
AUXILIARY PRINCIPLE FOR GENERALIZED NONLINEAR
VARIATIONAL-LIKE INEQUALITIES

ZEQING LIU, HAIYAN GAO, SHIN MIN KANG, AND SOO HAK SHIM

Received 27 April 2005; Revised 23 March 2006; Accepted 25 April 2006

We introduce and study a new class of generalized nonlinear variational-like inequali-
ties and prove an existence theorem of solutions for this kind of generalized nonlinear
variational-like inequalities. By using the auxiliary principle technique, we construct a
new iterative scheme for solving the class of the generalized nonlinear variational-like in-
equalities. The convergence of the sequence generated by the iterative algorithm is also
discussed. Our results extend and unify the corresponding results due to Ding, Liu, Ume,
Kang, Yao, and others.
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1. Introduction

Variational inequality theory has become a very effective and powerful tool for studying
a wide range of problems arising in many diverse fields of pure and applied sciences. It is
well known that one of the most important problems in variational inequality theory is
the development of efficient and implementable iterative algorithms for solving various
classes of variational inequalities and variational inclusions. In [3–38] there are a lot of
iterative algorithms for finding the approximate solutions of various variational inequal-
ities. Glowinski et al. [8] had developed the auxiliary principle technique. By using the
auxiliary principle technique, Ding [3, 4], Ding and Tan [5], and Ding and Yao [6], Liu
et al. [21, 28], Zeng et al. [37], Zeng et al. [38], and others suggested several iterative al-
gorithms to compute approximate solutions for some classes of general nonlinear mixed
variational inequalities and variational-like inequalities in reflexive Banach spaces.

Motivated and inspired by the research work in [3–38], in this paper, we introduce
and study a new class of generalized nonlinear variational-like inequalities and prove
an existence theorem of solutions for this kind of generalized nonlinear variational-like
inequalities. By applying the result due to Chang [1, 2] and the auxiliary principle tech-
nique, we suggest a new iterative scheme for solving the class of generalized nonlinear
variational-like inequalities. The convergence of the sequence generated by the iterative
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algorithm is also discussed. Our results extend and unify the corresponding results due
to Ding [3], Liu et al. [21], Yao [36], and others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space with dual space H∗ and
that 〈u,v〉 is the dual pairing between u ∈H and v ∈ H∗. Let K be a nonempty closed
convex subset of H , and let A,B,C : K →H , N :H ×H ×H →H , and η : K ×K →H∗ be
mappings. Suppose that a : K ×K → (−∞,∞) is a coercive continuous bilinear form, that
is, there exist positive constants c,d > 0 such that

(C1) a(v,v)≥ c‖v‖2 for all v ∈ K ;
(C2) |a(u,v)| ≤ d‖u‖ · ‖v‖ for all u,v ∈ K . It follows from (C1) and (C2) that c ≤ d.

Let b : K ×K → (−∞,+∞) be nondifferentiable and satisfy the following condi-
tions:

(C3) b is linear in the first argument;
(C4) b is convex in the second argument;
(C5) b is bounded, that is, there exists a constant l > 0 satisfying

∣
∣b(u,v)

∣
∣≤ l‖u‖ · ‖v‖ ∀u,v ∈ K ; (2.1)

(C6) b(u,v)− b(u,w)≤ b(u,v−w) for all u,v,w ∈ K .
Now we consider the following generalized nonlinear variational-like inequality.

For given f ∈H , find u∈ K such that

〈

N(Au,Bu,Cu)− f ,η(v,u)
〉

+ a(u,v−u)≥ b(u,u)− b(u,v) ∀v ∈ K. (2.2)

Special cases. If N(Au,Bu,Cu) = Au− Bu, f = 0, and b(u,v) = ϕ(v) for all u,v ∈ K ,
where ϕ : H → (−∞,+∞) is a functional, then the generalized nonlinear variational-like
inequality (2.2) is equivalent to finding u∈ K such that

〈

Au−Bu,η(v,u)
〉≥ ϕ(u)−ϕ(v) ∀v ∈ K , (2.3)

which was introduced and studied by Ding [3].
If N(Au,Bu,Cu)=Au−Bu, f =0, b(u,v)=ϕ(v), and η(u,v)=gu− gv for all u,v∈K ,

where g : K →H∗ is a mapping, then the generalized nonlinear variational-like inequality
(2.2) is equivalent to finding u∈ K such that

〈Au−Bu,gv− gu〉 ≥ ϕ(u)−ϕ(v) ∀v ∈ K , (2.4)

which was studied by Yao [36].

