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A two-dimensional electrostatic problem in a plane with earthed elliptic cavity due to one
or two charged electrostatic strips is considered. Using the integral transform technique,
each problem is reduced to the solution of triple integral equations with sine kernels and
weight functions. Closed-form solutions of the set of triple integral equations are ob-
tained. Also closed-form expressions are obtained for charge density of the strips. Finally,
the numerical results for the charge density are given in the form of tables.
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1. Introduction

Tranter [1] obtained the closed-form solution to the electrostatic problem of two collin-
ear strips charged to equal and opposite constant potentials. Later on, Srivastava and
Lowengrub [2] obtained the closed form solution of the same problem of Tranter [1]
with a different method. The advantage of the technique by Srivastava and Lowengrub
[2] is that the solution obtained is simpler than that of Tranter [1]. Singh [3] considered
the electrostatic field due to two collinear strips charged to equal and opposite constant
potentials and lying under the earthed plane and obtained a closed form solution for
charge density of the strip. Singh [4] considered the problem of determining the electro
static potentials due to two parallel collinear coplanar strips of equal length, charged to
equal and opposite constant potential and equidistant from an earthed strip. In recent
years, Singh et al. [5] have considered a two-dimensional electrostatic problem due to
four collinear and coplanar strips, where the two strips are earthed and the other two are
charged to a constant potential. Spence [6] has considered the three-part mixed boundary
value problem of electrified disc in a coplanar gap. References of mixed boundary value
problems in electrostatics are given in Sneddon [7]. The analysis of this paper can be
useful in solving the mixed boundary value problems in electricity and heat conduction.
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Figure 1.1. One charged strip in a plane with elliptic cavity.
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Figure 1.2. Two charged collinear strips in a plane with elliptic cavity.

In this paper, we consider two-dimensional electrostatic problems in a plane with an
earthed elliptic cavity and (i) one charged strip of finite length at y = 0, a < x < b; (ii) two
charged strips of finite length at y = 0, a < |x| < b. The geometry of the problems is shown
in Figures 1.1, 1.2. Using the integral transform technique, each problem is reduced into
triple integral equations with weight functions.

Closed-form solutions of the triple integral equations are obtained by using the
method discussed by Singh [3, 8]. In each problem, we have obtained the closed form
expressions for the charge density of the strips. The numerical results are given for the
charge density in the form of tables. These types of problems have application in mathe-
matical physics.

As we know, an analytic solution has some advantages over numerical and approxi-
mate solutions so that in many cases, analytical solutions in closed form are desired for
accurate analysis and design. Moreover, analytical solutions can serve as a benchmark for
the purpose of judging the accuracy and efficiency of various numerical and approximate
methods.

2. Basic equations

In Cartesian coordinates (x, y), an ellipse centered at the origin is given by the equation

x2

c2
+
y2

d2
= 1. (2.1)

We introduce elliptic coordinates (ξ,η), which are defined by

x = l coshξ cosη, y = l sinhξ sinη, (2.2)
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where ξ ≥ 0, 0 < η < 2π, and l = (c2−d2)1/2. The ellipse becomes the coordinate line

ξ = γ = cosh−1
(
c

l

)
, 0 < η < 2π. (2.3)

In elliptic coordinates, the electrostatic potential function V satisfies the differential
equation

∂2V

∂ξ2
+
∂2V

∂η2
= 0. (2.4)

3. Boundary conditions and solution of problem (2.1)

Due to the geometric symmetry, the problem reduces to finding a function V(ξ,η) satis-
fying (2.4) in the region γ < ξ ≤∞, 0≤ η ≤ π subject to the conditions

V(ξ,π)= 0, ξ > γ,

V(γ,η)= 0, 0 < η < π,
(3.1)

V(ξ,0)= Δ(ξ), α < ξ < β,

∂V(ξ,η)
∂η

∣∣∣∣∣
η=0

= 0, γ < ξ < α, β < ξ,
(3.2)

where

α= cosh−1
(
a

l

)
, β = cosh−1

(
b

l

)
. (3.3)

