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Let G = (V, E) be a simple graph. A set S ⊆ V is a dominating set of G, if every vertex in V \S is
adjacent to at least one vertex in S. Let Pi

n be the family of all dominating sets of a path Pn with
cardinality i, and let d(Pn, j) = |Pj

n|. In this paper, we construct Pi
n, and obtain a recursive formula

for d(Pn, i). Using this recursive formula, we consider the polynomialD(Pn, x) =
∑n

i=�n/3�d(Pn, i)xi,
which we call domination polynomial of paths and obtain some properties of this polynomial.
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1. Introduction

Let G = (V, E) be a simple graph of order |V | = n. For any vertex v ∈ V , the open
neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is
the set N[v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood of S is N(S) = ∪v∈SN(v)
and the closed neighborhood of S is N[S] = N(S) ∪ S. A set S ⊆ V is a dominating set
of G, if N[S] = V , or equivalently, every vertex in V \S is adjacent to at least one vertex
in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. A
dominating set with cardinality γ(G) is called a γ-set, and the family of γ-sets is denoted by
Γ(G). For a detailed treatment of this parameter, the reader is referred to [1]. It is well known
and generally accepted that the problem of determining the dominating sets of an arbitrary
graph is a difficult one (see [2]). A path is a connected graph in which two vertices have
degree 1 and the remaining vertices have degree 2. Let Pn be the path with n vertices. Let
Pi

n be the family of dominating sets of a path Pn with cardinality i and let d(Pn, i) = |Pi
n|.

We call the polynomial D(Pn, x) =
∑n

i=�n/3�d(Pn, i)xi, the domination polynomial of the path
Pn. For a detailed treatment of the domination polynomial of a graph, the reader is referred
to [3].
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In the next section we construct the families of the dominating sets of paths by
a recursive method. In Section 3, we use the results obtained in Section 2 to study the
domination polynomial of paths.

As usual we use �x�, for the smallest integer greater than or equal to x. In this article
we denote the set {1, 2, . . . , n} simply by [n].

2. Dominating sets of paths

Let Pi
n be the family of dominating sets of Pn with cardinality i. We will investigate

dominating sets of path. We need the following lemmas to prove our main results in this
article.

Lemma 2.1 (see [4, page 371]). γ(Pn) = �n/3�.

By Lemma 2.1 and the definition of domination number, one has the following lemma.

Lemma 2.2. Pi
j = ∅, if and only if i > j or i < �j/3�.

A simple path is a path in which all its internal vertices have degree two. The following
lemma follows from observation.

Lemma 2.3. If a graph G contains a simple path of length 3k − 1, then every dominating set of G
must contain at least k vertices of the path.

To find a dominating set of Pn with cardinality i, we do not need to consider
dominating sets of Pn−4 with cardinality i− 1. We show this in Lemma 2.4. Therefore, we only
need to consider Pi−1

n−1, Pi−1
n−2, and Pi−1

n−3. The families of these dominating sets can be empty
or otherwise. Thus, we have eight combinations of whether these three families are empty
or not. Two of these combinations are not possible (see Lemma 2.5(i) and (ii)). Also, the
combination that Pi−1

n−1 = Pi−1
n−2 = Pi−1

n−3 = ∅ does not need to be considered because it implies
Pi

n = ∅ (see Lemma 2.5(iii)). Thus we only need to consider five combinations or cases. We
consider these cases in Theorem 2.7.

Lemma 2.4. If Y ∈ Pi−1
n−4, and there exists x ∈ [n] such that Y ∪ {x} ∈ Pi

n, then Y ∈ Pi−1
n−3.

Proof. Suppose that Y /∈Pi−1
n−3. Since Y ∈ Pi−1

n−4, Y contains at least one vertex labeled n − 5 or
n − 4. If n − 4 ∈ Y , then Y ∈ Pi−1

n−3, a contradiction. Hence, n − 5 ∈ Y , but then in this case,
Y ∪ {x}/∈Pi

n, for any x ∈ [n], also a contradiction.

Lemma 2.5. (i) If Pi−1
n−1 = Pi−1

n−3 = ∅, then Pi−1
n−2 = ∅.

(ii) If Pi−1
n−1 /=∅ and Pi−1

n−3 /=∅, then Pi−1
n−2 /=∅.

