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and Ramakrishnan and Nayagam (2002). The notion of fuzzily compactness was intro-
duced and studied by Ramakrishnan and Nayagam (2002). In this paper, an equivalent
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fuzzy filters, which cannot be defined in crisp theory of filters, is introduced and studied.
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1. Introduction

The concept of fuzzy sets was introduced by Zadeh [1]. The theory of fuzzy filters was
studied in [2, 3]. The notion of fuzzy topological spaces is introduced in [4] and studied
in [5, 6]. The notion of quasicoincident was introduced in [7], and the notion of disjoint-
ness was studied in [8] for defining separation axioms. The notion of fuzzily compact sets
was introduced and studied in [9]. In this paper, an equivalent condition of fuzzy com-
pactness through fuzzy filter convergence is studied in Section 3. The notion of Hausdorff

interval-valued fuzzy filter was introduced and studied in [3]. In this paper, a new notion
of semi-Hausdorffness, which cannot be defined in the usual theory of filters, is intro-
duced and studied to some extend in Section 2.

Here we give a brief review of preliminaries.

Definition 1.1 [1]. A function μ : X→[0,1] is called a fuzzy subset of X .

Definition 1.2 [7]. A fuzzy set μ is said to be quasicoincident with γ at x ∈ X if μ(x) +
γ(x) > 1.

Definition 1.3 [8]. Two fuzzy sets μ and γ are said to be disjoint if μ≤ γc.
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Note 1.4. By Definition 1.2, two fuzzy sets μ and γ are said to be not quasicoincident if
μ(x) + γ(x) ≤ 1 for all x ∈ X , and hence disjointness in Definition 1.3 and not
quasicoincidence are equivalent.

Definition 1.5 [10]. A fuzzy topological space (X ,δ) is said to be a nearly fuzzy Hausdorff

space (n.f. T2 space) if for every pair of elements x �= y of X , there exist no quasicoincident
(disjoint) fuzzy open sets μ,ν∈ δ such that μ(x) > 1/2 and ν(y) > 1/2.

Definition 1.6 [9]. Let (X ,δ) be a fuzzy topological space. A collection δ0 of fuzzy open
sets is called a fuzzily open cover for A⊆ X if for every z ∈ A, there exists γ ∈ δ0 such that
γ(z)≥ 1/2.

Definition 1.7 [9]. A subset A⊆ X of a fuzzy topological space (X ,δ) is said to be fuzzily
compact if for every fuzzily open cover σ for A, there exists a finite subcollection δ0 of σ
such that for every z ∈A, there exists γ ∈ δ0 with γ(z)≥ 1/2.

Definition 1.8 [2]. A collection I of fuzzy sets is said to be a fuzzy filter if
(1) 0 �∈ I;
(2) if μ,ν∈ I, then μ∧ ν∈ I;
(3) if μ∈ I and ν≥ μ, then ν∈ I.

Definition 1.9 [3]. Let (X ,I) be a fuzzy filter. Let Y ⊆ X . Then (Y ,I | Y) is called the
subfilter if no element of I vanishes on Y .

Definition 1.10 [3]. Let (X ,I1) and (Y ,I2) be fuzzy filters.
(1) A function f : X→Y is said to be a fuzzy filter continuous if f −1(γ)∈ I1 for every

γ ∈ I2.
(2) A function f : X→Y is said to be a fuzzy filter open if f (μ)∈ I2 for every μ∈ I1.
(3) An injective function f : X→Y is said to a be fuzzy filter homeomorphism if f is

both fuzzy filter continuous and fuzzy filter open.

Definition 1.11 [3]. Let (Xα,Iα) be an indexed family of fuzzy filters. Let X =∏Xα. Now,
the product fuzzy filter I=∏Iα is the smallest fuzzy filter for which the projection maps
pα : X→Xα defined by pα((xα))= xα are fuzzy filter continuous.

Definition 1.12 [3]. Let f : (X1,I1)→X2 be a surjective map. Then I= {μ∈ IX2 | f −1(μ)∈
I1} is called a quotient fuzzy filter on X2.

Definition 1.13 [3]. A sequence {xn} of (X ,I) is said to converge fuzzy filterly to x if
for every μ ∈ I such that μ(x) > 1/2, there exist N such that μ(xn) > 1/2 for all n ≥ N ,
equivalently, μc(xn) < 1/2 for all n≥N .