Definition 2.1. Let A,B : K →H , N :H ×H ×H →H , and η : K ×K →H∗ be mappings.
(1) A is said to be Lipschitz continuous with constant r if there exists a constant r > 0

such that

‖Ax−Ay‖ ≤ r‖x− y‖ ∀x, y ∈ K. (2.5)
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(2) N is said to be η-strongly monotone with constant s with respect to A in the first
argument if there exists a constant s > 0 such that

〈

N(Ax,u,v)−N(Ay,u,v),η(x, y)
〉≥ s‖x− y‖2 ∀x, y ∈ K , ∀u,v ∈H. (2.6)

(3) N is said to be η-monotone with respect to A in the second argument if

〈

N(u,Ax,v)−N(v,Ay,v),η(x, y)
〉≥ 0 ∀x, y ∈ K , ∀u,v ∈H. (2.7)

(4) N is said to be Lipschitz continuous with constant t in the third argument if there
exists a constant t > 0 such that

∥
∥N(u,v,x)−N(u,v, y)

∥
∥≤ t‖x− y‖ ∀x, y,u,v ∈H. (2.8)

(5) N is said to be η-hemicontinuous with respect to A and B in the first and second
arguments if for any x, y,z ∈ K , the mapping g : [0,1]→ (−∞,∞) defined by g(t)=
〈N(A(tx+ (1− t)y),B(tx+ (1− t)y),z),η(x, y)〉 is continuous at 0+.

(6) η is said to be Lipschitz continuous with constant s if there exists a constant s > 0
such that

∥
∥η(x, y)

∥
∥≤ s‖x− y‖ ∀x, y ∈ K. (2.9)

(7) η is said to be strongly monotone with constant t if there exists a constant t > 0 such
that

〈

x− y,η(x, y)
〉≥ t‖x− y‖2 ∀x, y ∈ K. (2.10)

Lemma 2.2 [1, 2]. Let X be a nonempty closed convex subset of a Hausdorff linear topolog-
ical space E, and let φ,ψ : X ×X → R be mappings satisfying the following conditions:

(a) ψ(x, y)≤ φ(x, y) for all x, y ∈ X , and ψ(x,x)≥ 0 for all x ∈ X ;
(b) for each x ∈ X , φ(x,·) is upper semicontinuous on X ;
(c) for each y ∈ X , the set {x ∈ X : ψ(x, y) < 0} is a convex set;
(d) there exists a nonempty compact set K ⊂ X and x0 ∈ K such that ψ(x0, y) < 0 for all

y ∈ X \K .
Then there exists ŷ ∈ K such that φ(x, ŷ)≥ 0 for all x ∈ X .

3. Auxiliary problem and algorithm

Now we consider the following auxiliary problem with respect to the generalized nonlin-
ear variational-like inequality (2.2). For any given u∈ K , find ŵ ∈ K such that

〈

ŵ,η(v,ŵ)
〉≥ 〈u,η(v,ŵ)