(iii) If Pi−1
n−1 = Pi−1

n−2 = Pi−1
n−3 = ∅, then Pi

n = ∅.

Proof. (i) Since Pi−1
n−1 = Pi−1

n−3 = ∅, by Lemma 2.2, i − 1 > n − 1 or i − 1 < �(n − 3)/3�. In either
case we have Pi−1

n−2 = ∅.
(ii) Suppose that Pi−1

n−2 = ∅, so by Lemma 2.2, we have i−1 > n−2 or i−1 < �(n−2)/3�.
If i−1 > n−2, then i−1 > n−3, and hence, Pi−1

n−3 = ∅, a contradiction. Hence i−1 < �(n−2)/3�.
So i − 1 < �(n − 1)/3�, and hence, Pi−1

n−1 = ∅, also a contradiction.
(iii) Suppose that Pi

n /=∅. Let Y ∈ Pi
n. Then at least one vertex labeled n or n − 1 is in

Y . If n ∈ Y , then by Lemma 2.3, at least one vertex labeled n − 1, n − 2 or n − 3 is in Y . If
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n − 1 ∈ Y or n − 2 ∈ Y , then Y − {n} ∈ Pi−1
n−1, a contradiction. If n − 3 ∈ Y , then Y − {n} ∈ Pi−1

n−2,
a contradiction. Now suppose that n − 1 ∈ Y . Then by Lemma 2.3, at least one vertex labeled
n − 2, n − 3 or n − 4 is in Y . If n − 2 ∈ Y or n − 3 ∈ Y , then Y − {n − 1} ∈ Pi−1

n−2, a contradiction. If
n − 4 ∈ Y , then Y − {n − 1} ∈ Pi−1

n−3, a contradiction. Therefore Pi
n = ∅.

Lemma 2.6. If Pi
n /=∅, then

(i) Pi−1
n−1 = Pi−1

n−2 = ∅, and Pi−1
n−3 /=∅ if and only if n = 3k and i = k for some k ∈ N;

(ii) Pi−1
n−2 = Pi−1

n−3 = ∅ and Pi−1
n−1 /=∅ if and only if i = n;

(iii) Pi−1
n−1 = ∅, Pi−1

n−2 /=∅ and Pi−1
n−3 /=∅ if and only if n = 3k + 2 and i = �(3k + 2)/3� for

some k ∈ N;

(iv) Pi−1
n−1 /=∅, Pi−1

n−2 /=∅ and Pi−1
n−3 = ∅ if and only if i = n − 1;

(v) Pi−1
n−1 /=∅, Pi−1

n−2 /=∅ and Pi−1
n−3 /=∅ if and only if �(n − 1)/3� + 1 ≤ i ≤ n − 2.

Proof. (i) (⇒) Since Pi−1
n−1 = Pi−1

n−2 = ∅, by Lemma 2.2, i − 1 > n − 1 or i − 1 < �(n − 2)/3�. If
i− 1 > n− 1, then i > n, and by Lemma 2.2, Pi

n = ∅, a contradiction. So i < �(n− 2)/3� + 1, and
since Pi

n /=∅, together �n/3� ≤ i < �(n − 2)/3� + 1, which give us n = 3k and i = k for some
k ∈ N.

(⇐) If n = 3k and i = k for some k ∈ N, then by Lemma 2.2, Pi−1
n−1 = Pi−1

n−2 = ∅, and
Pi−1

n−3 /=∅.

(ii) (⇒) Since Pi−1
n−2 = Pi−1

n−3 = ∅, by Lemma 2.2, i − 1 > n − 2 or i − 1 < �(n − 3)/3�. If
i − 1 < �(n − 3)/3�, then i − 1 < �(n − 1)/3�, and hence Pi−1

n−1 = ∅, a contradiction. So
i > n − 1. Also since Pi−1

n−1 /=∅, i − 1 ≤ n − 1. Therefore i = n.

(⇐) If i = n, then by Lemma 2.2, Pi−1
n−2 = Pi−1

n−3 = ∅ and Pi−1
n−1 /=∅.