Definition 1.14 [9]. Let (X ,δ) and (Y ,σ) be fuzzy topological spaces. A point x ∈ X is
said to be a fuzzily limit point of A if for every fuzzy open set μ∈ δ such that μ(x)≥ 1/2,
μ(z) ≥ 1/2 for some z ∈ A− {x}. A subset C of X is said to be a fuzzily closed set if it
contains all its fuzzily limit points.

Definition 1.15 [9]. A function f : X→Y is said to be nearly fuzzy continuous if f −1(A)
is fuzzily closed in (X ,δ) for every fuzzily closed set A in (Y ,σ).
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2. Semi-Hausdorff fuzzy filters

Remark 2.1. From [3, Theorem 3.2], in a Hausdorff fuzzy filter, any sequence of points
of X converges filterly uniquely if it converges.

But the converse need not be true, which is seen from the following example.

Example 2.2. Let X be an uncountable set and I= {μ∈ IX | μc has a countable support}.
Clearly, (X ,I) is a fuzzy filter. Let {xn} be any sequence of points of X . Let x ∈ X be an
arbitrary point. Consider μ∈ I such that

μ(z)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
(
z �= xn, x or z = y

)
,

1
4

(
z = xn

)
,

3
4

(z = x).

(2.1)

Clearly, μ(x) > 1/2. But μ(xn) < 1/2 for all n ∈ Z+ and hence xn does not converge to
x fuzzily. So no sequence converges and hence every sequence converges filterly uniquely
if it converges. But (X ,I) is not a Hausdorff fuzzy filter. Let x, y ∈ X such that x �= y.
Suppose there exists μ,γ ∈ I such that μ(x) > 1/2, γ(y) > 1/2 and μ(z) + γ(z) ≤ 1, for all
z ∈ X . Since μ,γ ∈ I, μc, and γc have countable supports, say, {xn}n∈Z+

and {ym}m∈Z+
, re-

spectively. Hence μ and γ have value 1 on X −{xn, ym} n,m∈ Z+. Since X is uncountable,
there exists z ∈ X −{xn, ym} n,m ∈ Z+ such that μ(z) = 1 and γ(z) = 1, a contradiction
to the fact that μ(z) + γ(z)≤ 1, for all z ∈ X .

Definition 2.3. A fuzzy filter (X ,I) is said to be a semi-Hausdorff fuzzy filter (s.H.F filter)
if every sequence of points converges fuzzy filterly to at most one point.

Definition 2.4 [3]. Let (X ,I) be a fuzzy filter. Then (X ,I) is said to be a nearly fuzzy
T1 filter (n.f. T1) if for every x, y ∈ X , x �= y, there exists μ,γ ∈ I such that μ(x) > 1/2,
γ(y) > 1/2 and μ(y)≤ 1/2, γ(x)≤ 1/2.

Theorem 2.5. Every s.H.F filter is an n.f. T1 filter.
The proof of Theorem 2.5 is immediate from definitions.

The converse need not be true, which is seen from the following example.

Example 2.6. Let X be an infinite set and I = {μ ∈ IX | μc has finite support}. Clearly,
(X ,I) is a fuzzy filter. To prove that (X ,I) is an n.f. T1, let x, y ∈ X , x �= y. Let μ,γ ∈ I

such that

μ(z) =
⎧
⎪⎨

⎪⎩

1
4

(z = x),

1 (z �= x),

γ(z) =
⎧
⎪⎨

⎪⎩

1
4

(z = y),

1 (z �= y).

(2.2)
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Then supports of μc and γc are {x} and {y}, respectively. Therefore, γ(x) > 1/2, γ(y)≤
1/2 and μ(y) > 1/2, μ(x)≤ 1/2. To prove that (X ,I) is not an s.H.F filter, consider xn of X
such that xi �= xj for i �= j. Now, xn converges fuzzy filterly to each point of X . Let x ∈ X
and μ∈ I such that μ(x) > 1/2. Since μc has finite support and xn is an infinite sequence of
distinct points, μ(xn)= 1 for all but finite number of points of xn. Therefore, xn converges
fuzzy filterly to x and hence to all points of X . Hence(X ,I) is not an s.H.F filter.

