (2.23) is an isometric isomorphism from

L2(dν) onto itself, then ‖�̃α( f )‖2,ν = ‖ f ‖2,ν.

On the other hand, we have ‖�̃α( f )‖∞,ν � ‖ f ‖1,ν.
Thus, from these relations and the Riesz-Thorin theorem [10, 11], we deduce that for

all f ∈Lp(dν), with p∈[1,2], the function �̃α( f ) belongs to Lp
′
(dν), with p′ = p/(p− 1),

and we have
∥
∥�̃α( f )

∥
∥
p′,ν � ‖ f ‖p,ν. (2.26)
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We complete the proof by using the fact that

∥
∥�α( f )

∥
∥
p′,γ =

∥
∥�̃α( f )

∥
∥
p′,ν, (2.27)

which is a consequence of the relation (2.22). �

We denote by (see [1, 9])
(i) �∗(R2) the space of infinitely differentiable functions on R2 rapidly decreasing

together with all their derivatives, even with respect to the first variable;
(ii) �∗(Γ) the space of functions f : Γ→ C infinitely differentiable, even with respect

to the first variable and rapidly decreasing together with all their derivatives, that
is, for all k1,k2,k3 ∈N,

sup
(μ,λ)∈Γ

(
1 + |μ|2 + |λ|2)k1

∣
∣
∣
∣

(
∂

∂μ

)k2( ∂

∂λ

)k3

f (μ,λ)
∣
∣
∣
∣ < +∞, (2.28)

where

∂ f

∂μ
(μ,λ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂r

(
f (r,λ)

)
if μ= r ∈R,

1
i

∂

∂t

(
f (it,λ)

)
if μ= it, |t|� |λ|.

(2.29)

Each of these spaces is equipped with its usual topology.

Remark 2.5. From [1], the Fourier transform �α is an isomorphism from �∗(R2) onto
�∗(Γ). The inverse mapping is given by

∀(r,x)∈R2, �−1
α ( f )(r,x)=

∫∫

Γ
f (μ,λ)ϕμ,λ(r,x)dγ(μ,λ). (2.30)

3. Fourier-Wigner transform associated with Riemann-Liouville operator

Defintion 3.1. The Fourier-Wigner transform associated with the Riemann-Liouville op-
erator is the mapping V defined on �∗(R2)×�∗(R2), for all ((r,x),(μ,λ))∈R2×Γ, by

V( f ,g)
(
(r,x),(μ,λ)

)=
∫

R

∫∞

0
f (s, y)ϕμ,λ(s, y)�(r,x)g(s, y)dν(s, y). (3.1)

Remark 3.2. The transform V can also be written in the forms
(i) V( f ,g)((r,x),(μ,λ))=�α( f�(r,x)g)(μ,λ);
(ii) V( f ,g)((r,x),(μ,λ))= ǧ ∗ (ϕμ,λ f )(r,−x),
where ǧ(s, y)= g(s,−y) and ∗ is the convolution product given in Definition 2.2.

We denote by
(i) �∗(R2 ×R2) the space of infinitely differentiable functions f ((r,x),(s, y)) on
R2 ×R2, even with respect to the variables r and s, and rapidly decreasing to-
gether with all their derivatives;
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(ii) �∗(R2×Γ) the space of infinitely differentiable functions f ((r,x),(μ,λ)) onR2×
Γ, even with respect to the variables r and μ, and rapidly decreasing together with
all their derivatives;

(iii) Lp(dν⊗ dν), 1 � p � +∞, the space of measurable functions on ([0,+∞[×R)×
([0,+∞[×R), verifying for p ∈ [1,+∞[;

‖ f ‖p,ν⊗ν =
(∫∫

R

∫∫ +∞

0

∣
∣ f
(
(r,x),(s, y)

)∣
∣pdν(r,x)dν(s, y)

)1/p

< +∞, (3.2)

for p = +∞,

‖ f ‖∞,ν⊗ν = esssup
(r,x),(s,y)∈[0,+∞[×R

∣
∣ f
(
(r,x),(s, y)

)∣
∣ < +∞; (3.3)

(iv) Lp(dν⊗ dγ), 1 � p � +∞, the space similarly defined (with dν(r,x)dγ(μ,λ) in
the integrand).

Proposition 3.3. (i) The Fourier-Wigner transform V is a bilinear, continuous mapping
from �∗(R2)×�∗(R2) into �∗(R2×Γ).

