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1. Introduction

Throughout this paper, rings are associative with unity and modules are unitary. Given
a ring R, we use the symbol Id(R) to denote the set of idempotents in R, U(R) its unit
group. The Jacobson radical, the prime radical, and the set of nilpotent elements of a
ring R are denoted by J(R), P(R), and N(R), respectively. The symbol Max(R) (resp.,
Maxr(R)) stands for the set of maximal (resp., maximal right) ideals of a ring R. As usual,
the symbol Mn(R) denotes the ring of n× n matrices over a ring R, UTMn(R) denotes
the ring of n× n upper triangular matrices over R, and Eij (1 ≤ i, j ≤ n) denotes the
n×n matrix units over R. Let M be an R-R bimodule and A= (ai j)n×n ∈Mn(R), we write

MA= {(maij)n×n |m∈M}, and write V =∑n−1
i=1 Ei,i+1 for n≥ 2. And we use the symbol

Tn(R,M) to denote the ring of n×n upper triangular matrices whose principal diagonal
elements are identical and belong to R and the other elements belong to M, and write
Vn(R,M)= RIn +MV + ···+MVn−1 for n≥ 2 where In is the n×n identity matrix over
R. Moreover, we use the symbol Zp to denote the ring of integers modulo a prime p.

Following [1], an idempotent e in a ring R is called right (resp., left) semicentral if
for every x ∈ R, ex = exe (resp., xe = exe). And the set of right (resp., left) semicentral
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idempotents of R is denoted by Sr(R) (resp., Sl(R)). We define a ring R to be semiabelian
if Id(R)= Sr(R)∪ Sl(R), this notion is a proper generalization of that of an abelian ring.

Recall that a ring R is called π-regular if for every x ∈ R, there exist an element y ∈ R
and a positive integer n such that xn = xnyxn. In the case of n= 1 for all x ∈ R, then R is
regular. An element a in a ring R is strongly π-regular if there exist b ∈ R and a positive
integer n such that an = an+1b with ab = ba. And a ring R is strongly π-regular if every
element of R is strongly π-regular. Clearly, a strongly π-regular ring is a π-regular ring. A
ring is called right (resp., left) quasiduo if every maximal right (resp., left) ideal is an ideal.
And a ring is quasiduo if it is right and left quasiduo. A ring R is called an exchange ring
if for every a∈ R, there exists e ∈ Id(R) such that e ∈ aR and 1− e ∈ (1− a)R. It is known
that a π-regular ring is an exchange ring (see [2, Example 2.3]). A ring is reduced if it
has no nonzero nilpotent elements. And a ring is abelian if every idempotent is central.
It is well known that a reduced ring is an abelian ring. For the above notions we refer the
reader to [3, 4].

In [5], Badawi studied abelian π-regular rings and obtained some interesting results.
The fundamental result is that an abelian ring R is π-regular if and only if N(R) is an ideal
of R and R/N(R) is regular. In this paper, we study semiabelian π-regular rings, extending
some of the main results of [5]. It is proved that for every such ring R, N(R) is an ideal
of R if and only if R/J(R) is abelian. It follows that if R is a semiabelian ring, then R is
π-regular if and only if N(R) is an ideal of R and R/N(R) is regular. Moreover, several
related results and examples are given.

2. Extensions of semiabelian rings

We start this section with the following definition.

Definition 2.1. A ring R is called semiabelian if Id(R)= Sr(R)∪ Sl(R).

Clearly, an abelian ring is semiabelian. But the converse is not true in general as the
following example shows.

Example 2.2. LetR be any ring for which Id(R)= {0,1} (e.g., a local ring). Then UTM2(R)
is a semiabelian ring which is not abelian.