The proof of the following theorem is immediate.

Theorem 2.7. Let (X ,I) be an s.H.F filter. Let Y ⊆ X. Then (Y ,I | Y) is also an s.H.F filter
if no element of I vanishes on Y .

Theorem 2.8. An s.H.F filter is invariant under every bijective fuzzy filter open map.

Proof. Let f : (X ,I1)→(Y ,I2) be a fuzzy filter open map and (X ,I1) be an s.H.F filter.
Suppose (Y ,I2) is not an s.H.F filter, then there exists (yn)∈ Y such that (yn) converges
fuzzy filterly to y and y′. Since f is bijective, f −1(yn) is a sequence of points of X . Let
f −1(yn) = xn. Let f −1(y) = a and f −1(y′) = b. Since f is bijective, a �= b. To prove that
f −1(yn) = xn ∈ X converges to a and b, let μ ∈ I1 be a fuzzy filter open set such that
μ(a) > 1/2. Now, f (μ) ∈ I2 and f (μ)(y) = μ(a) > 1/2. Therefore, f (μ)(yn) > 1/2 for all
but finite number of n’s. Since f is 1-1, f is invariant and hence μ(xn)= f −1( f (μ))(xn)=
f (μ)(yn) > 1/2 for all but finite number of n’s. Hence xn→a fuzzy filterly. Similarly, xn→b
fuzzy filterly, which is a contradiction to the fact that (X ,I1) is an s.H.F filter. �

Lemma 2.9. Let f : (X ,I1)→(Y ,I2) be fuzzy filter continuous and let xn converge to x fuzzy
filterly. Then f (xn) converges to f (x) fuzzy filterly.

The proof is immediate.

Definition 2.10 [4]. Let B be a base for a fuzzy filter. Now, the collection IB = {μ | there
exists some γ ∈ B such that γ ≤ μ} is the fuzzy filter generated by B.

Definition 2.11 [4]. A collection S of fuzzy sets is said to be a subbase for a fuzzy filter I

in finite intersections of members of S that form a base for I.

The proof of the following lemma is immediate.

Lemma 2.12. A function is fuzzy filter continuous if and only if the inverse image of subbasic
fuzzy filter open set is fuzzy filter open.

Lemma 2.13. Let (Xα,Iα) be any indexed family of fuzzy filters. Then (Xα,Iα) is fuzzy filter
homeomorphic to a subspace of the product fuzzy filter (

∏
Xα,
∏

Iα) (each Xα is a nonempty
set).

Proof. Since Xα is nonempty, we can fix xβ ∈ Xβ for all β �= α. Define f : Xα→
∏
Xα such

that f (xα) = (xj), where xj = xα, j = α and xj = xβ, j = β �= α. Then f is well defined
and 1-1. To prove that f is fuzzy filter continuous, consider a subbasic fuzzy filter open
set p−1

α (μα) ∈ ∏Iα, where μα is fuzzy filter open in Xα, and let pα :
∏
Xα→Xα be the

projection map. Also, f −1(p−1
α (μα))(xα)= (p−1

α (μα)) f (xα)= μα(xα), which is filter open.
By Lemma 2.12 f is fuzzy filter continuous.

Consider a fuzzy filter open set μα in (Xα,Iα). Let S = {(xj) | xj = xα, j = α and xj =
xβ for all j = β �= α}.
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Now, by definition of f ,

f −1(x)=
⎧
⎨

⎩

xα x ∈ S,

0 x �∈ S.
(2.3)

Clearly, p1
α(μα)/S = f (μα). Hence f (μα) is fuzzy filter open in S as a subspace of

(
∏
Xα,
∏

Iα). Therefore, f −1 : S→(Xα,Iα) is fuzzy filter continuous and (Xα,Iα) is fuzzy
filter homeomorphic to a subspace of (

∏
Xα,
∏

Iα). �

Theorem 2.14. Let (Xα,Iα) be an indexed family of fuzzy filters. Then (
∏
Xα,
∏

Iα) is an
s.H.F filter if and only if each (Xα,Iα) is an s.H.F filter.