〉− ρ〈N(Aŵ,Bŵ,Cu)− f ,η(v,ŵ)
〉

− ρa(ŵ,v− ŵ)− ρb(u,v) + ρb(u,ŵ) ∀v ∈ K ,
(3.1)

where ρ > 0 is a constant.
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Theorem 3.1. Let K be a nonempty closed convex subset of H and f ∈H. Suppose that a :
K ×K → (−∞,∞) satisfies (C1) and (C2), b : K ×K → (−∞,∞) satisfies (C3)–(C6), and
A,B,C : K → H and N : H ×H ×H → H are mappings such that N is η-hemicontinuous
with respect to A and B in the first and second arguments. Let η : K ×K → H∗ be Lip-
schitz continuous with constant δ and strongly monotone with constant τ, for each y ∈
K , let η(·, y) be continuous and η(y,x) = −η(x, y) for all x, y ∈ K. Assume that N is η-
strongly monotone with constant α with respect to A in the first argument and η-monotone
with respect to B in the second argument. If for given x, y,z ∈ H and v ∈ K , the mapping
〈N(x, y,z),η(v,·)〉 is concave and upper semicontinuous, then the auxiliary problem (3.1)
has a unique solution in K .

Proof. Let u be in K. Define the functionals φ and ψ : K ×K → R by

φ(v,w)= 〈v,η(v,w)
〉− 〈u,η(v,w)

〉

+ ρ
〈

N(Av,Bv,Cu)− f ,η(v,w)
〉

+ ρa(v,v−w)− ρb(u,w) + ρb(u,v),

ψ(v,w)= 〈w,η(v,w)
〉− 〈u,η(v,w)

〉

+ ρ
〈

N(Aw,Bw,Cu)− f ,η(v,w)
〉

+ ρa(w,v−w)− ρb(u,w) + ρb(u,v)

(3.2)

for all v,w ∈ K .
We check that the functionals φ and ψ satisfy all the conditions of Lemma 2.2 in the

weak topology. It is easy to see for all v,w ∈ K ,

φ(v,w)−ψ(v,w)

= 〈v−w,η(v,w)
〉

+ ρ
〈

N(Av,Bv,Cu)−N(Aw,Bv,Cu),η(v,w)
〉

+ ρ
〈

N(Aw,Bv,Cu)−N(Aw,Bw,Cu),η(v,w)
〉

+ ρa(v−w,v−w)

≥ [τ + ρ(α+ c)
]‖v−w‖2 ≥ 0,

(3.3)

which implies that φ and ψ satisfy the condition (1) of Lemma 2.2. Since a is a coercive
continuous bilinear form, it follows that a(v,v−w) is weakly upper semicontinuous with
respect to w. Note that b is convex and lower semicontinuous in the second argument
and for given x, y,z ∈ H , v ∈ K , the mapping 〈N(x, y,z),η(v,·)〉 is concave and upper
semicontinuous. Therefore φ(v,·) is weakly upper semicontinuous in the second argu-
ment and the set {v ∈ K : ψ(v,w) < 0} is convex for each w ∈ K. That is, the conditions
(2) and (3) of Lemma 2.2 hold. Let v̄ ∈ K. Put

L= [τ + ρ(α+ c)
]−1[

δ‖u− v̄‖+ ρd‖v̄‖+ ρδ
∥
∥N(Av̄,Bv̄,Cu)− f

∥
∥+ ρl‖u‖],

M = {w ∈ K : ‖w− v̄‖ ≤ L}.
(3.4)
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Clearly, M is a weakly compact subset of K and for any w ∈ K \M,

ψ(v̄,w)= 〈w,η(v̄,w)
〉− 〈u,η(v̄,w)

〉

+ ρ
〈

N(Aw,Bw,Cu)− f ,η(v̄,w)
〉

+ ρa(w, v̄−w)− ρb(u,w) + ρb(u, v̄)

≤−〈w− v̄,η(w, v̄)
〉

+
〈

u− v̄,η(w, v̄)
〉

− ρ〈N(Aw,Bw,Cu)−N(Av̄,Bw,Cu),η(w, v̄)
〉

− ρ〈N(Av̄,Bw,Cu)−N(Av̄,Bv̄,Cu),η(w, v̄)
〉

− ρ〈N(Av̄,Bv̄,Cu)− f ,η(w, v̄)
〉

− ρa(w− v̄,w− v̄)− ρa(v̄,w− v̄) + ρb(u, v̄−w)