We can easily find the solution of Laplace equation (2.4) in the form

V(ξ,η)=
∫∞

0

sinh
[
u(π−η)

]
sinh(uπ)

f (u)sin
[
u(ξ − γ)

]
du, (3.4)

which satisfies the boundary conditions (3.1) identically and the remaining conditions
(3.2) lead to the following triple integral equations:

∫∞
0

f (u)sin
[
u(ξ − γ)

]
du= Δ(ξ), α < ξ < β,

∫∞
0
ucoth(πu) f (u)sin

[
u(ξ − γ)

]
du= 0, γ < ξ < α, β < ξ,

(3.5)

for the determination of f (u).
On introducing x1 = ξ − γ, a1 = α− γ, b1 = β− γ, the above equations (3.5) reduce to

the following integral equations:

∫∞
0

f (u)sin
(
ux1
)
du= Δ

(
x1 + γ

)
, a1 < x1 < b1, (3.6)

∫∞
0
ucoth(πu) f (u)sin(uπ)du= 0, 0 < x1 < a1, b1 < x1 <∞. (3.7)
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Assuming

∫∞
0

coth(πu)u f (u)sin
(
ux1
)
du= π

2
R
(
x1
)
, a1 < x1 < b1, (3.8)

we find its inverse Fourier sine transform as

u f (u)coth(πu)=
∫ b1

a1

R(t)sin(ut)dt. (3.9)

Substituting from (3.9) into (3.6), interchanging the order of integrations and using the
following integral from Gradshteyn and Ryzhik (see [9, 4.117(2), page 516]):

∫∞
0
u−1 tanh(uπ)sin(ut)sin

(
ux1
)
du= 1

2
log
∣∣∣∣ sinh

(
x1/2

)
+ sinh(t/2)

sinh
(
x1/2

)− sinh(t/2)

∣∣∣∣, (3.10)

we find that

∫ b1

a1

R(t) log
∣∣∣∣ sinh

(
x1/2

)
+ sinh(t/2)

sinh
(
x1/2

)− sinh(t/2)

∣∣∣∣dt = 2Δ
(
x1 + γ

)
, a1 < x1 < b1. (3.11)

Differentiating both sides of the above equation with respect to x1, we find that

∫ b1

a1

R(t)sinh(t/2)dt
cosh(t)− cosh

(
x1
) = Δ′

(
x1 + γ

)
cosh

(
x1/2

) = p1
(
x1
)

(say), a1 < x1 < b1, (3.12)

where prime denotes the derivative with respect to x1. Making use of a suitable Tricomi
theorem given by Singh [3], we find that

R(t)=−2cosh(t/2)
π2

(
cosh(t)− cosh

(
a1
)

cosh
(
b1
)− cosh(t)

)1/2

×
∫ b1

a1

(
cosh

(
b1
)− cosh(y)

cosh(y)− cosh
(
a1
)
)1/2 sinh(y)p(y)dy

cosh(y)− cosh(t)

+
2C1 cosh(t/2)[(

cosh(t)− cosh
(
a1
))(

cosh
(
b1
)− cosh(t)

)]1/2 , a1 < t < b1,

(3.13)

where C1 is an arbitrary constant. If Δ(x1) is constant such that

Δ
(
x1 + γ

)= Δ1 (constant), (3.14)

we find that

p
(
x1
)= 0, (3.15)

and from (3.13), we find that

R(t)= 2C1 cosh(t/2)[(
cosh(t)− cosh

(
a1
))(

cosh
(
b1
)− cosh(t)

)]1/2 , a1 < t < b1. (3.16)
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Substituting the value of R(t) from (3.16) into (3.11) and using the integral

∫ b1

a1

cosh(t/2)log
∣∣(sinh

(
x1/2

)
+ sinh(t/2)

)
/
(

sinh
(
x1/2

)− sinh(t/2)
)∣∣dt[(

cosh(t)− cosh
(
a1
))(

cosh
(
b1
)− cosh(t)

)]1/2

= π

sinh
(
b1/2

)K
(

sinh
(
a1/2

)
sinh

(
b1/2

)
)

, a1 < t < b1,

(3.17)

we find that

C1 = Δ1

πK(δ)
sinh

(
b1

2

)
, (3.18)

where

δ = sinh
(
a1/2

)
sinh

(
b1/2

) , (3.19)

and K() is the complete integral defined in Gradshteyn and Ryzhik (see [9, page 905]).
From (3.16) and (3.18), we find that

R(t)= Δ1 cosh(t/2)sinh
(
b1/2

)
πK(δ)

[(
cosh2(t/2)− cosh2 (a1/2

))(
cosh2 (b1/2

)− cosh2(t/2)
)]1/2 , a1 < t < b1.