Proof. Let (Xα,Iα) be a family of s.H.F filters. Suppose (
∏
Xα,
∏

Iα) is not an s.H.F filter,
there exists a sequence {xn} of points of

∏
Xα, which converges fuzzy filterly to distinct

points x and y. Since x �= y, there exists an index β such that xβ �= yβ. Since the projection
map pβ :

∏
Xα→Xβ is fuzzy filter continuous in the product fuzzy filter, by Lemma 2.9,

pβ(xn) converges to xβ and yβ fuzzy filterly with xβ �= yα, a contradiction to s.H.F filterness
of (Xβ,Iβ). Hence (

∏
Xα,
∏

Iα) is an s.H.F filter.
Now, we prove the converse part.
Let (

∏
Xα,
∏

Iα) be an s.H.F filter. By Lemma 2.13, each Xα is fuzzy filter homeo-
morphic to a subspace of (

∏
Xα,
∏

Iα). By Theorems 2.7 and 2.8, (Xα,Iα) is an s.H.F
filter. �

Note 2.15. Let (Y ,I) be a fuzzy filter. For defining the pointwise convergence filter on
YX , if we take S(x,μ) = { f ∈ YX | f (x) ∈ μ} = { f ∈ YX | μ( f (x)) > 1/2} or S(p,μ) =
{ f ∈ YX | f (p)∈ μ}, where x ∈ X , μ is a fuzzy filter open set in Y (i.e., μ∈ I) and p is a
fuzzy point, analogous to the crisp theory, the collection S(x,μ), and S(p,μ) need not be
a subbasis for a filter as seen from the following example.

Example 2.16. Let X = {x1,x2,x3} and Y = {y1, y2, y3}. Let B = {μl,m,n
y1,y2,y3

,νl0,m0,n0
y1,y2,y3 ,

ηl0,m,n
y1,y2,y3

}, where m,n ≤ 1/2 < l and l + l0 ≤ 1, m+m0 ≤ 1, n+ n0 ≤ 1. Now, (Y ,I) is a fil-

ter generated by B. Let S(x,μ)= { f ∈ YX | f (x)∈ μ} = { f ∈ YX | μ( f (x)) > 1/2}. Now,
since S(x1,μ)∩ S(x1,ν) = φ, the collection S(x,μ) is not a subbasis for a filter. Similarly,
the collection S(p,μ)= { f ∈ YX | f (p)∈ μ} fails to be a subbasis for a filter.

Note 2.17. If S(x,μ) = { f ∈ YX | μ( f (x)) > 0}, this collection is a subbasis for the filter.
Consider some S(x1,μ) and S(x2,γ). Now, we prove that μ( f (x1)) > 0 and γ( f (x2)) > 0
for some function f ∈ YX . Since (μ∧ γ) �= 0, there exists y ∈ Y such that (μ∧ γ)(y) > 0.
Let f : X→Y be defined by f (x1)= f (x2)= y. Therefore, μ( f (x1))= μ(y) > 0. Similarly,
γ( f (x2)) > 0. Hence f ∈ S(x1,μ)∩ S(x2,γ).

Also, since μ1∧ μ2∧··· ∧ μn �= 0, min (μ1(y),μ2(y), . . . ,μn(y)) �= 0 for some y. Con-
sider the function f : X→Y such that f (xi)= y for all i. Now, clearly, μ1 f (x1)= μ1(y) > 0.
Similarly, μi f (xi) > 0 for all i. Therefore, f ∈ S(x1,μ1)∩ S(x2,μ2)∩··· ∩ S(xn,μn).

Note 2.18. Here, we do not arrive at some basic results.
So to generalize fuzzy pointwise convergence filter, we need the following definition.
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Definition 2.19. A fuzzy filter (X ,I) is said to be a strong fuzzy filter if μ,ν ∈ I, then
(μ∧ ν)(x) > 1/2 for some x ∈ X .

Note 2.20. Let (Y ,I) be a strong fuzzy filter. Then S(x,μ) = { f ∈ YX | f (x) ∈ μ} =
{ f ∈ YX | μ( f (x)) > 1/2}. If μ,γ ∈ I, μ∧ γ(y) > 1/2 for some y. Now, there exists a func-
tion f such that f (x1)= y and f (x2)= y. Therefore, μ( f (x1)) > 1/2 and γ( f (x2)) > 1/2.
Hence f ∈ S(x1,μ)∩ S(x2,γ) and {S(x,μ)} is a subbasis for a filter.