(ii) For p ∈]1,2],

∥
∥V( f ,g)

∥
∥
p′,ν⊗γ � ‖ f ‖p,ν‖g‖p′,ν. (3.4)

The transform V can be extended to a continuous bilinear operator, denoted also by V , from
Lp(dν)×Lp′(dν) into Lp

′
(dν⊗dγ), where p′ = p/(p− 1) is the conjugate exponent of p.

Proof. (i) Let f ,g ∈�∗(R2), and let F be the function defined on R2×R2 by

F
(
(r,x),(s, y)

)= f (s, y)�(r,x)g(s, y). (3.5)

Then, we have for all (s, y),(μ,λ)∈R2,

�̃α⊗ I(F)
(
(μ,λ),(s, y)

)= jα(sμ)exp(iλy) f (s, y)�̃α(g)(μ,λ), (3.6)

where I is the identity operator. Since �̃α is an isomorphism from �∗(R2) onto itself, we

deduce that the function �̃α⊗ I(F) belongs to the space �∗(R2×R2) and consequently,
F ∈�∗(R2×R2). Then, (i) follows from the relation

V( f ,g)
(
(r,x),(μ,λ)

)= I ⊗�α(F)
(
(r,x),(μ,λ)

)
, (3.7)

and the fact that �α is an isomorphism from �∗(R2) into �∗(Γ).
(ii) We get the result from Remark 3.2(i), Proposition 2.4, Minkowski’s inequality for

integrals (see [4, page 186]), and from the relation (2.16). �

Theorem 3.4. For all f ,g ∈�∗(R2), (μ,λ)∈ Γ and (r,x)∈R2,

�α⊗�−1
α

(
V( f ,g)

)(
(μ,λ),(r,x)

)= ϕμ,λ(r,x) f (r,x)�α(g)(μ,λ). (3.8)
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Proof. This theorem follows from the relations (2.20) and (3.7). �

Using the previous theorem and the relation (2.25), we get the following result.

Corollary 3.5. For f ,g ∈�∗(R2),
(i) for all (μ,λ)∈ Γ,

∫

R

∫∞

0
�α⊗�−1

α

(
V( f ,g)

)(
(μ,λ),(r,x)

)
dν(r,x)= �̌α( f )(μ,λ)�α(g)(μ,λ); (3.9)

(ii) for all (r,x)∈ [0,+∞[×R,

∫∫

Γ
�α⊗�−1

α

(
V( f ,g)

)(
(μ,λ),(r,x)

)
dγ(μ,λ)= f (r,x)g(r,x). (3.10)

Theorem 3.6. Let f ,g ∈ L1(dν)∩L2(dν), such that c = ∫R
∫∞

0 g(r,x)dν(r,x) �= 0. Then,

∀(μ,λ)∈ Γ, �α( f )(μ,λ)= 1
c

∫

R

∫∞

0
V( f ,g)

(
(r,x),(μ,λ)

)
dν(r,x). (3.11)

Proof. From the relation (3.1), we have for all (μ,λ)∈ Γ,

∫

R

∫∞

0
V( f ,g)

(
(r,x),(μ,λ)

)
dν(r,x)

=
∫

R

∫∞

0

(∫

R

∫∞

0
f (s, y)ϕμ,λ(s, y)�(r,x)g(s, y)dν(s, y)

)

dν(r,x).
(3.12)

Then, the result follows from the relation (2.15), Definition 2.3, the fact that

∀(r,x)∈ [0,+∞[×R,∀(μ,λ)∈ Γ,
∣
∣ϕμ,λ(r,x)

∣
∣� 1, (3.13)

and Fubini’s theorem. �

Corollary 3.7. With the hypothesis of Theorem 3.6, if �α( f )∈ L1(dγ), the following in-
version formula for the Fourier-Wigner transform V holds:

f (r,x)= 1
c

∫∫

Γ
ϕμ,λ(r,x)

[∫

R

∫∞

0
V( f ,g)

(
(s, y),(μ,λ)

)
dν(s, y)

]

dγ(μ,λ), (3.14)

for almost every (r,x)∈R2.

4. Weyl transform associated with Riemann-Liouville operator

In this section, we introduce and study the Weyl transform and give its connection with
the Fourier-Wigner transform. To do this, we must define the class of pseudodifferential
operators [14].