≤−‖w− v̄‖
{[

τ + ρ(α+ c)
]‖w− v̄‖− δ‖u− v̄‖

− ρd‖v̄‖− ρδ∥∥N(Av̄,Bv̄,Cu)− f
∥
∥− ρl‖u‖

}

< 0,

(3.5)

which means that the condition (4) of Lemma 2.2 holds. Thus Lemma 2.2 ensures that
there exists ŵ ∈ K such that φ(v,ŵ)≥ 0 for all v ∈ K , that is,

〈

v,η(v,ŵ)
〉≥ 〈u,η

(

v,ŵ
)〉− ρ〈N(Av,Bv,Cu)− f ,η(v,ŵ)

〉

− ρa(v,v− ŵ)− ρb(u,v) + ρb(u,ŵ) ∀v ∈ K.
(3.6)

Let t be in (0,1] and let v be in K. Replacing v by vt = tv+ (1− t)ŵ in (3.6), we see that

〈

vt,η
(

vt,ŵ
)〉≥ 〈u,η

(

vt,ŵ
)〉− ρ〈N(Avt,Bvt,Cu

)− f ,η
(

vt,ŵ
)〉

− ρa(vt,vt − ŵ
)− ρb(u,vt

)

+ ρb(u,ŵ) ∀v ∈ K.
(3.7)

Notice that b is convex in the second argument and 〈N(x, y,z),η(v,·)〉 is concave and
upper semicontinuous. From (C6) and (3.7) we infer that

t
[〈

vt,η(v,ŵ)
〉]≥ t

[〈

u,η(v,ŵ)
〉− ρ〈N(Avt,Bvt,Cu

)− f ,η(v,ŵ)
〉

− ρa(vt,v− ŵ
)− ρb(u,v) + ρb(u,ŵ)

]

∀v ∈ K ,
(3.8)

which implies that

〈

vt,η(v,ŵ)
〉≥ 〈u,η(v,ŵ)

〉− ρ〈N(Avt,Bvt,Cu
)− f ,η(v,ŵ)

〉

− ρa(vt,v− ŵ
)− ρb(u,v) + ρb(u,ŵ) ∀v ∈ K.

(3.9)
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Letting t→ 0+ in the above inequality, we conclude that

〈

ŵ,η(v,ŵ)
〉≥ 〈u,η(v,ŵ)

〉− ρ〈N(Aŵ,Bŵ,Cu)− f ,η(v,ŵ)
〉

− ρa(ŵ,v− ŵ)− ρb(u,v) + ρb(u,ŵ) ∀v ∈ K. (3.10)

That is, ŵ is a solution of (3.1). Now we prove the uniqueness. For any two solutions
w1,w2 ∈ K of (3.1) with respect to u, we know that

〈

w1,η
(

v,w1
)〉≥ 〈u,η

(

v,w1
)〉− ρ〈N(Aw1,Bw1,Cu

)− f ,η
(

v,w1
)〉

− ρa(w1,v−w1
)− ρb(u,v) + ρb

(

u,w1
)

,
(3.11)

〈

w2,η
(

v,w2
)〉≥ 〈u,η

(

v,w2
)〉− ρ〈N(Aw2,Bw2,Cu

)− f ,η
(

v,w2
)〉

− ρa(w2,v−w2
)− ρb(u,v) + ρb

(

u,w2
) (3.12)

for all v ∈ K. Taking v =w2 in (3.11) and v =w1 in (3.12), we get that

〈

w1,η
(

w2,w1
)〉≥ 〈u,η

(

w2,w1
)〉− ρ〈N(Aw1,Bw1,Cu

)− f ,η
(

w2,w1
)〉

− ρa(w1,w2−w1
)− ρb(u,w2

)

+ ρb
(

u,w1
)

,
〈

w2,η
(

w1,w2
)〉≥ 〈u,η

(

w1,w2
)〉− ρ〈N(Aw2,Bw2,Cu

)− f ,η
(

w1,w2
)〉

− ρa(w2,w1−w2
)− ρb(u,w1

)

+ ρb
(

u,w2
)

.