(iii) (⇒) SincePi−1
n−1 = ∅, by Lemma 2.2, i−1 > n−1 or i−1 < �(n−1)/3�. If i−1 > n−1, then

i−1 > n−2 and by Lemma 2.2,Pi−1
n−2 = Pi−1

n−3 = ∅, a contradiction. So i < �(n−1)/3�+1,
but i − 1 ≥ �(n − 2)/3� because Pi−1

n−2 /=∅. Hence, �(n − 2)/3� + 1 ≤ i < �(n − 1)/3� + 1.
Therefore n = 3k + 2 and i = k + 1 = �(3k + 2)/3� for some k ∈ N.

(⇐) If n = 3k + 2 and i = �(3k + 2)/3� for some k ∈ N, then by Lemma 2.2, Pi−1
n−1 =

Pk
3k+1 = ∅, Pi−1

n−2 /=∅, and Pi−1
n−3 /=∅.

(iv) (⇒) Since Pi−1
n−3 = ∅, by Lemma 2.2, i− 1 > n− 3 or i− 1 < �(n− 3)/3�. Since Pi−1

n−2 /=∅,
by Lemma 2.2, �(n−2)/3�+1 ≤ i ≤ n−1. Therefore i−1 < �(n−3)/3� is not possible.
Hence i − 1 > n − 3. Thus i = n − 1 or n, but i /=n because Pi−1

n−3 = ∅. So i = n − 1.

(⇐) If i = n − 1, then by Lemma 2.2, Pi−1
n−1 /=∅, Pi−1

n−2 /=∅, and Pi−1
n−3 = ∅.

(v) (⇒) Since Pi−1
n−1 /=∅, Pi−1

n−2 /=∅, and Pi−1
n−3 /=∅, then by applying Lemma 2.2, �(n −

1)/3� ≤ i − 1 ≤ n − 1, �(n − 2)/3� ≤ i − 1 ≤ n − 2, and �(n − 3)/3� ≤ i − 1 ≤ n − 3. So
�(n − 1)/3� ≤ i − 1 ≤ n − 3 and hence �(n − 1)/3� + 1 ≤ i ≤ n − 2.

(⇐) If �(n − 1)/3� + 1 ≤ i ≤ n − 2,then the result follows from Lemma 2.2.

By Lemma 2.4, for the construction of Pi
n, it’s sufficient to consider Pi−1

n−1, Pi−1
n−2, and

Pi−1
n−3. By Lemma 2.5, we need only to consider the following five cases.
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Theorem 2.7. For every n ≥ 4 and i ≥ �n/3�.

(i) If Pi−1
n−1 = Pi−1

n−2 = ∅ and Pi−1
n−3 /=∅, then Pi

n = {{2, 5, . . . , n − 4, n − 1}}.
(ii) If Pi−1

n−2 = Pi−1
n−3 = ∅, and Pi−1

n−1 /=∅, then Pi
n = {[n]}.

(iii) If Pi−1
n−1 = ∅, Pi−1

n−2 /=∅ and Pi−1
n−3 /=∅, then

Pi
n =

{{2, 5, . . . , n − 3, n}} ∪ {
X ∪ {n − 1} | X ∈ Pi−1

n−3
}
. (2.1)

(iv) If Pi−1
n−3 = ∅, Pi−1

n−2 /=∅ and Pi−1
n−1 /=∅, then Pi

n = {[n] − {x} | x ∈ [n]}.
(v) If Pi−1

n−1 /=∅, Pi−1
n−2 /=∅ and Pi−1

n−3 /=∅, then

Pi
n =

{{n} ∪X1, {n − 1} ∪X2 | X1 ∈ Pi−1
n−1, X2 ∈ Pi−1

n−2
}

∪ {{n − 1} ∪X | X ∈ Pi−1
n−3 \ Pi−1

n−2
}

∪ {{n} ∪X | X ∈ Pi−1
n−3 ∩ Pi−1

n−2
}
.

(2.2)

Proof. (i) Pi−1
n−1 = Pi−1

n−2 = ∅, and Pi−1
n−3 /=∅. By Lemma 2.6(i), n = 3k and i = k for some k ∈ N.

Therefore Pi
n = Pn/3

n = {{2, 5, . . . , n − 4, n − 1}}.

(ii) Pi−1
n−2 = Pi−1

n−3 = ∅, andPi−1
n−1 /=∅. By Lemma 2.6(ii), we have i = n. SoPi

n = Pn
n = {[n]}.