Defintion 4.1. Let m ∈ R. Define Sm to be the set of symbols, consisting of all infinitely
differentiable functions σ((r,x),(μ,λ)) on R2×Γ, even with respect to the variables r and
μ, such that for all k1,k2,k3,k4 ∈N, there exists a positive constant C = C(k1,k2,k3,k4,m)
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satisfying

∣
∣
∣
∣

(
∂

∂r

)k1( ∂

∂x

)k2( ∂

∂μ

)k3( ∂

∂λ

)k4

σ
(
(r,x),(μ,λ)

)
∣
∣
∣
∣� C

(
1 +μ2 + 2λ2)m−(k3+k4)

. (4.1)

Defintion 4.2. For σ ∈ Sm, m ∈ R, define the operator Hσ on �∗(R2)×�∗(R2), for all
(r,x)∈R2,

Hσ( f ,g)(r,x)=
∫∫

Γ

{∫

R

∫∞

0
σ
(
(s, y),(μ,λ)

)
ϕμ,λ(r,x)

×V( f ,g)
(
(s, y),(μ,λ)

)
dν(s, y)

}

dγ(μ,λ),
(4.2)

Hσ( f ,g)=Hσ( f ,g)(0,0). (4.3)

Proposition 4.3. Let σ be the symbol given by

∀(r,x)∈R2, ∀(μ,λ)∈ Γ, σ
(
(r,x),(μ,λ)

)=−(μ2 + λ2). (4.4)

Then for f ,g ∈�∗(R2),

∀(r,x)∈R2, Hσ( f ,g)(r,x)= c
α f (r,−x), (4.5)

where

c =
∫

R

∫∞

0
g(r,x)dν(r,x), 
α = ∂2

∂r2
+

2α+ 1
r

∂

∂r
. (4.6)

Proof. From relations (3.1), (4.2) and Fubini’s theorem we get, for all (r,x)∈R2,

Hσ(f ,g)(r,x)=
∫∫

Γ
−(μ2 +λ2)ϕμ,λ(r,x)

{∫

R

∫∞

0
f (t,z)ϕμ,λ(t,z)

×
[∫

R

∫∞

0
�(t,z)g(s, y)dν(s, y)

]

dν(t,z)
}

dγ(μ,λ).

(4.7)

Now, by relation (2.15), it follows that

Hσ( f ,g)(r,x)= c
∫∫

Γ
−(μ2 + λ2)�α( f )(μ,λ)ϕμ,λ(r,x)dγ(μ,λ). (4.8)

The result follows from relation (2.25) and the fact that

∀(μ,λ)∈ Γ, −(μ2 + λ2)�α( f )(μ,λ)=�α
(

α f

)
(μ,λ). (4.9)

�

Defintion 4.4. Let σ ∈ Sm, m < −(α + 3/2). The Weyl transform associated with the
Riemann-Liouville operator is the mapping Wσ defined on �∗(R2), for all (r,x) ∈ R2,
by

Wσ( f )(r,x)=
∫∫

Γ

[∫

R

∫∞

0
ϕμ,λ(r,x)σ

(
(s, y),(μ,λ)

)
�(r,x) f (s, y)dν(s, y)

]

dγ(μ,λ).

(4.10)
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Theorem 4.5. Let σ ∈�∗(R2×Γ). The Weyl transform Wσ is a continuous mapping from
�∗(R2) into itself.

Proof. Let f ∈�∗(R2), since �̃α is an isomorphism from �∗(R2) onto itself, and

∀(μ,λ)∈R2, �̃α
(
�(r,x) f

)
(μ,λ)= jα(rμ)exp(iλx)�̃α( f )(μ,λ), (4.11)

we deduce that for all (r,x) ∈ [0,+∞[×R, the function (s, y) �→�(r,x) f (s, y) belongs to

�∗(R2). Then, by the inversion formula for �̃α, we get, for all (s, y)∈R2;

�(r,x) f (s, y)=
∫

R

∫ +∞

0
jα(rμ)exp(iλx)�̃α( f )(μ,λ) jα(sμ)exp(iλy)dν(μ,λ). (4.12)

By Definition 4.4 and Fubini’s theorem, we obtain, for all (r,x)∈R2,

Wσ( f )(r,x)

=
∫∫

Γ
ϕμ,λ(r,x)

[∫

R

∫∞

0
�̃α( f )(t,z) jα(rt)exp(ixz)

×
{∫

R

∫∞

0
σ
(
(s, y),(μ,λ)

)
jα(st)exp(iyz)dν(s, y)

}

dν(t,z)
]

dγ(μ,λ)

=
∫∫

Γ
ϕμ,λ(r,x)

[∫

R

∫∞

0
�̃α( f )(t,z) jα(rt)exp(ixz)

× �̃−1
α

(
σ
(
(·,·),(μ,λ)

))
(t,z)dν(t,z)

]

dγ(μ,λ).