(3.13)

Adding these inequalities, we deduce that

τ
∥
∥w1−w2

∥
∥

2 ≤−ρ〈N(Aw1,Bw1,Cu
)−N(Aw2,Bw1,Cu

)

,η
(

w1,w2
)〉

− ρ〈N(Aw2,Bw1,Cu
)−N(Aw2,Bw2,Cu

)

,η
(

w1,w2
)〉

− ρa(w1−w2,w1−w2
)

≤−ρ(α+ c)
∥
∥w1−w2

∥
∥

2
,

(3.14)

which yields w1 =w2. That is, ŵ is the unique solution of (3.1). This completes the proof.
�

By Theorem 3.1, we suggest the following algorithms for solving the generalized
nonlinear variational-like inequality (2.2).

Algorithm 3.2. Suppose that a : K × K → (−∞,∞) satisfies (C1), (C2), b : K × K →
(−∞,∞) satisfies (C3)–(C6), and A,B,C : K →H , N : H ×H ×H →H and η : K ×K →
H∗ are mappings. For given f ∈H and u0 ∈ K , compute the sequence {un}n≥0 ⊂ K by the
following iterative scheme:

〈

un+1,η
(

v,un+1
)〉≥ 〈un,η

(

v,un+1
)〉− ρ〈N(Aun+1,Bun+1,Cun

)− f ,η
(

v,un+1
)〉

− ρa(un+1,v−un+1
)− ρb(un,v

)

+ ρb
(

un,un+1
)

+
〈

en,η
(

v,un+1
)〉

(3.15)

for all v ∈ K and n≥ 0, where {en}n≥0 ⊂H and ρ > 0 is a constant.
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4. Existence and convergence

In this section, we prove the existence of solution for the generalized nonlinear vari-
ational-like inequality (2.2) and discuss the convergence of the sequence generated by
Algorithm 3.2.

Theorem 4.1. Let a, b, A, B, N , η be as in Theorem 3.1. Let C : K →H be Lipschitz con-
tinuous with constant ξ. Assume that N is Lipschitz continuous with constant σ in the third
argument and strongly monotone with constant β with respect to C in the third argument
and

σξ ≥ β, k = l−α− c
δ

, p = τ

δ
, lim

n→∞
∥
∥en
∥
∥= 0. (4.1)

If there exist a constant ρ satisfying

0 < ρ <
τ

l−α− c , (4.2)

and one of the following conditions:

∣
∣
∣
∣ρ−

β− pk

σ2ξ2− k2

∣
∣
∣
∣ <

√

(β− pk)2− (σ2ξ2− k2
)(

1− p2
)

σ2ξ2− k2
,

σξ > k, |β− pk| >
√
(

σ2ξ2− k2
)(

1− p2
)

,

∣
∣
∣
∣ρ−

pk−β
k2− σ2ξ2

∣
∣
∣
∣ >

√

(β− pk)2 +
(

k2− σ2ξ2
)(

1− p2
)

k2− σ2ξ2
, σξ < k,

(4.3)

then the iterative sequence {un}n≥0 generated by Algorithm 3.2 converges strongly to some
u∈ K and u is a solution of the generalized nonlinear variational-like inequality (2.2).

Proof. It follows from the proof of Theorem 3.1 that there exists a mapping G : K → K
satisfying G(u) = w, where w is the unique solution of (3.1) for each u ∈ K. Next we
show that G is a contraction mapping. Let u1 and u2 be arbitrary elements in K. Using
(3.1), we see that

〈

Gu1,η
(

v,Gu1
)〉≥ 〈u1,η

(

v,Gu1
)〉− ρ〈N(A(Gu1

)

,B
(

Gu1
)

,Cu1
)− f ,η

(

v,Gu1
)〉

− ρa(Gu1,v−Gu1
)− ρb(u1,v

)

+ ρb
(

u1,Gu1
)

,
(4.4)

〈

Gu2,η
(

v,Gu2
)〉≥ 〈u2,η

(

v,Gu2
)〉− ρ〈N(A(Gu2

)

,B
(

Gu2
)

,Cu2
)− f ,η

(

v,Gu2
)〉

− ρa(Gu2,v−Gu2
)− ρb(u2,v

)