(iii) Pi−1
n−1 = ∅, Pi−1

n−2 /=∅ andPi−1
n−3 /=∅. By Lemma 2.6(iii), n = 3k+2 and i = �(3k+2)/3� =

k + 1 for some k ∈ N. Since X = {2, 5, . . . , 3k − 1} ∈ Pk
3k, X ∪ {3k + 2} ∈ Pk+1

3k+2. Also, if
X ∈ Pk

3k−1, then X ∪ {3k + 1} ∈ Pk+1
3k+2. Therefore we have

{{2, 5, . . . , 3k − 1, 3k + 2}} ∪ {
X ∪ {3k + 1} | X ∈ Pk

3k−1
} ⊆ Pk+1

3k+2. (2.3)

Now let Y ∈ Pk+1
3k+2. Then 3k+2 or 3k+1 is in Y . If 3k+2 ∈ Y , then by Lemma 3, at least

one vertex labeled 3k+1, 3k or 3k−1 is in Y . If 3k+1 or 3k is in Y , then Y −{3k+2} ∈
Pk

3k+1, a contradiction because Pk
3k+1 = ∅. Hence, 3k − 1 ∈ Y, 3k /∈Y , and 3k + 1/∈Y .

Therefore Y = X∪{3k+2} for someX ∈ Pk
3k, that is Y = {2, 5, . . . , 3k−1, 3k+2}. Now

suppose that 3k + 1 ∈ Y and 3k + 2/∈Y . By Lemma 2.3, at least one vertex labeled
3k, 3k − 1, or 3k − 2 is in Y. If 3k ∈ Y , then Y − {3k + 1} ∈ Pk

3k = {{2, 5, . . . , 3k − 1}}, a
contradiction because 3k /∈X for all X ∈ Pk

3k. Therefore 3k − 1 or 3k − 2 is in Y , but
3k /∈Y . Thus Y = X ∪ {3k + 1} for some X ∈ Pk

3k−1. So

Pk+1
3k+2 ⊆ {{2, 5, . . . , 3k − 1, 3k + 2}} ∪ {{3k + 1} ∪X | X ∈ Pk

3k−1
}
. (2.4)

(iv) Pi−1
n−3 = ∅,Pi−1

n−1 /=∅, andPi−1
n−2 /=∅. By Lemma 2.6(iv), i = n−1. ThereforePi

n = Pn−1
n =

{[n] − {x} | x ∈ [n]}.
(v) Pi−1

n−1 /=∅, Pi−1
n−2 /=∅, and Pi−1

n−3 /=∅. Let X1 ∈ Pi−1
n−1, so at least one vertex labeled n − 1

or n − 2 is in X1. If n − 1 or n − 2 ∈ X1, then X1 ∪ {n} ∈ Pi
n.
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Let X2 ∈ Pi−1
n−2, then n − 2 or n − 3 is in X2. If n − 2 or n − 3 ∈ X2, then X2 ∪ {n − 1} ∈ Pi

n.
Now let X3 ∈ Pi−1

n−3, then n − 3 or n − 4 is in X3. If n − 3 ∈ X3, then X3 ∪ {x} ∈ Pi
n, for

x ∈ {n, n − 1}. If n − 4 ∈ X3, then X3 ∪ {n − 1} ∈ Pi
n. Therefore we have

{{n} ∪X1, {n − 1} ∪X2 | X1 ∈ Pi−1
n−1, X2 ∈ Pi−1

n−2
}

∪ {{n − 1} ∪X | X ∈ Pi−1
n−3 \ Pi−1

n−2
}

∪ {{n} ∪X | X ∈ Pi−1
n−3 ∩ Pi−1

n−2
} ⊆ Pi

n.

(2.5)

Now, let Y ∈ Pi
n, then n ∈ Y or n − 1 ∈ Y . If n ∈ Y , then by Lemma 2.3, at least one vertex

labeled n−1, n−2, or n−3 is in Y . If n−1 ∈ Y or n−2 ∈ Y , then Y = X∪{n} for someX ∈ Pi−1
n−1.