(4.13)

Now, the function

(
(t,z),(μ,λ)

) �−→ �̃−1
α

(
σ
(
(·,·),(μ,λ)

))
(t,z) (4.14)

belongs to �∗(R2×Γ).
On the other hand, the mapping f �→Gf , given for all ((t,z),(μ,λ))∈R2×Γ by

Gf
(
(t,z),(μ,λ)

)= �̃α( f )(t,z)�̃−1
α

(
σ
(
(·,·),(μ,λ)

))
(t,z), (4.15)

is continuous from �∗(R2) into �∗(R2×Γ), and for all (r,x)∈R2, we have

Wσ( f )(r,x)=
∫∫

Γ

(∫

R

∫∞

0
Gf
(
(t,z),(μ,λ)

)
jα(rt)exp(ixz)ϕμ,λ(r,−x)dν(t,z)

)

dγ(μ,λ)

= �̃−1
α ⊗�−1

α

(
Gf
)(

(r,x),(r,−x)
)
.

(4.16)

Since �−1
α is an isomorphism from �∗(Γ) onto �∗(R2), we deduce that �̃−1

α ⊗�−1
α is an

isomorphism from �∗(R2×Γ) onto �∗(R2×R2). �



N. B. Hamadi and L. T. Rachdi 11

Lemma 4.6. Let σ ∈�∗(R2×Γ). Then, the function k defined on R2×R2 by

k
(
(r,x),(s, y)

)=
∫∫

Γ
ϕμ,λ(r,x)�(r,−x)

(
σ
(
(·,·),(μ,λ)

))
(s, y)dγ(μ,λ) (4.17)

belongs to �∗(R2×R2).

Proof. The function k can be written in the form

k
(
(r,x),(s, y)

)=�(r,−x)
(
I ⊗�−1

α (σ)
(
(·,·),(r,−x)

))
(s, y). (4.18)

Since the Fourier transform �α is an isomorphism from �∗(R2) onto �∗(Γ), we deduce
that the function I ⊗�−1

α (σ) belongs to �∗(R2×R2).
Then, the lemma follows from the fact that for all g ∈�∗(R2×R2), the function

(
(r,x),(s, y)

) �−→�(r,−x)
(
g
(
(·,·),(r,−x)

))
(s, y) (4.19)

belongs to �∗(R2×R2). �

Theorem 4.7. Let σ ∈�∗(R2×Γ).
(i) For all f ∈�∗(R2),

∀(r,x)∈R2, Wσ( f )(r,x)=
∫

R

∫∞

0
k
(
(r,x),(s, y)

)
f (s, y)dν(s, y). (4.20)

(ii) For f ∈�∗(R2) and p, p′ ∈ [1,+∞] such that 1/p+ 1/p′ = 1,

∥
∥Wσ( f )

∥
∥
p′,ν � ‖k‖p′,ν⊗ν‖ f ‖p,ν. (4.21)

(iii) For p∈[1,+∞[, the operatorWσ can be extended to a bounded operator from Lp(dν)
into Lp

′
(dν).

In particular

Wσ : L2(dν) �−→ L2(dν) (4.22)

is a Hilbert-Schmidt operator, and consequently it is compact.

Proof. (i) Let f be in �∗(R2). From Definition 4.4, for all (μ,λ)∈R2, we have

Wσ( f )(r,x)=
∫∫

Γ

(∫

R

∫∞

0
ϕμ,λ(r,x)σ

(
(s, y),(μ,λ)

)
�(r,x) f (s, y)dν(s, y)

)

dγ(μ,λ)

=
∫∫

Γ
ϕμ,λ(r,x)

(∫

R

∫∞

0
σ
(
(s, y),(μ,λ)

)
�(r,x) f (s, y)dν(s, y)

)

dγ(μ,λ).