Definition 2.21. The filter generated by the subbasis {S(x,μ)}x∈X ,μ∈I is called the point

wise convergence filter on YX with respect to the strong fuzzy filter (Y ,I).

Remark 2.22. In the above pointwise convergence filter on YX with respect to a strong
fuzzy filter (Y ,I), fn→ f if and only if fn(x)→ f (x) fuzzy filterly for every x ∈ X .

Proof. Assume fn→ f in the above filter. To prove that fn(x)→ f (x) fuzzy filterly for every
x ∈ X , consider x ∈ X and a fuzzy filter open set μ ∈ I such that μ( f (x)) > 1/2. Hence
f ∈ S(x,μ). Since fn→ f and f ∈ S(x,μ), there exists N such that fn ∈ S(x,μ) for all n≥N .
Hence μ( fn(x)) > 1/2 for all n≥N . Hence fn(x)→ f (x) fuzzy filterly for every x ∈ X .

Conversely, suppose fn(x)→ f (x) fuzzy filterly for every x ∈ X . To prove that fn→ f in
the strong filter, let S(x,μ) be a subbasic open set containing f . Then μ( f (x)) > 1/2. Since
fn(x)→ f (x) fuzzy filterly, μ( fn(x)) > 1/2 for all n≥N for some N . Hence fn ∈ S(x,μ) for
all n≥N . Hence fn→ f . �

Definition 2.23. A filter (X ,τ) is said to be semi-Hausdorff filter (semi-T2 filter) if and
only if every sequence in X has at most one limit.

Corollary 2.24. The pointwise convergence filter on YX is a semi-T2 filter if (Y ,I) is an
s.H.F filter.

Proof. Let (Y ,I) be an s.H.F filter. Suppose the above filter on YX is not a semi-T2 filter,
then there exists fn ∈ YX such that fn→ f and fn→g with f �= g. By the above remark

fn(x)
f→ f (x) for all x ∈ X , and fn(x)

f→ g(x) for all x ∈ X . Since (Y ,I) is an s.H.F filter,
f (x)= g(x) for all x ∈ X , which contradicts the fact that f �= g. Hence the above filter on
YX is a semi-T2 filter. �

Theorem 2.25. Let (Y ,I) be a strong fuzzy filter such that YX is semi-T2 filter for every
indexing set X in the pointwise convergence filter with respect to (Y ,I). Then (Y ,I) is an
s.H.F filter.

Proof. Suppose that (Y ,I) is not an s.H.F filter, then there exists yn ∈ Y such that yn
f→ x,

and yn
f→ y such that x �= y. Define fn, fx, fy : X→Y by fn(z)= yn, fx(z)= x and fy(z)= y,

for all z ∈ X . Then clearly, fn, fx, and fy are elements of YX . Now, we claim that fn→ fx
and fn→ fy . Consider a subbasic filter open set S(t,μ) containing fx, where t ∈ X and μ∈
I. Hence μ( fx(t)) > 1/2. So μ(x) > 1/2. Since yn

f→ x and μ(x) > 1/2, we have μ(yn) > 1/2
for every n ≥ N for some N . Therefore, μ( fn(t)) = μ(yn) > 1/2 for every n ≥ N . Hence
fn ∈ S(t,μ) for every n ≥ N . So fn→ fx. Similarly, fn→ fy . So we get a contradiction to
semi-T2 ness of YX . Hence (Y ,I) is an s.H.F filter. �
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Definition 2.26. Let (X ,I) be a fuzzy filter. A subset S of X is sequentially fuzzy filterly
compact if every sequence in S has subsequence converging fuzzy filterly to a point in S.

Definition 2.27. Let (X ,I) be a fuzzy filter. A subset S of X is sequentially fuzzy filterly
closed if no sequence in S converges fuzzy filterly to a point in the complement of S (Sc).

Theorem 2.28. In an s.H.F filter (X ,I), every set, which is sequentially fuzzy filterly com-
pact, is sequentially fuzzy filterly closed.