If n− 3 ∈ Y, n− 2/∈Y , and n− 1/∈Y , then Y = X ∪ {n} for some X ∈ Pn−2
i−1 ∩Pn−3

i−1 . Now suppose
that n − 1 ∈ Y and n/∈Y , then by Lemma 3, at least one vertex labeled n − 2, n − 3 or n − 4 is in
Y . If n − 2 ∈ Y or n − 3 ∈ Y , then Y = X ∪ {n − 1} for some X ∈ Pi−1

n−2. If n − 4 ∈ Y, n − 3/∈Y and
n − 2/∈Y , then Y = X ∪ {n − 1} for some X ∈ Pi−1

n−3 \ Pi−1
n−2. So

Pi
n ⊆ {{n} ∪X1, {n − 1} ∪X2 | X1 ∈ Pi−1

n−1, X2 ∈ Pi−1
n−2

}

∪ {{n − 1} ∪X | X ∈ Pi−1
n−3 \ Pi−1

n−2
}

∪ {{n} ∪X | X ∈ Pi−1
n−3 ∩ Pi−1

n−2
}
.

(2.6)

Example 2.8. Consider P6 with V (P6) = [6]. We use Theorem 2.7 to construct Pi
6 for 2 ≤ i ≤ 6.

Since P1
5 = P1

4 = ∅ and P1
3 = {{2}}, by Theorem 2.7, P2

6 = {{2, 5}}.
Since P5

5 = {[5]},P5
4 = ∅, and P5

3 = ∅, we get P6
6 = {[6]}.

Since P4
5 = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 4, 5}}, P4

4 = {[4]}, and
P4

3 = ∅, then by Theorem 2.7,

P5
6 =

{
[6] − {x} | x ∈ [6]

}

=
{{1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 3, 4, 5}}, (2.7)

and, for the construction of P3
6, by Theorem 2.7,

P3
6 =

{
X1 ∪ {6}, X2 ∪ {5} | X1 ∈ P2

5 , X2 ∈ P2
4

} ∪ {{1, 2} ∪ {5}, {1, 3} ∪ {6}, {2, 3} ∪ {6}}

=
{{1, 3, 5}, {1, 3, 6}, {2, 3, 6}, {2, 3, 5}, {1, 4, 6}, {1, 4, 5}, {2, 5, 6}, {2, 4, 6}, {2, 4, 5}, {1, 2, 5}}.

(2.8)

Finally, since P3
5 = {{1, 3, 5}, {1, 2, 4}, {2, 4, 5}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}, {1, 3, 4}, {1, 2, 5}},

P3
4 = {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}}, and P3

3 = {[3]}, then

P4
6 =

{
X1 ∪ {6}, X2 ∪ {5} | X1 ∈ P3

5 , X2 ∈ P3
4

} ∪ {
X ∪ {6} | X ∈ P3

3

}

=
{{1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 3, 4, 6}, {1, 3, 4, 5}, {1, 2, 5, 6},

{1, 2, 4, 5}, {2, 3, 4, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 4, 5, 6}, {2, 3, 5, 6}}.
(2.9)
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Table 1: d(Pn, j), the number of dominating set of Pn with cardinality j.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1 1
2 2 1
3 1 3 1
4 0 4 4 1
5 0 3 8 5 1
6 0 1 10 13 6 1
7 0 0 8 22 19 7 1
8 0 0 4 26 40 26 8 1
9 0 0 1 22 61 65 34 9 1
10 0 0 0 13 70 120 98 43 10 1
11 0 0 0 5 61 171 211 140 53 11 1
12 0 0 0 1 40 192 356 343 192 64 12 1
13 0 0 0 0 19 171 483 665 526 255 76 13 1
14 0 0 0 0 6 120 534 1050 1148 771 330 89 14 1
15 0 0 0 0 1 65 483 1373 2058 1866 1090 418 103 15 1

3. Domination Polynomial of a path

Let D(Pn, x) =
∑n

i=�n/3�d(Pn, i)xi be the domination polynomial of a path Pn. In this section
we study this polynomial.

Theorem 3.1. (i) If Pi
n is the family of dominating set with cardinality i of Pn, then

|Pi
n| = |Pi−1

n−1| + |Pi−1
n−2| + |Pi−1

n−3|. (3.1)

(ii) For every n ≥ 4,

D(Pn, x) = x
[
D(Pn−1, x) +D(Pn−2, x) +D(Pn−3, x)

]
, (3.2)

with the initial values D(P1, x) = x,D(P2, x) = x2 + 2x, and D(P3, x) = x3 + 3x2 + x.