(4.23)

Using Fubini’s theorem, and the equality
∫

R

∫∞

0
σ
(
(s, y),(μ,λ)

)
�(r,x) f (s, y)dν(s, y)

=
∫

R

∫∞

0
f (s, y)�(r,−x)

(
σ
(
(·,·),(μ,λ)

))
(s, y)dν(s, y),

(4.24)
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we get

Wσ( f )(r,x)=
∫

R

∫∞

0
f (s, y)

{∫∫

Γ
ϕμ,λ(r,x)�(r,−x)

(
σ
(
(·,·),(μ,λ)

))
(s, y)dγ(μ,λ)

}

dν(s, y)

=
∫

R

∫∞

0
f (s, y)k

(
(r,x),(s, y)

)
dν(s, y).

(4.25)

(ii) follows from (i), Hölder’s inequality, and Lemma 4.6.
(iii) From (ii) and the fact that the space �∗(R2) is dense in Lp(dν), p ∈ [1,+∞[, we

deduce that Wσ can be extended to a continuous mapping from Lp(dν) into Lp
′
(dν).

By Lemma 4.6, the kernel k belongs to L2(dν⊗ dν), hence Wσ is a Hilbert-Schmidt
operator. In particular, it is compact. �

Theorem 4.8. Let σ ∈ Sm, m<−(α+ 3/2). For all f ,g ∈�∗(R2), we have

Hσ( f ,g)=
〈
Wσ(g)

f

�

, (4.26)

where 〈·/·〉 is the inner product of L2(dν).

Proof. From Definition (3.1) and relations (4.2), (4.3), we get

Hσ( f ,g)=
∫∫

Γ

{∫

R

∫∞

0
σ
(
(r,x),(μ,λ)

)
(∫

R

∫∞

0
f (s, y)ϕμ,λ(s, y)

×�(r,x)g(s, y)dν(s, y)
)

dν(r,x)
}

dγ(μ,λ).

(4.27)

Using Fubini’s theorem, we obtain

Hσ( f ,g)=
∫

R

∫∞

0
f (s, y)

{∫∫

Γ
ϕ(μ,λ)(s, y)

(∫

R

∫∞

0
σ
(
(r,x),(μ,λ)

)

×�(r,x)g(s, y)dν(r,x)
)

dγ(μ,λ)
}

dν(s, y).

(4.28)

The theorem follows from Definition 4.4 and the fact that for all ((r,x),(s, y)) ∈ [0,
+∞[×R,

�(r,x)g(s, y)=�(s,y)g(r,x). (4.29)
�

5. Weyl transform associated with symbol in Lp(dν⊗dγ), 1 � p� 2

In this section, we will see that relation (4.26) allows us to prove that the Weyl transform
with symbol in Lp(dν⊗dγ), 1 � p� 2, is a compact operator.
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We denote by �(L2(dν)) the C∗-algebra of bounded operators ψ from L2(dν) into
itself, equipped with the norm

‖ψ‖∗ = sup
‖ f ‖2,ν=1

∥
∥ψ( f )

∥
∥

2,ν. (5.1)

Theorem 5.1. For p ∈ [1,2], there exists a unique bounded operator Q from Lp(dν⊗ dγ)
into �(L2(dν)) : σ �→Qσ , such that for all f ,g ∈�∗(R2),

〈
Qσ(g)

f

�

=
∫∫

Γ

(∫

R

∫∞

0
σ
(
(r,x),(μ,λ)

)
V( f ,g)

(
(r,x),(μ,λ)

)
dν(r,x)

)

dγ(μ,λ),

∥
∥Qσ

∥
∥∗ � ‖σ‖p,ν⊗γ.

(5.2)

Proof. (i) The case p = 2.
Let σ ∈�∗(R2×Γ). For g ∈�∗(R2), we put Qσ(g)=Wσ(g).
From Theorem 4.8, we obtain
〈
Qσ(g)

f

�

=
〈
Wσ(g)

f

�

=Hσ( f ,g)

=
∫∫

Γ

(∫

R

∫∞

0
σ
(
(r,x),(μ,λ)

)
V( f ,g)

(
(r,x),(μ,λ)

)
dν(r,x)

)

dγ(μ,λ).