Proof. Clearly, UTM2(R) is not abelian. And it is quite easy to check that

Id
(
UTM2(R)

)=
{(

0 0
0 0

)

,

(
1 0
0 1

)

,

(
1 a
0 0

)

,

(
0 b
0 1

)

| a,b ∈ R

}

, (2.1)

and that
(

1 a
0 0

)
is a left semicentral idempotent and

(
0 b
0 1

)
is a right semicentral idempotent

for any a,b ∈ R. Hence, UTM2(R) is semiabelian.
One may expect that the conclusion of Example 2.2 is true for n≥ 3, but this is not the

case. In fact, for any ring R, idempotent E11 +E33 is neither right nor left semicentral in
UTM3(R). This implies that for any n ≥ 3, UTMn(R) is not semiabelian. Also the direct
sum of two nonabelian semiabelian rings is not semiabelian. Now let R1 and R2 be semi-
abelian rings which are not abelian. Take e1 ∈ R1 to be a right semicentral idempotent
which is not central and e2 ∈ R2 to be a left semicentral idempotent which is not central,
then the idempotent (e1,e2) is neither right nor left semicentral in R1

⊕
R2.
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In view of this situation, it is necessary for us to study how to obtain more examples
of nonabelian semiabelian rings from a given nonabelian semiabelian ring. Clearly, the
direct sum of an abelian ring and a nonabelian semiabelian ring is a semiabelian ring
which is not abelian. Next we consider several extensions of semiabelian rings. �

Theorem 2.3. A ring R is semiabelian if and only if the ring R[[x]] of formal power series
over R is semiabelian.

Proof. Assume that R is semiabelian and f (x)∈ Id(R[[x]]). Then f (x)= e+ a1x+ a2x2 +
···+ anxn + ··· with e ∈ Id(R). Now we prove that if e ∈ Sr(R), then f (x)∈ Sr(R[[x]]).
Since f (x)2 = f (x), we have ea1 + a1e = a1 by comparing the coefficients of x in the
equation f (x)2 = f (x). Multiplying two sides of the equation ea1 + a1e = a1 by e, we
have ea1e = 0, which gives ea1e = ea1 = 0 and so a1 = a1e. Assume that eai = 0 and
ai = aie hold for all 1 ≤ i ≤ n− 1. We claim that ean = 0 and ane = an. In fact, com-
paring the coefficients of xn in the equation f (x)2 = f (x), we have ean + a1an−1 + ···+
aian−i + ···+ an−1a1 + ane = an. Since ai = aie for 1 ≤ i ≤ n− 1 in the above expression,
we have aian−i = aiean−ie = 0. It follows that ean + ane = an. Multiplying both sides of this
equation by e, then eane = ean = 0, which gives an = ane. By induction, we have f (x) =
f (x)e and e f (x) = e. Now for any g(x) ∈ R[[x]], then eg(x)e = eg(x) since e ∈ Sr(R),
and hence f (x)g(x) f (x)= f (x)eg(x) f (x)= f (x)eg(x)e f (x)= f (x)eg(x)e= f (x)eg(x)=
f (x)g(x). Similarly, if e ∈ Sl(R), then f (x) ∈ Sl(R[[x]]) holds. Hence R[[x]] is semia-
belian. The only if part of the proof is trivial since the subring of a semiabelian ring is
semiabelian. And the proof is complete. �

Corollary 2.4. A ring R is semiabelian if and only if the ring R[x] of polynomials over R
is semiabelian.

It is known by [6, Propositions 2.4 and 2.5] that if f (x) = e +
∑∞

i=1 aix
i ∈ Sl(R[[x]]),

then e ∈ Sl(R), e f (x)= f (x), and f (x)e = e. This is true, in particular, for a polynomial
f (x)= e+

∑n
i=1 aix

i ∈ Sl(R[[x]]). Similarly, if f (x)= e+
∑∞

i=1 aix
i ∈ Sr(R[[x]]), then e ∈

Sr(R), f (x)e= f (x), and e f (x)=e. And this is true especially when f (x)∈ Sr(R[x]).
From the proof of Theorem 2.3 and the above argument, we obtain a characterization

of left (resp., right) semicentral idempotents in R[[x]] and R[x].

Proposition 2.5. Let f (x) be in R[[x]] (resp., R[x]) with the constant term e. Then one
has the following conclusions:

(1) f (x)∈Sl(R[[x]]) (resp., Sl(R[x])) if and only if e∈Sl(R), e f (x)= f (x) and f (x)e=e;
(2) f (x)∈Sr(R[[x]]) (resp., Sr(R[x])) if and only if e∈Sr(R), f (x)e= f (x) and e f (x)=e.

Similar to the proof of Theorem 2.3, it is easy to prove the next theorem.