(3.20)

The charge density of the strip is defined by the relation

σ1 = −1
4lπ sinh(ξ)

∂V(ξ,η)
∂η

∣∣∣∣∣
η=0

= 1
4lπ sinh(ξ)

∫∞
0
u f (u)coth(uπ)sinh

[
u(ξ − γ)

]
du, α < ξ < β, η = 0.

(3.21)

The above equation can be written in the form

σ1 = R
(
x1
)

8π sinh(ξ)l

= Δ1 sinh
(
(β−γ)/2

)
cosh

(
(ξ−γ)/2

)
8π sinh(ξ)K(δ)

[(
sinh2 ((ξ−γ)/2)−sinh2 (a1/2

))(
sinh2 (b1/2

)−sinh2 ((ξ−γ)/2))]1/2
l
,

a < x < b, y = 0,
(3.22)

where

ξ = cosh−1
(
x

l

)
, a1 = cosh−1

(
a

l

)
− γ, b1 = cosh−1

(
b

l

)
− γ. (3.23)

Equation (3.22) represents the expression for the charge density at y = 0, a < x < b, whose
numerical values are given in Table 3.1.
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Table 3.1. Numerical results for problem (2.1).

c = 0.5, d = 0.2, b = 1, a= 0.6

x
σ1

Δ1

0.7 0.2852

0.75 0.2243

0.8 0.1944

0.85 0.1822

0.9 0.1869

4. Boundary conditions and solution of problem (2.2)

Since the configuration to be investigated in problem (2.2) is symmetric with respect to x
and y axes, we require to find an electrostatic function V(ξ,η) which is harmonic in the
region γ < ξ <∞, 0 < η < π/2 and satisfies the conditions

∂V(ξ,η)
∂η

∣∣∣∣
η=π/2

= 0, ξ > γ, (4.1)

V(γ,η)= 0, 0 < η <
π

2
, (4.2)

V(ξ,0)=V0(ξ), α < ξ < β, (4.3)

∂V(ξ,η)
∂η

∣∣∣∣∣
η=0

= 0, γ < ξ < α, β < ξ. (4.4)

Suitable solution of (4.4) can be written in the form

V(ξ,η)=
∫∞

0

A(u)cosh
[
u(π/2−η)

]
cosh(πu/2)

sin
[
(ξ − γ)u

]
du, (4.5)

which satisfies conditions (4.1) and (4.2), and the conditions (4.3) and (4.4) give rise to
the following integral equations:

∫∞
0
A(u)sin

(
ux1
)
du=V0

(
x1 + γ

)
, a1 < x1 < b1, (4.6)

∫∞
0
uA(u)tanh

(
uπ

2

)
sin
(
ux1
)
du= 0, 0 < x1 < a1, b1 < x1 <∞, (4.7)

for the determination of A(u). By assuming
∫∞

0
uA(u)tanh

(
uπ

2

)
sin
(
ux1
)
du= R0

(
x1
)
, a1 < x1 < b1, (4.8)

and using (4.7), we find that

uA(u)tanh
(
uπ

2

)
= 2

π

∫ b1

a1

R0(t)sin(ut)dt. (4.9)
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Substituting from (4.9) into (4.6), interchanging the order of integrations and using the
following integral from Gradshteyn and Ryzhik (see [9, 4.116(3), page 516]):