(5.3)

On the other hand, from Proposition 3.3(ii) and Cauchy-Shwartz inequality, we have

∣
∣
∣
∣

〈
Qσ(g)

f

�∣
∣
∣
∣� ‖σ‖2,ν⊗γ‖ f ‖2,ν‖g‖2,ν. (5.4)

This implies that Qσ ∈�(L2(dν)) and

∥
∥Qσ

∥
∥∗ � ‖σ‖2,ν⊗γ. (5.5)

We complete the proof by using the fact that the space �∗(R2×Γ) is dense in L2(dν⊗dγ).
(ii) The case p = 1 can be obtained by the same way.
(iii) Using the cases p = 1, p = 2, and the Riesz-Thorin theorem [10, 11], we complete

the proof for all p ∈ [1,2]. �

Remark 5.2. In the following, the operator Qσ will be denoted by Wσ .

Theorem 5.3. For σ ∈ Lp(dν⊗dγ), 1 � p� 2, the operator Wσ from L2(dν) into itself is a
compact operator.

Proof. Let σ ∈ Lp(dν⊗dγ), 1 � p� 2, and let (σk)k∈N be a sequence in �∗(R2×Γ), such
that

∥
∥σk − σ

∥
∥
p,ν⊗γ −−−−→

k→+∞
0. (5.6)

From relation (5.5), we have ‖Wσk −Wσ‖∗ � ‖σk − σ‖p,ν⊗γ. This implies that

Wσk −−−−→
k→+∞

Wσ , in �
(
L2(dν)

)
. (5.7)
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But from Theorem 4.7, we know that for all k ∈ N, the operator Wσk is compact, then
the result of the theorem follows from the fact that the subspace �(L2(dν)) of �(L2(dν))
consisting of compact operators is a closed ideal of �(L2(dν)). �

6. Weyl transform with symbol in S′∗(R2×Γ)

We denote by
(i) �′∗(R2) the space of tempered distributions on R2, even with respect to the first

variable. It is the topological dual of �∗(R2);
(ii) �′∗(R2× Γ) the space of tempered distributions on R2× Γ, even with respect to

the first variables of R2 and Γ. It is the topological dual of �∗(R2×Γ).

Defintion 6.1. For σ∈�′∗(R2×Γ) and g∈�∗(R2), define the operatorWσ(g) on �∗(R2),
by

[
Wσ(g)

]
( f )= σ(V( f ,g)

)
, f ∈�∗

(
R2), (6.1)

where V is the mapping given by (3.1).

Remark 6.2. From Proposition 3.3, it is clear thatWσ(g) given by (6.1) belongs to S′∗(R2).

For a slowly increasing function h onR2×Γ, we denote by σh the element of S′∗(R2×Γ)
defined by

σh(F)=
∫∫

Γ

∫

R

∫∞

0
F
(
(r,x),(μ,λ)

)
h
(
(r,x),(μ,λ)

)
dν(r,x)dγ(μ,λ). (6.2)

Then, we have the following.

Proposition 6.3. Let σ1 ∈ S′∗(R2×Γ), given by the function equal to 1. One has

Wσ1 (g)= cδ, (6.3)

where c = ∫R
∫∞

0 g(r,x)dν(r,x) and δ is the Dirac distribution at (0,0).

Proof. By relation (6.1), we have for all f in �∗(R2),

[
Wσ1 (g)

]
( f )= σ1

(
V( f ,g)

)
,

=
∫∫

Γ

(∫

R

∫∞

0
V( f ,g)

(
(r,x)(μ,λ)

)
dν(r,x)

)

dγ(μ,λ),
(6.4)

and by Theorem 3.6

[
Wσ1 (g)

]
( f )= c

∫∫

Γ
�α( f )(μ,λ)dγ(μ,λ). (6.5)

We complete the proof by using relation (2.25). �
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Remark 6.4. From Proposition 6.3, we deduce that there exists σ ∈�′∗(R2× Γ) given by
a function in L∞(R2×Γ), such that for all g ∈�∗(R2) satisfying

c =
∫

R

∫∞

0
g(r,x)dν(r,x) �= 0, (6.6)

the distribution Wσ(g) is not given by a function of L2(dν).

7. Weyl transform with symbol in Lp(dν⊗dγ), 2 < p <∞
Theorem 7.1. Let p ∈]2,+∞[. There exists a function σ ∈ Lp(dν⊗dγ), such that the Weyl
transform Wσ defined by (6.1) is not a bounded linear operator on L2(dν).

We break down the proof into two lemmas, of which the theorem is an immediate
consequence.