Proof. Let S be a sequentially fuzzy filterly compact subset of (X ,I). Suppose S is not
sequentially fuzzy filterly closed, then there is a sequence xn in S such that xn→x fuzzy
filterly and x �∈ S. Since S is sequentially fuzzy filterly compact, there is a subsequence
xnk converging fuzzy filterly to a point y ∈ S. But as a subsequence of a fuzzy filterly

convergent sequence converging to x,xnk→x fuzzy filterly. So we have xnk
f→ x and xnk

f→ y
with x �= y, a contradiction to the fact that S is an s.H.F filter, being a subspace of an s.H.F
filter. Hence S is a sequentially fuzzy filterly closed. �

Theorem 2.29. A fuzzy filter (X ,I) is an s.H.F filter if and only if the diagonal set Δ =
{(x,x) | x ∈ X} is sequentially fuzzy filterly closed.

Proof. If X is an s.H.F filter, and suppose that there is a sequence (xn,xn)∈ Δ converging

fuzzy filterly to (x, y) �∈ Δ, then xn
f→ x and xn

f→ y. Take μ∈ I such that μ(x) > 1/2. Let pi :
X ×X→X , i= 1,2 be the projection maps on the ith coordinate. We have p−1

1 (μ)(x, y)=
μ(p1(x, y)) = μ(x) > 1/2. Since p1 is filter continuous in the product filter, p−1

1 (μ) is a
fuzzy filter open set such that p−1

1 (μ)(x, y)= μ(x) > 1/2 and hence p−1
1 (μ)(xn,xn) > 1/2 for

all but finite number of n’s. Therefore, we get μ(xn)= μ(p1(xn,xn))= p−1
1 (μ)(xn,xn) > 1/2

for all but finite number of n’s. So xn→x fuzzy filterly. Similarly, xn→y fuzzy filterly. Hence
we have xn→x and xn→y with x �= y which contradicts s.H.F filterness of X . Therefore, Δ
is sequentially closed.

Conversely, let Δ be a sequentially fuzzy filterly closed, and suppose X is not an s.H.F
filter, we have a sequence xn of X such that xn→x and xn→y fuzzy filterly with x �= y. Now,
we claim that (xn,xn)→(x, y) fuzzy filterly. Let a filter open set μ in the product fuzzy filter
such that μ(x, y) > 1/2. Hence we have a filter open set μ1×μ2 such that μ1×μ2(x, y) > 1/2
and μ1 × μ2 ⊆ μ. Since xn→x and xn→y fuzzy filterly and μ1(x) > 1/2, we get μ1(xn) >
1/2 for all but finite number of n’s. Similarly, μ2(xn) > 1/2 for all but finite number of
n’s. Hence μ(xn,xn) ≥ μ1 × μ2(xn,xn) > 1/2 for all but finite number of n’s, and hence
(xn,xn)→(x, y) fuzzy filterly with x �= y which is a contradiction to the fact that Δ is
sequentially fuzzy filterly closed. �

Definition 2.30. A function f : (X ,IX)→(Y ,IY ) is said to be a sequentially fuzzy filterly

continuous function if and only if xn
f→ x⇒ f (xn)

f→ f (x).

Theorem 2.31. Let f : (X ,IX)→(Y ,IY ) and g : (X ,IX)→(Y ,IY ) be sequentially fuzzy fil-
terly continuous functions. If Y is an s.H.F filter, then the set A= {x ∈ X | f (x)= g(x)} is
sequentially fuzzy filterly closed. Conversely, if A is sequentially fuzzy filterly closed for all X
and for all sequentially fuzzy filterly continuous functions f , g, then Y is an s.H.F filter.
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Proof. Let Y be an s.H.F filter. Suppose A is not sequentially fuzzy filterly closed, then

there exists xn ∈ A such that xn
f→ x with x �∈ A. Hence f (xn) = g(xn) and f (x) �=g(x).

Since xn
f→ x and f , g are sequentially fuzzy filterly continuous functions, we have f (xn)

f→
f (x) and g(xn)

f→ g(x). Since f (xn) = g(xn), f (xn)
f→ f (x) and f (xn)

f→ g(x) with
f (x) �= g(x), we have a contradiction to the fact that Y is an s.H.F filter.

Now, the converse follows from the previous theorem by taking X = Y ×Y , and f , g
are projections. �

Remark 2.32. The authors acknowledged the referees for pointing out that if F is a fuzzy
filter, then F∗ = F ∪{φ} is a fuzzy topology, and hence results in [3] and in this paper can
be proved easily by this remark and more general theorems for fuzzy topological spaces.