Theorem 2.6. A ring R is semiabelian if and only if the group ring RC∞ is semiabelian,
where C∞ is the infinite cyclic group.

Theorem 2.7. A ring R is semiabelian if and only if Tn(R,M) is semiabelian, where M is an
R-R bimodule.
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Proof. Assume that R is a semiabelian ring and En ∈ Id(Tn(R,M)). Then

En =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

e a12 a13 ··· a1,n−1 a1n

0 e a23 ··· a2,n−1 a2n

· · · ··· · ·
0 0 0 ··· e an−1,n

0 0 0 ··· 0 e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.2)

where e ∈ Id(R) and ai j ∈M. We claim that if e ∈ Sr(R), then En ∈ Sr(Tn(R,M)). First
we prove that En = Ene is true by induction on n. This is trivial in the case of n= 1. As-
sume that En−1 = En−1e holds for any n ≥ 2. In the case of n, then En =

(En−1 α
0 e

)
where

α= (a1n,a2n, . . . ,an−1,n)T . Since En is an idempotent, we have En−1α+αe = α, which gives
En−1αe = 0. On the other hand, since En−1αe = En−1eαe = En−1eα= En−1α, then En−1α=
0. Therefore α= αe; this implies En = Ene. Using this fact, we prove that EnBnEn = EnBn is
true for any Bn ∈ Tn(R,M). This is trivial in the case of n= 1. Assume that En−1Bn−1En−1=
En−1Bn−1 holds for any n ≥ 2 and Bn−1 ∈ Tn−1(R,M). In the case of n, we write Bn =
(Bn−1 β

0 bnn

)
where Bn−1 ∈ Tn−1(R,M) and bnn ∈ R. Hence we have the following equations:

EnBn =
(
En−1Bn−1 En−1β+αbnn

0 ebnn

)

,

EnBnEn =
(
En−1Bn−1En−1 En−1Bn−1α+En−1βe+αbnne

0 ebnne

)

.

(2.3)

By the assumption, En−1Bn−1En−1 = En−1Bn−1 and ebnne = ebnn hold. Also, En = Ene im-
plies α = αe. It follows that αbnne = αebnne = αebnn = αbnn and En−1βe = En−1eβe =
En−1eβ = En−1β. Moreover, we have En−1Bn−1α = En−1Bn−1En−1α = 0 since En−1α = 0.
Hence, EnBnEn = EnBn and so En ∈ Sr(Tn(R,M)). Similarly, it can be proved that if e ∈
Sl(R), then En ∈ Sl(Tn(R,M)). Therefore Tn(R,M) is semiabelian. The only if part of the
proof is trivial. �

Corollary 2.8. A ring R is semiabelian if and only if the trivial extension T2(R,M) is
semiabelian, where M is an R-R bimodule.

Corollary 2.9. A ring R is semiabelian if and only if R[x]/(xn) is semiabelian, where (xn)
is an ideal generated by xn in R[x].

Proof. It is trivial in the case of n = 1. If n ≥ 2, then there exists a ring isomorphism θ:
Vn(R,R)=RIn+RV+···+RVn−1 → R[x]/(xn) defined by θ(r0In + r1V+···+rn−1Vn−1)=
r0 + r1x + ···+ rn−1xn−1 + (xn). By Theorem 2.7, Vn(R,R) is semiabelian, so R[x]/(xn) is
semiabelian. �

3. Semiabelian π-regular rings

For convenience of the reader, we list some known facts which are necessary for the study
of π-regularity of rings.
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Lemma 3.1 (see [7, Lemma 2.1]). For an idempotent e in a ring R, the following conditions
are equivalent:

(1) e ∈ Sr(R);
(2) 1− e ∈ Sl(R);
(3) (1− e)Re= 0.

Lemma 3.2 (see [4, Theorem 23.2]). The following conditions are equivalent for a ring R:
(1) R is strongly π-regular;
(2) every prime factor ring of R is strongly π-regular;
(3) R/P(R) is strongly π-regular;

The next theorem extends [8, Theorem 1].

Theorem 3.3. Let R be a semiabelian exchange ring. Then R/P is a local ring for every prime
ideal of R.