Lemma 7.2. Let 2 < p <∞. Suppose that for all σ ∈ Lp(dν⊗ dγ), the Weyl transform Wσ

given by relation (6.1) is a bounded linear operator on L2(dν). Then, there exists a positive
constant M such that

∥
∥Wσ

∥
∥∗ �M‖σ‖p,ν⊗γ, ∀σ ∈ Lp(dν⊗dγ). (7.1)

Proof. Under the assumption of the lemma, there exists for each σ ∈ Lp(dν⊗ dγ) a posi-
tive constant Cσ such that

∥
∥Wσ(g)

∥
∥

2,ν � Cσ‖g‖2,ν, for g ∈ L2(dν). (7.2)

Let f ,g ∈�∗(R2) such that ‖ f ‖2,ν = ‖g‖2,ν = 1, and let us define the operator

Qf ,g : Lp(dν⊗dγ)−→ C (7.3)

by

Qf ,g(σ)=
〈
Wσ(g)

f

�

. (7.4)

Then,

sup
‖ f ‖2,ν=‖g‖2,ν=1

∣
∣Qf ,g(σ)

∣
∣� Cσ. (7.5)

By the Banach-Steinhauss theorem, the operator Qf ,g is bounded on Lp(dν⊗ dγ), then
there exists a positive constant M such that

∥
∥Qf ,g

∥
∥∗ = sup

‖σ‖p,ν⊗γ=1

∣
∣Qf ,g(σ)

∣
∣�M. (7.6)

From this, we deduce that for all f ,g ∈�∗(R2), and σ ∈ Lp(dν⊗dγ), we have
∣
∣
∣
∣

〈
Wσ(g)

f

�∣
∣
∣
∣�M‖σ‖p,ν⊗γ‖ f ‖2,ν‖g‖2,ν, (7.7)

which implies (7.1). �
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Lemma 7.3. For 2 < p <∞, there is no positive constant M satisfying (7.1).

Proof. Suppose that there exists M > 0 such that relation (7.1) holds.
Let p′ be such that 1/p+ 1/p′ = 1, then p′ ∈]1,2[.
We consider for f ,g ∈ �∗(R2), the function V( f ,g) given by the relation (3.1). We

have

∥
∥V( f ,g)

∥
∥
p′,ν⊗γ = sup

‖σ‖p,ν⊗γ=1

∣
∣
∣
∣

〈
Wσ(g)

f

�∣
∣
∣
∣� sup

‖σ‖p,ν⊗γ=1

∥
∥Wσ(g)

∥
∥

2,ν‖ f ‖2,ν, (7.8)

and consequently

∥
∥V( f ,g)

∥
∥
p′,ν⊗γ �M‖ f ‖2,ν‖g‖2,ν. (7.9)

Now, let f ,g ∈ L2(dν), we choose sequences ( fk)k∈N and (gk)k∈N in �∗(R2), approximat-
ing f and g in the ‖ · ‖2,ν-norm.

From (7.9), we get

∥
∥V
(
fk,gk

)∥
∥
p′,ν⊗γ �M

∥
∥ fk

∥
∥

2,ν

∥
∥gk

∥
∥

2,ν, (7.10)

which implies that (V( fk,gk))k∈N is a Cauchy sequence in Lp
′
(dν⊗dγ). Then, it converges

to some function F in Lp
′
(dν⊗dγ).

Now, using Proposition 3.3, we deduce that F =V( f ,g), and

∀ f ,g ∈ L2(dν),
∥
∥V( f ,g)

∥
∥
p′,ν⊗γ �M‖ f ‖2,ν‖g‖2,ν. (7.11)

We will exhibit an example where the relation (7.11) leads to a contradiction. Let f be
defined on R2, even with respect to the first variable, and supported in [−1,1]× [−1,1].
Then, for all ((r,x),(μ,λ))∈R2×Γ,

∣
∣V( f , f )

(
(r,x),(μ,λ)

)∣
∣� | f |∗ | f̌ |(r,−x), (7.12)

where ∗ is the convolution product given by Definition 2.2. From (2.18), we deduce
that for all (μ,λ)∈ Γ, the function (r,x) �→V( f , f )((r,x),(μ,λ)) is supported in [−2,2]×
[−2,2].