3. Fuzzy filter convergence

In this section, new notions of fuzzy filter convergence and fuzzily cluster points are in-
troduced and some fuzzy topological properties are studied through those notions.

Definition 3.1. Let (X ,δ) be a fuzzy topological space and let (X ,I) be a fuzzy filter. A
point x ∈ X is said to be a fuzzily cluster point of (X ,I) ((X ,I) accumulates x) if for
every μ∈ δ with μ(x)≥ 1/2, there exists z ∈ X such that μ(z) + ν(z) > 1, for all ν∈ I.

Definition 3.2. Let (X ,δ) be a fuzzy topological space. A fuzzy filter (X ,I) is said to con-
verge to a point x ∈ X if for every μ ∈ δ with μ(x) ≥ 1/2, there exists ν ∈ I such that
ν≤ μ.

The proof of the following note is immediate from definitions.

Note 3.3. If a strong fuzzy filter (X ,I) converges to a point x ∈ X , then I accumulates x.

Theorem 3.4. Let (X ,δ) be a fuzzy topological space and let (X ,I) be a fuzzy filter. A point
x ∈ X is a fuzzily cluster point of (X ,I) if and only if μ(x) > 1/2, for all μ∈ I.

Proof. Let x ∈ X be a fuzzily cluster point. Suppose there exists μ∈ I such that μ(x)≤ 1/2,
μc(x)≥ 1/2, and μc ∈ δ. Clearly, μc(z) +μ(z)≤ 1, for all z ∈ X , and hence μc(z) +μ(z)≤ 1,
for all z ∈ X . So there exists μ ∈ I, μc ∈ δ such that μc(z) + μ(z) ≤ 1, for all z ∈ X . This
contradicts the fact that x ∈ X is a fuzzily cluster point of (X ,I). Now, we prove the
converse part. Suppose μ(x) > 1/2, for all μ∈ I, we have to prove that x is a fuzzily cluster
point of (X ,I). By assuming the contrary, we have μ∈ I and ν∈ δ such that ν(x)≥ 1/2
and μ(z) + ν(z) ≤ 1, for all z ∈ X . So μ(z) ≤ νc(z), for all z ∈ X and hence νc is a fuzzy
closed set containing μ. Hence μ(z) ≤ νc(z) = 1− ν(z), for all z ∈ X . So we have μ(x) ≤
1/2, a contradiction to our hypothesis. �

Theorem 3.5. A fuzzy topological space (X ,δ) is n.f. T2 ⇒ every convergent strong fuzzy
filter in X converges uniquely.

Proof. Let (X ,δ) be n.f. T2, and let I be any strong fuzzy filter on X . Suppose I converges
to two distinct points x and y, by n.f. T2 ness of (X ,δ), there exist μ,ν∈ δ with μ(x) > 1/2,
ν(y) > 1/2, and μ(z) + ν(z) ≤ 1, for all z ∈ X . Since I converges to x, μ ∈ I. Similarly,
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ν∈ I. So by strong fuzzy filterness of I, μ∧ ν(z) > 1/2 for some z ∈ X . So μ(z) + ν(z) > 1,
a contradiction. �

Theorem 3.6. Let (X ,δ) and (Y ,σ) be fuzzy topological spaces. Let f : X→Y be any map
as follows.

(a) If f is fuzzy continuous, then I→x implies f (I)→ f (x).
(b) If I→x implies f (I)→ f (x) for every fuzzy filter I on X , then f is nearly fuzzy con-

tinuous.