Proof. (i) It follows from Theorem 2.7.
(ii) It follows from Part (i) and the definition of the domination polynomial.

Using Theorem 3.1, we obtain d(Pn, j) for 1 ≤ n ≤ 15 as shown in Table 1. There are
interesting relationships between numbers in this table. In the following theorem, we obtain
some properties of d(Pn, j).

Theorem 3.2. The following properties hold for the coefficients of D(Pn, x):

(i) d(P3n, n) = 1, for every n ∈ N.

(ii) d(P3n+2, n + 1) = n + 2, for every n ∈ N.

(iii) d(P3n+1, n + 1) = ((n + 2)(n + 3))/2 − 2, for every n ∈ N.

(iv) d(P3n, n + 1) = n(n + 1)(n + 8)/6, for every n ∈ N.
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(v) d(Pn, n) = 1, for every n ∈ N.

(vi) d(Pn, n − 1) = n, for every n ≥ 2.

(vii) d(Pn, n − 2) = ( n
2 ) − 2 = (n(n − 1)/2) − 2, for every n ≥ 3.

(viii) d(Pn, n − 3) = ( n
3 ) − (3n − 8) = (n − 4)(n − 3)(n + 4)/6, for every n ≥ 4.

(ix) d(Pn, n − 4) = (n − 5)(n3 − n2 − 42n + 96)/24, for every n ≥ 5.

(x) 1 = d(Pn, n) < d(Pn+1, n) < d(Pn+2, n) < · · · < d(P2n−1, n) < d(P2n, n) > d(P2n+1, n) >
· · · > d(P3n−1, n) > d(P3n, n) = 1.

(xi)
∑3j

i=jd(Pi, j) = 3
∑3j−3

i=j−1d(Pi, j − 1).

(xii) If sn =
∑n

j=�n/3�d(Pn, j), then for every n ≥ 4, sn = sn−1 + sn−2 + sn−3 with initial values
s1 = 1, s2 = 3 and s3 = 5.

(xiii) For every n ∈ N, and k = 0, 1, 2, . . . , 2n − 1, d(P2n−k, n) = d(P2n+k, n).

(xiv) For every j ≥ �n/3�, d(Pn+1, j + 1) − d(Pn, j + 1) = d(Pn, j) − d(Pn−3, j).

Proof. (i) Since Pn
3n = {{2, 5, . . . , 3n − 1}}, we have d(P3n, n) = 1.

(ii) Proof by induction on n. Since P2
5 = {{1, 4}, {2, 4}, {2, 5}}, so d(P5, 2) = 3. Therefore

the result is true for n = 1. Now suppose that the result is true for all natural numbers less
than n, and we prove it for n. By part (i), Theorem 3.1, and the induction hypothesis we have
d(P3n+2, n + 1) = d(P3n+1, n) + d(P3n, n) + d(P3(n−1)+2, n) = n + 2.

(iii) Proof by induction on n. The result is true for n = 2, because d(P7, 3) = 8 = 4 + 4.
Now suppose that the result is true for all natural numbers less than n, and we prove it for n.
By part (i), (ii), Theorem 3.1, and the induction hypothesis we have

d
(
P3n+1, n + 1

)
= d

(
P3n, n

)
+ d

(
P3n−1, n

)
+ d

(
P3n−2, n

)

= 1 + d
(
P3(n−1)+2, n

)
+ d

(
P3(n−1)+1, n

)

= 1 + (n + 1) +
(n + 1)(n + 2)

2
− 2

=
(n + 2)(n + 3)

2
− 2.

(3.3)

(iv) Proof by induction on n. Since d(P3, 2) = 3, the result is true for n = 1. Now
suppose that the result is true for all natural numbers less than n, and we prove it for n. By
Theorem 3.1, parts (ii), (iii), and the induction hypothesis we have

d
(
P3n, n + 1

)
= d

(
P3n−1, n

)
+ d

(
P3n−2, n

)
+ d

(
P3n−3, n

)

= n + 1 +
(n + 1)(n + 2)

2
− 2 +

n(n − 1)(n + 7)
6

=
n(n + 1)(n + 8)

6
.