Proof. According to [9, Theorem 1], an exchange ring with only two idempotents is a
local ring. And by [10, Lemma 4.2], a prime ring is semicentral reduced, that is, it has
only 0 and 1 for its semicentral idempotents. BecauseR/P is a prime semiabelian exchange
ring, R/P is a local ring. �

Corollary 3.4 (see [8, Theorem 1]). Let R be an abelian exchange ring. Then R/P is a
local ring for every prime ideal of R.

Corollary 3.5. Let R be a semiabelian exchange ring. Then R/P is a division ring for every
right (resp., left) primitive ideal of R.

Proof. Since R/P is a local ring and J(R/P)= 0, R/P is a division ring. �

Stock [2, Lemma 4.10] proved that if R is an exchange ring with J(R) = 0, then R is
abelian if and only if it is reduced. Since a semiprime semiabelian ring is abelian (see [1,
page 569]), we get the following lemma immediately.

Lemma 3.6. Let R be an exchange ring with J(R) = 0. Then the following conditions are
equivalent:

(1) R is reduced;
(2) R is abelian;
(3) R is semiabelian.

Lemma 3.7. Let R be a semiabelian exchange ring. Then so is every homomorphic image of
R, and R/J(R) is an abelian exchange ring.

Proof. The first assertion is easy to prove since any homomorphic image of an exchange
ring is also an exchange ring and idempotents can be lifted modulo every right ideal of
R (cf. [11]). Now since R/J(R) is a semiabelian exchange ring with the Jacobson radical
zero, it is an abelian exchange ring by Lemma 3.6. �

Theorem 3.8. Let R be an exchange ring with J(R) nil. Then N(R) is an ideal of R if and
only if R/J(R) is an abelian ring.
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Proof. (⇒) Since N(R) is a nil ideal of R, N(R)⊆ J(R) holds. On the other hand, we have
J(R)⊆N(R) by the assumption. It follows that J(R)=N(R) and so R/J(R) is reduced and
hence it is abelian.

(⇐) Because R is an exchange ring and R/J(R) is abelian, R/J(R) is an abelian exchange
ring and so it is reduced by Lemma 3.6. Hence N(R)⊆ J(R). On the other hand, J(R)⊆
N(R) by the assumption. So N(R)= J(R) is an ideal of R.

It is known and easy to prove that the Jacobson radical of a π-regular ring is nil. Hence
Theorem 3.8 implies that for a π-regular ring R, N(R) is an ideal of R if and only if R/J(R)
is abelian. And [2, Example 4.16] shows that the class of exchange rings with J(R) nil
properly contains the class of π-regular rings.

Badawi [5, Theorem 2] proved that if R is an abelian π-regular ring, then N(R) is an
ideal of R. In fact, the similar result is true for a right (resp., left) quasiduo π-regular
ring. �

Corollary 3.9. If R is a right (resp., left) quasiduo π-regular ring, then N(R) is an ideal
of R.

Proof. Since R is a right (resp., left) quasiduo ring, R/J(R) is reduced by [12, Corollary
2] and hence it is abelian. And since R is π-regular, it is an exchange ring with J(R) nil.
Hence, N(R) is an ideal of R by Theorem 3.8. �

Corollary 3.10. If R is a semiabelian π-regular ring, then N(R) is an ideal of R.

Proof. Clearly, R is a semiabelian exchange ring with J(R) nil, and R/J(R) is abelian by
Lemma 3.7. By Theorem 3.8, N(R) is an ideal of R. �

Theorem 3.11. Let R be a semiabelian ring. Then R is π-regular if and only if N(R) is an
ideal of R and R/N(R) is regular.

Proof. (⇒) Suppose that R is π-regular. By Corollary 3.10, N(R) is an ideal of R and so
R/N(R) is reduced and π-regular. Let x̄ ∈ R/N(R). Then there exist ȳ ∈ R/N(R) and a
positive integer n such that x̄n = x̄n ȳx̄n. Write ē = x̄n ȳ. Then ē ∈ Id(R/N(R)) and [(1̄−
ē)x̄]n = 0̄= (1̄− ē)x̄ since R/N(R) is reduced. Hence R/N(R) is regular.