∫∞
0
u−1 coth

(
uπ

2

)
sin(ut)sin

(
ux1
)
du= 1

2
log
∣∣∣∣ tanhx1 + tanh t

tanhx1− tanh t

∣∣∣∣, (4.10)

we find that

1
π

∫ b1

a1

R0(t)
∣∣∣∣ tanhx1 + tanh t

tanhx1− tanh t

∣∣∣∣dt =V0
(
x1 + γ

)
, a1 < x1 < b1. (4.11)

Differentiating both sides of the above equation with respect to x1, we obtain

1
π

∫ b1

a1

2R0(t)tanh(t)dt

tanh2(t)− tanh2 (x1
) = V ′

0

(
x1 + γ

)
sech2 x1

= p
(
x1
)

(say), a1 < x1 < b1, (4.12)

where prime denotes the derivative with respect to x1. Using a suitable Tricomi theorem
given by Singh [3], we find that

R0(t)=− sech2(t)
π

(
tanh2(t)− tanh2 (a1

)
tanh2 (b2

)− tanh2(t)

)1/2

×
∫ b1

a1

(
tanh2 (b1

)− tanh2 (x1
)

tanh2 (x1
)− tanh2 (a1

)
)1/2 2tanh

(
x1
)

sech2 (x1
)
p
(
x1
)
dx1

tanh2 (x1
)− tanh2(t)

+
C2 sech2(t)[(

tanh2(t)− tanh2 (a1
))(

tanh2 (b1
)− tanh2(t)

)]1/2 , a1 < t < b1,

(4.13)

where C2 is an arbitrary constant. If we assume that V0(x1 + γ)= Δ0 (constant), then we
find that

p
(
x1
)= 0, (4.14)

R0(t)= C2 sech2(t)[(
tanh2(t)− tanh2 (a1

))(
tanh2 (b1

)− tanh2(t)
)]1/2 . (4.15)

Substituting the value of R0(t) from (4.15) into (4.11) and using the integral

∫ b1

a1

sech2 t log
∣∣( tanh

(
x1
)

+ tanh(t)
)
/
(

tanh
(
x1
)− tanh(t)

)∣∣dt[(
tanh2(t)− tanh2 (a1

))(
tanh2 (b1

)− tanh2(t)
)]1/2

= π

tanh
(
b1
)K
(

tanha1

tanhb1

)
, a1 < x1 < b1,

(4.16)

we obtain

C2 = Δ0 tanh
(
b1
)

K
(

tanha1/ tanhb1
) , (4.17)
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Table 4.1. Numerical results for problem (2.2).

c = 0.5, d = 0.2, b = 1, a= 0.6

x
σ1

Δ0

0.7 0.4152

0.75 0.3204

0.8 0.2717

0.85 0.2487

0.9 0.2489

where K() is the complete integral defined in Gradshteyn and Ryzhik (see [9, page 905]).
From (4.15) and (4.17), we find that

R0(t)= sech2(t)tanh
(
b1
)
Δ0

K
(
tanha1/ tanhb1

)[(
tanh2(t)−tanh2 (a1

))(
tanh2 (b1

)−tanh2(t)
)]1/2 , a < t < b.

(4.18)

The charge density is given by

σ1 = −1
sinh(ξ)l

∂V(ξ,η)
∂η

∣∣∣∣∣
η=0

= 1
sinh(ξ)l

∫∞
0
A(u)tanh

(
πu

2

)
sin
[
u(ξ − γ)

]
du= R0

(
x1
)

4π sinh(ξ)l

= sech2 (x1
)

tanh
(
b1
)
Δ0

4π sinh(ξ)K
(
δ1
)[(

tanh2 x1−tanh2 a1
)(

tanh2 b1−tanh2 x1
)]1/2 , a1 < x1 < b1, y = 0,

(4.19)

where

δ1 = tanh
(
a1
)

tanh
(
b1
) . (4.20)

The above result may be written in the following form:

σ1 = sech2(ξ − γ)tanh(β− γ)Δ0

4π sinh(ξ)K
(
δ1
)[(

tanh2(ξ − γ)− tanh2 a1
)(

tanh2 b1− tanh2(ξ − γ)
)]1/2

l
,

a < x < b, y = 0.
(4.21)

The numerical values of the charge density σ1 are given in Table 4.1.
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