Proof. (a) Assume that f is fuzzy continuous and I→x. To prove that f (I)→ f (x), let
μ ∈ σ such that μ( f (x)) ≥ 1/2. Since f is fuzzy continuous, f −1(μ) ∈ δ, and clearly,
f −1(μ)(x) = μ( f (x)) ≥ 1/2. Since I→x, f −1(μ) ∈ I. Hence f ( f −1(μ)) ∈ f (I). Since
f ( f −1(μ))≤ μ, μ∈ f (I). Hence f (I)→ f (x).

b) If I→x implies f (I)→ f (x) for every fuzzy filter I on X , we have to prove that
f : X→Y is nearly fuzzy continuous. Let A be a fuzzily closed set in Y . Now, we prove that
f −1(A) is fuzzily closed in X . If f −1(A)= X , then it is fuzzily closed. Suppose f −1(A) �=X ,
let x �∈ f −1(A). Clearly, f (x) �∈ A. Since A is fuzzily closed, there exists μ ∈ σ such that
μ( f (x))≥ 1/2 and μ−1[1/2,1]∩A= φ. Now, let I be a fuzzy filter generated by B= {ν∈
δ | ν(x) ≥ 1/2}. Clearly, I→x. So by hypothesis, f (I)→ f (x). Hence μ ∈ f (I). Clearly,
f −1(μ) ∈ I and f −1(μ)(x) ≥ 1/2. So we have ν ∈ B ≤ f −1(μ). Hence we have ν ∈ δ and
ν(x)≥ 1/2. Now, we claim that ν−1[1/2,1]∧ f −1(A)= φ. If not, z ∈ ν−1[1/2,1]∩ f −1(A),
f (z) ∈ A, and ν(z) ≥ 1/2. Hence we have f −1(μ)(z) ≥ 1/2 and f (z) ∈ A. So we have
f (z)∈ μ−1[1/2,1]∧A, which is a contradiction. So x is not a fuzzily limit point of f −1(A)
and hence f −1(A) is fuzzily closed. �

Theorem 3.7. A fuzzy topological space (X ,δ) is fuzzily compact if and only if each strong
fuzzy filter in X has at least one fuzzily cluster point.

Proof. By [7, Theorem 8], it is enough to prove that every collection of fuzzily closed sets
with finite intersection property has nonempty intersection if and only if every strong
fuzzy filter in X has at least one fuzzily cluster point.

“If” part. Assume the hypothesis, let I be a strong fuzzy filter inX . It is enough to prove
that I has at least one fuzzily cluster point. Now, for all μ∈ I, we have that (μ)−1(1/2,1] is
fuzzily closed. Since I is a strong fuzzy filter, we have μ∧ ν(x) > 1/2 for every pair of μ,ν∈
I for some x ∈ X . So Ω = {(μ)−1(1/2,1] | μ ∈ I} is clearly a collection of fuzzily closed
sets with finite intersection property, and hence by hypothesis, we have

⋂
μ∈I(μ)−1(1/2,1]

�= φ. Therefore, we have z ∈ X such that μ(z) > 1/2, for all μ∈ I. By Theorem 3.4, z is a
fuzzily cluster point of I.

“Only if” part. Now, we assume the hypothesis. Let Ω be a collection of fuzzily closed
sets that satisfies finite intersection property. Let A ∈ Ω and if z �∈ A, by definition of
fuzzily closed set, then z is not a fuzzily limit point of A, and hence there exists ν ∈ δ
such that ν(z) ≥ 1/2 and ν(y) < 1/2, for all y ∈ A. So we have a fuzzy closed set νc with
νc(z) ≤ 1/2 and νc(y) > 1/2, for all y ∈ A. So for every A ∈Ω and for each z �∈ A, there
exists a fuzzy closed set γz,A with γz,A(y) > 1/2, for all y ∈A and γz,A(z)≤ 1/2.

Now, consider S = {γz,A | A ∈Ω and z �∈ A}. By finite intersection property of Ω, for
any finite subcollection S0 of S, we have ∧μ∈S0 (t) > 1/2 for some t ∈ X . So the fuzzy filter
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I generated by S is clearly a strong fuzzy filter. Now, by hypothesis, this strong fuzzy filter
I has at least one fuzzily cluster point. Let it be x.

By Theorem 3.4, μ(x) > 1/2, for all μ ∈ I. Hence γz,A(x) > 1/2, for all γz,A ∈ S. Since
γz,A is fuzzily closed, γz,A(x) > 1/2, for all z �∈ A and A∈Ω. Clearly, x ∈ A for all A∈Ω. If
x �∈ B, for some B ∈Ω, we have γx,B ∈ S such that γx,B(y) > 1/2, for all y ∈ B and γx,B(x)≤
1/2, which is a contradiction. Hence

⋂
A∈ΩA �= Φ. Hence the theorem is proved. �
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