(⇐) Assume that N(R) is an ideal of R and R̃ = R/N(R) is regular. Then R̃ is abelian
regular (and hence unit regular) since it is reduced. To prove R is π-regular, it is sufficient
to prove that R/P is strongly π-regular for every prime ideal P of R by Lemma 3.2. For
any x ∈ R, then x̃ = x +N(R)∈ R̃ is unit regular. So we have x̃ = ẽ ũ= ũẽ with e ∈ Id(R)
and u ∈ U(R) since idempotents and units of R̃ can be lifted modulo N(R). Hence, x =
eu+w1 = ue+w2 where w1,w2 ∈N(R), which implies ex = e(u+w1) and xe = (u+w2)e,
and (1− e)x = x− ex = (1− e)w1 ∈N(R), x(1− e)= x− xe =w2(1− e)∈N(R). So there
exists a positive integer n such that [(1− e)x]n = [x(1− e)]n = 0. Now if e ∈ Sl(R), then
1− e ∈ Sr(R) by Lemma 3.1. Equation [(1− e)x]n = 0 implies (1− e)xn = 0, and hence
xn = exn. If e ∈ P, then xn ∈ P and x̄ = x + P ∈ N(R/P), so x̄ is strongly π-regular in
R/P. If e /∈ P, then 0 = eR(1− e) ⊆ P by Lemma 3.1, which gives 1− e ∈ P and so ē = 1̄
in R/P. This implies x̄ = ēx̄ = e(u+w1) = u+w1 in R/P. Hence, x̄ is a unit and so it is a
strongly π-regular element inR/P. If e ∈ Sr(R), then 1− e ∈ Sl(R). Equation [x(1− e)]n =
0 implies xn(1− e)= 0, and hence xn = xne. Note that xe = (u+w2)e. Similar to the above
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proof, it can be shown that x̄ is a nilpotent element or a unit in R/P. And the proof is
completed. �

It is known by Example 2.2 that UTM2(R) is a nonabelian semiabelian π-regular ring
for any π-regular local ring (e.g., an artinian local ring by Lemma 3.2) R. From this we
can construct more nonabelian semiabelian π-regular rings by using Theorems 2.7 and
3.11.

Corollary 3.12 (see [5, Theorem 3]). Let R be an abelian ring. Then R is π-regular if and
only if N(R) is an ideal of R and R/(R) is regular.

The following corollary is an immediate result of Theorem 3.11.

Corollary 3.13. Let R be a semiabelian π-regular ring. Then for any prime ideal P of R,
every element in R/P is either a nilpotent element or a unit, and hence R is strongly π-regular
with J(R)=N(R).

In light of Theorem 3.11, we naturally ask the following question.

Question 3.14. Let R be any ring. If N(R) is an ideal of R and R/N(R) is regular, then is R
π-regular?

There are many partially positive solutions to this question (see [13–15] for the de-
tails). For a ring R with bounded index (i.e., there exists a positive integer n such that
an = 0 for all a∈N(R)), the answer is also positive.

Proposition 3.15. Let R be a ring with bounded index. If N(R) is an ideal of R and R/N(R)
is regular, then R is strongly π-regular.

Proof. It is proved in [16, Lemma 11] that if I is a right ideal of a ring R and n is a
positive integer such that an = 0 for all a ∈ I , then an−1Ran−1 = 0. Now since R/N(R) is
reduced and regular, it is strongly π-regular. By Lemma 3.2, it is sufficient to prove that
N(R)= P(R). Let m be the bounded index (the least positive integer m such that am = 0
for all a∈N(R)) of R. If m= 1, then P(R)=N(R)= 0. If m≥ 2, then N(R) �= 0. We claim
that P(R)=N(R) is also true. If not, then N(R)/P(R) is a nonzero nil ideal of R= R/P(R)
with the bounded index n≥ 2. Thus there exists a nonzero element ā∈N(R)/P(R) such
that ān = 0̄ and ān−1 �= 0, so Rān−1R �= 0̄. By [16, Lemma 11], ān−1Rān−1 = 0̄ and so
(Rān−1R)2 = 0̄, which is impossible since R/P(R) is a semiprime ring. So P(R) = N(R),
and the proof is completed. �

Theorem 3.16. Let R be a semiabelian ring. Then R is π-regular if and only if there exists a
nil ideal I of R such that R/I is π-regular.