(3.4)

(v) Since Pn
n = {[n]}, we have the result.

(vi) Since Pn−1
n = {[n] − {x} | x ∈ [n]}, we have d(Pn, n − 1) = n.
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(vii) By induction on n. The result is true for n = 3, because d(P3, 1) = 1. Now suppose
that the result is true for all numbers less that n, and we prove it for n. By Theorem 3.1,
induction hypothesis, part (v) and part (vi) we have

d
(
Pn, n − 2

)
= d

(
Pn−1, n − 3

)
+ d

(
Pn−2, n − 3

)
+ d

(
Pn−3, n − 3

)

=
(n − 1)(n − 2)

2
+ n − 3

=
n(n − 1)

2
− 2.

(3.5)

(viii) By induction on n. The result is true for n = 4, since d(P4, 1) = 0. Now suppose
that the result is true for all natural numbers less than or equal n and we prove it for n+ 1. By
Theorem 3.1, induction hypothesis, parts (vii) and (vi) we have

d
(
Pn+1, n − 2

)
= d

(
Pn, n − 3

)
+ d

(
Pn−1, n − 3

)
+ d

(
Pn−2, n − 3

)

=
(n − 4)(n − 3)(n + 4)

6
+
(n − 1)(n − 2)

2
− 2 + n − 2

=
(n − 3)(n − 2)(n + 5)

6
.

(3.6)

(ix) By induction on n. Since d(P5, 1) = 0, the result is true for n = 5. Now suppose that
the result is true for all natural numbers less than n, and we prove it for n. By Theorem 3.1,
induction hypothesis, parts (viii) and (vii), we have

d
(
Pn, n − 4

)
= d

(
Pn−1, n − 5

)
+ d

(
Pn−2, n − 5

)
+ d

(
Pn−3, n − 5

)

=
(n − 6)

((
n − 1

)3 − (
n − 1

)2 − 42n + 138
)

24

+
(n − 6)(n − 5)(n + 2)

6
+
(n − 3)(n − 4)

2
− 2

=
(n − 5)

(
n3 − n2 − 42n + 96

)

24
.

(3.7)

(x)We will prove that for every n, d(Pi, n) < d(Pi+1, n) for n ≤ i ≤ 2n − 1, and d(Pi, n) >
d(Pi+1, n) for 2n ≤ i ≤ 3n − 1. We prove the first inequality by induction on n. The result holds
for n = 1. Suppose that result is true for all n ≤ k. Now we prove it for n = k + 1, that is
d(Pi, k + 1) < d(Pi+1, k + 1) for k + 1 ≤ i ≤ 2k + 1. By Theorem 3.1 and the induction hypothesis
we have

d
(
Pi, k + 1

)
= d

(
Pi−1, k

)
+ d

(
Pi−2, k

)
+ d

(
Pi−3, k

)

< d
(
Pi, k

)
+ d

(
Pi−1, k

)
+ d

(
Pi−2, k

)

= d
(
Pi+1, k + 1

)
.

(3.8)

Similarly, we have the other inequality.
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(xi) Proof by induction on j. First, suppose that j = 2. Then
∑6

i=2d(Pi, 2) = 12 =
3
∑3

i=1d(Pi, 1). Now suppose that the result is true for every j < k, and we prove for j = k:

3k∑

i=k

d(Pi, k) =
3k∑

i=k

d
(
Pi−1, k − 1

)
+

3k∑

i=k

d
(
Pi−2, k − 1

)
+

3k∑

i=k

d
(
Pi−3, k − 1

)

= 3
3(k−1)∑

i=k−1
d
(
Pi−1, k − 2

)
+ 3

3(k−1)∑

i=k−1
d
(
Pi−2, k − 2

)
+ 3

3(k−1)∑

i=k−1
d
(
Pi−3, k − 2

)

= 3
3k−3∑

i=k−1
d
(
Pi, k − 1

)
.