On the other hand, by Hölder’s inequality, we have

(∫∫

Γ

∣
∣
∣
∣

∫ 2

−2

∫ 2

0
V( f , f )

(
(r,x),(μ,λ)

)
dν(r,x)

∣
∣
∣
∣

p′

dγ(μ,λ)
)1/p′

�
(∫ 2

−2

∫ 2

0
dν(r,x)

)1/p(∫∫

Γ

∫ 2

−2

∫ +∞

0

∣
∣V( f , f )

(
(r,x),(μ,λ)

)∣
∣p

′
dν(r,x)dγ(μ,λ)

)1/p′

=
(∫ 2

−2

∫ 2

0
dν(r,x)

)1/p∥
∥V( f , f )

∥
∥
p′,ν⊗γ �M

(∫ 2

−2

∫ 2

0
dν(r,x)

)1/p

‖ f ‖2
2,ν.

(7.13)
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The last inequality follows from (7.9). Now, Theorem 3.6 implies that the function

(μ,λ) �−→
∫

R

∫ +∞

0
V( f , f )

(
(r,x),(μ,λ)

)
dν(r,x)= c�α( f )(μ,λ) (7.14)

belongs to Lp
′
(dγ), here c = ∫R

∫ +∞
0 f (r,x)dν(r,x).

If we pick c = ∫R
∫ +∞

0 f (r,x)dν(r,x) �= 0, and the last inequality, we deduce that the
function �α( f ) belongs to Lp

′
(dγ), and

∥
∥�α( f )

∥
∥
p′,γ � M

|c|
(∫ 2

−2

∫ 2

0
dν(r,x)

)1/p

‖ f ‖2
2,ν. (7.15)

In the following, we consider the particular function f given by

f (r,x)= |r|β1[−1,1](r)1[−1,1](x), (7.16)

where 1[−1,1] is the characteristic function of the interval [−1,1].
This function belongs to L1(dν)∩L2(dν), for β >−(α+ 1), and we have

�̃α( f )(μ,λ)= 1
2α−1Γ(α+ 1)

√
2π

sinλ
λ

∫ 1

0
rβ+2α+1 jα(rμ)dr, (7.17)

so

∥
∥�̃α( f )

∥
∥p

′

p′,ν=
2p

′

(
2αΓ(α+ 1)

√
2π
)p′+1

∫

R

∣
∣
∣
∣

sinλ
λ

∣
∣
∣
∣

p′

dλ×
∫ +∞

0

∣
∣
∣
∣

∫ 1

0
rβ+2α+1 jα(rμ)dr

∣
∣
∣
∣

p′

μ2α+1dμ.

(7.18)

However

∫ 1

0
rβ+2α+1 jα(rμ)dr = 1

μβ+2α+2

∫ μ

0
rβ+2α+1 jα(r)dr. (7.19)

Using the asymptotic expansion of jα (see [7, 12]), given by

jα(r)= 2α+1/2Γ(α+ 1)√
πrα+1/2

[

cos
(

r−απ
2
− π

4

)

+O
(

1
r

)]

, as (r −→ +∞), (7.20)

we deduce that for −(α+ 1) < β <−(α+ 1/2), the integral

a=
∫ +∞

0
rβ+2α+1 jα(r)dr (7.21)
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exists and is finite. This involves that

∫ 1

0
rβ+2α+1 jα(rμ)dr ∼

a

μβ+2α+2 , as (μ−→ +∞). (7.22)

Then, there exist A,B > 0 such that for

μ > A,
∣
∣
∣
∣

∫ 1

0
rβ+2α+1 jα(rμ)dr

∣
∣
∣
∣� B

μβ+2α+2 . (7.23)

Replacing in relation (7.18), we get

∥
∥�̃α( f )

∥
∥p

′

p′,γ � (2B)p
′

(
2αΓ(α+ 1)

√
2π
)p′+1

∫

R

∣
∣
∣
∣

sinλ
λ

∣
∣
∣
∣

p′

dλ
∫ +∞

A

dμ

μp′(2α+β+2)−2α−1 . (7.24)

Thus, for β <−(2α+ 2) + (2α+ 2/p′),

∥
∥�α( f )

∥
∥p

′

p′,γ =
∥
∥�̃α( f )

∥
∥p

′

p′,ν = +∞. (7.25)

This shows that relation (7.15) is false if we pick

β ∈
]

− (α+ 1),min
(

−
(

α+
1
2

)

,−(2α+ 2) +
2α+ 2
p′

)[

. (7.26)

�
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