Proof. (⇒) If R is π-regular, then I =N(R) is an ideal of R and R/I is regular by Theorem
3.11, and so we are done.

(⇐) If R/I is π-regular for some nil ideal I of R, then R/I is semiabelian π-regular by
Lemma 3.7. According to Theorem 3.11, N(R/I)= N(R)/I is an ideal of R/I . So N(R) is
a nil ideal of R. Since R/I is π-regular, R/N(R) is π-regular. And since R/N(R) is reduced
and π-regular, R/N(R) is regular by [4, Proposition 23.5]. Therefore R is π-regular by
Theorem 3.11. �
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A consequence of the above theorem is the following corollary.

Corollary 3.17. Let R be a semiabelian ring. Then R is π-regular if and only if R/P(R) is
π-regular.

Recall [17] that a ring R is said to have stable range one if whenever aR+ bR = R for
a,b ∈ R, there exists y ∈ R such that a + by ∈ U(R). In [18], a ring R is said to satisfy
the unit 1-stable condition if for any a,b,c ∈ R with ab + c = 1, there exists u ∈ U(R)
such that au+ c ∈ U(R). Combining [18, Corollary 4.2] with Corollary 3.5, we have the
following proposition which extends [5, Theorem 6].

Proposition 3.18. For a semiabelian exchange ring (in particular, a semiabelian π-regular
ring) R, the following statements are equivalent:

(1) every element of R is a sum of two units;
(2) R satisfies the unit 1-stable range condition;
(3) for any factor ring R1 of R, every element of R1 is a sum of two units;
(4) Z2 is not a homomorphic image of R.

4. Some remarks

In the final section, we give some remarks upon the previous results.

Remark 4.1. Every semiabelian exchange ring (in particular, a semiabelian π-regular ring)
R is a quasiduo ring.

Proof. According to Theorem 3.3, a semiabelian exchange ring R is a right pm-ring in the
sense that every prime ideal of R is contained in a unique maximal right ideal, equiva-
lently, every prime ideal is contained in a unique maximal ideal. By [19], if R is a right pm-
ring, then Max(R)=Maxr(R) and hence R is a right quasiduo ring. And by [3, Theorem
4.6], an exchange ring R is right quasiduo if and only if it is left quasiduo. So every semi-
abelian exchange ring R is a quasiduo ring. But the converse is not true in general. �

Remark 4.2. There exists a quasiduo π-regular ring Rwhich is not a semiabelian π-regular
ring.

Proof. Let R1 = R2 = UTM2(Z2) and R = R1
⊕

R2. Then R is clearly π-regular. Since
R/J(R) ∼= R1/J(R1)

⊕
R2/J(R2) = Z2

⊕
Z2
⊕
Z2
⊕
Z2 is a commutative ring, it is a

quasiduo ring and so is R. But R is not semiabelian. In fact, (E11,E22) is neither right
nor left semicentral idempotent in R where E11 and E22 are the 2× 2 matrix units over
UTM2(Z2).

In [20], a ring R is called unit π-regular if for every a∈ R, there exist u∈U(R) and a
positive integer n such that an = anuan. By [21, page 3584], a strongly π-regular ring is
unit π-regular, but the converse is not true in general. �

Remark 4.3. There exists a unit regular ring R which is not a strongly π-regular ring.

Proof. Let F be a field and R=∏∞
n=1Mn(F). Then R is unit regular since every Mn(F) is

unit regular. We prove that R is not strongly π-regular. Assume to the contrary, then a=
(a1,a2, . . . ,an, . . .) is strongly π-regular, where for any positive integer n, an = (ai j)n×n ∈
Mn(F) with ai j = 0 when i ≥ j, and ai j = 1 when i < j. Hence there exist b ∈ R and a
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positive integer m such that am = a2mb. It follows that amm+1 �= 0 and a2m
m+1 = 0, which is

impossible.
Ara proved in [17] that a strongly π-regular ring has stable range one. In light of

Remark 4.3, we naturally ask the following question with which we conclude this pa-
per. �

Question 4.4. Does a unit π-regular ring R have stable range one?
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