+ ρb
(

u2,Gu2
)

(4.5)
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for all v ∈ K. Letting v =Gu2 in (4.4) and v =Gu1 in (4.5), and adding these inequalities,
we arrive at

τ
∥
∥Gu1−Gu2

∥
∥

2 ≤ 〈Gu1−Gu2,η
(

Gu1,Gu2
)〉

≤ 〈u1−u2− ρ
(

N
(

A
(

Gu2
)

,B
(

Gu2
)

,Cu1
)

−N(A(Gu2
)

,B
(

Gu2
)

,Cu2
))

,η
(

Gu1,Gu2
)〉

− ρ〈N(A(Gu1
)

,B
(

Gu1
)

,Cu1
)

−N(A(Gu2
)

,B
(

Gu1
)

,Cu1
)

,η
(

Gu1,Gu2
)〉

− ρ〈N(A(Gu2
)

,B
(

Gu1
)

,Cu1
)

−N(A(Gu2
)

,B
(

Gu2
)

,Cu1
)

,η
(

Gu1,Gu2
)〉

− ρa(Gu1−Gu2,Gu1−Gu2
)

+ ρb
(

u1−u2,Gu2−Gu1
)

≤
[

δ
√

1− 2ρβ+ (ρσξ)2 + ρl
]∥
∥u1−u2

∥
∥
∥
∥Gu1−Gu2

∥
∥

− ρ(α+ c)
∥
∥Gu1−Gu2

∥
∥

2
,

(4.6)

that is,

∥
∥Gu1−Gu2

∥
∥≤ θ∥∥u1−u2

∥
∥, (4.7)

where

θ =
δ
√

1− 2ρβ+ (ρσξ)2 + ρl

τ + ρ(α+ c)
< 1, (4.8)

by (4.2) and one of (4.3). Therefore,G : K → K is a contraction mapping and has a unique
fixed point u∈ K. It follows from (3.1) that

〈

u,η(v,u)
〉≥ 〈u,η(v,u)

〉− ρ〈N(Au,Bu,Cu)− f ,η(v,u)
〉

− ρa(u,v−u)− ρb(u,v) + ρb(u,u) ∀v ∈ K ,
(4.9)

which implies that

〈

N(Au,Bu,Cu)− f ,η(v,u)
〉

+ a(u,v−u)≥ b(u,u)− b(u,v) ∀v ∈ K , (4.10)

that is, u is a solution of the generalized nonlinear variational-like inequality (2.2).
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Next, we consider the convergence of the iterative sequence generated by Algorithm
3.2. Taking v = un+1 in (4.9) and v = u in (3.15), and adding these inequalities, we have

τ
∥
∥un+1−u

∥
∥

2 ≤ 〈un+1−u,η
(

un+1,u
)〉

≤ 〈un−u− ρ
(

N
(

Au,Bu,Cun
)−N(Au,Bu,Cu)

)

,η
(

un+1,u
)〉

− ρ〈N(Aun+1,Bun+1,Cun
)−N(Au,Bun+1,Cu

)

,η
(

un+1,u
)〉

− ρ〈N(Au,Bun+1,Cun
)−N(Au,Bu,Cun

)

,η
(

un+1,u
)〉

− ρa(un+1−u,un+1−u
)

+ ρb
(

un−u,u−un+1
)

+
〈

en,η
(

un+1,u
)〉

≤
[

δ
√

1− 2ρβ+ (ρσξ)2 + ρl
]∥
∥un−u

∥
∥
∥
∥un+1−u

∥
∥

− ρ(α+ c)
∥
∥un+1−u

∥
∥

2
+
∥
∥en
∥
∥
∥
∥un+1−u

∥
∥

(4.11)

for all n≥ 1. That is,
∥
∥un+1−u

∥
∥≤ θ∥∥un−u

∥
∥+

∥
∥en
∥
∥→ 0 as n−→∞, (4.12)

where θ is defined by (4.8). It follows from (4.1) and (4.12) that the iterative sequence
{un}n≥0 generated by Algorithm 3.2 converges strongly to u. This completes the proof.
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