(3.9)

(xii) By Theorem 3.1, we have

sn =
n∑

j=�n/3�
d
(
Pn, j

)

=
n∑

j=�n/3�

(
d
(
Pn−1, j − 1

)
+ d

(
Pn−2, j − 1

)
+ d

(
Pn−3, j − 1

))

=
n−1∑

j=�n/3�−1
d
(
Pn−1, j

)
+

n−2∑

j=�n/3�−1
d
(
Pn−2, j

)
+

n−3∑

j=�n/3�−1
d
(
Pn−3, j − 1

)

= sn−1 + sn−2 + sn−3.

(3.10)

(xiii) Proof by induction on n. Since d(P1, 1) = d(P3, 1), the theorem is true for n = 1.
Now, suppose that the theorem is true for all numbers less than n, and we will prove it for n.
By Theorem 3.1 and the induction hypothesis, we can write

d
(
P2n−k, n

)
= d

(
P2n−k−1, n − 1

)
+ d

(
P2n−k−2, n − 1

)
+ d

(
P2n−k−3, n − 1

)

= d
(
P2(n−1)+1−k, n − 1

)
+ d

(
P2(n−1)−k, n − 1

)
+ d

(
P2(n−1)−1−k, n − 1

)

= d
(
P2(n−1)+k−1, n − 1

)
+ d

(
P2(n−1)+k, n − 1

)
+ d

(
P2(n−1)+1+k, n − 1

)

= d
(
P2n+k−3, n − 1

)
+ d

(
P2n+k−2, n − 1

)
+ d

(
P2n+k−1, n − 1

)

= d
(
P2n+k, n

)
.

(3.11)

(xiv) By Theorem 3.1, we have

d
(
Pn+1, j + 1

) − d
(
Pn, j + 1

)
=
(
d(Pn, j

)
+ d

(
Pn−1, j

)
+ d

(
Pn−2, j

))

− (
d
(
Pn−1, j

)
+ d

(
Pn−2, j

)
+ d

(
Pn−3, j

))

= d
(
Pn, j

) − d
(
Pn−3, j

)
.

(3.12)

Therefore we have the result.
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In the following theorem we use the generating function technique to find |Pi
n|.

Theorem 3.3. For every n ∈ N and �n/3� ≤ i ≤ n, |Pi
n| is the coefficient of unvi in the expansion of

the function

f(u, v) =
u3v

(
1 + 3v + v2 + 3uv + uv2 + 2u2v + u2v2)

1 − uv − u2v − u3v
. (3.13)

Proof. Set f(u, v) =
∑∞

n=3
∑∞

i=1|Pi
n|unvi. By recursive formula for |Pi

n| in Theorem 3.1 we can
write f(u, v) in the following form:

f(u, v) =
∞∑

n=3

∞∑

i=1

(∣
∣Pi−1

n−1
∣
∣ +

∣
∣Pi−1

n−2
∣
∣ +

∣
∣Pi−1

n−3
∣
∣
)
unvi

= uv
∞∑

n=3

∞∑

i=1

∣
∣Pi−1

n−1
∣
∣un−1vi−1 + u2v

∞∑

n=3

∞∑

i=1

∣
∣Pi−1

n−2
∣
∣un−2vi−1 + u3v

∞∑

n=3

∞∑

i=1

∣
∣Pi−1

n−3
∣
∣un−3vi−1

= uv
(∣
∣P0

2

∣
∣u2 +

∣
∣P1

2

∣
∣u2v +

∣
∣P2

2

∣
∣u2v2) + uvf(u, v)

+ u2v
(∣
∣P0

1

∣
∣u +

∣
∣P1

1

∣
∣uv +

∣
∣P0

2

∣
∣u2 +

∣
∣P1

2

∣
∣u2v +

∣
∣P2

2

∣
∣u2v2)

+ u2vf(u, v) + u3v
(∣
∣P0

0

∣
∣ +

∣
∣P0

1

∣
∣u +

∣
∣P1

1

∣
∣uv +

∣
∣P0

2

∣
∣u2 +

∣
∣P1

2

∣
∣u2v +

∣
∣P2

2

∣
∣u2v2)

+ u3vf(u, v).
(3.14)

By substituting the values from Table 1 (note that |P0
n| = 0 for all natural numbers n and

|P0
0 | = 1), we have

f(u, v)
(
1 − uv − u2v − u3v

)
= u3v

(
1 + 3v + v2 + 3uv + uv2 + 2u2v + u2v2). (3.15)

Therefore we have the result.
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