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We define the classes Gβ(α, k, γ) as follows: f ∈ Gβ(α, k, γ) if and only if, for z ∈ E = {z ∈ C :
|z| < 1}, |arg{(1 − α2z2)f ′(z)/e−iβφ′(z)}| ≤ γπ/2, 0 < γ ≤ 1; α ∈ [0, 1]; β ∈ (−π/2, π/2), where
φ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength
problem, and some other properties of these classes are studied.
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1. Introduction

Let A be the class of functions of the form:

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk E = {z ∈ C : |z| < 1}. By S, K, S∗, and C denote the
subclasses of A which are univalent, close-to-convex, starlike, and convex in E, respectively.
Let Vk be the class of functions of bounded boundary rotation. Paate [1] showed that a
function f, defined by (1.1) and f ′(z)/= 0, is in Vk if and only if, for z = reiθ,

∫2π

0

∣∣∣∣∣Re
(
zf ′(z)

)′

f ′(z)

∣∣∣∣∣dθ ≤ kπ. (1.2)

It is geometrically obvious that k ≥ 2 and V2 ≡ C.
A class Tk of analytic functions related with the class Vk was introduced and studied

in [2]. A function f ∈ A is in Tk, k ≥ 2, if and only if there exists a function g ∈ Vk such that,
for z ∈ E,Re{f ′(z)/g ′(z)} > 0. It is clear that T2 ≡ K.
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Let P denote the class of analytic functions p defined by

p(z) = 1 +
∞∑

n=1

cnz
n (1.3)

with Re p(z) > 0 for z ∈ E.
We denote K(γ) as the class of strongly close-to-convex functions of order γ in the

sense of Pommerenke [3]. A function f ∈ A belongs to K(γ) if and only if there exists g ∈ S∗

such that |Arg(zf ′(z)/g(z))| ≤ πγ/2, for z ∈ E and γ ≥ 0.
Clearly K(0) = C, K(1) = K, and when 0 ≤ γ < 1, K(γ) is a subset of K and hence

contains only univalent functions. For γ > 1, f ∈ K(γ) can be of infinite valence; see [4].
We now define the following.

Definition 1.1. A function f ∈ A is said to belong to Gβ(α, k, γ), where β is a real number,
α ∈ C : |α| ≤ 1, k ≥ 2, and γ ∈ (0, 1] is called generalized alpha-close-to-convex with argument
β if and only if there exists φ ∈ Vk such that

∣∣∣∣∣Arg

{(
1 − α2z2)f ′(z)

e−iβφ′(z)

}∣∣∣∣∣ ≤
γπ

2
, z ∈ E. (1.4)

In (1.4), we choose this branch of argument which equals β, |β| < πγ/2, γ ∈ (0, 1], when
z = 0. We note that the condition |α| ≤ 1 implies that Gβ(α, k, γ) is nonempty. From the
normalization conditions f ′(0) = φ′(0) = 1, it follows from Definition 1.1 that Re e−iβ > 0 and
therefore |β| < γπ/2. Also, it follows from (1.4) that if f ∈ Gβ(α, k, γ), then f ′(z)/= 0 for z ∈ E.
Condition (1.4) is equivalent to the following f ∈ Gβ(α, k, γ) if and only if there exists p ∈ P
such that

(
1 − α2z2)f ′(z)

e−iβφ′(z)
=
(
p(z) cos

β

γ
− i sin β

γ

)γ

, φ ∈ Vk. (1.5)

We define G(α, k, γ) the class of generalized α-close-to-convex functions as

G
(
α, k, γ

)
=

⋃

|β|<π/2
Gβ

(
α, k, γ

)
. (1.6)

If α = 0 in (1.6), then the class G(0, k, 1) is identical with the class Tk and G(α, 2, 1) is the class
K of close-to-convex functions. Also Gβ(α, 2, 1) in the class of close-to-convex function with
argument β was defined by Goodman and Saff [5]. For details of special cases of Gβ(α, 2, 1)
with φ(z) = z in (1.4), we refer to [6]. The special case with γ = 1 = α, k = 2, and φ(z) = z
in (1.4) leads to the class of functions convex in the direction of the imaginary axis having
special normalization; see [7].
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2. Main Results

We now prove the main results as follows.

Theorem 2.1. Let α ∈ [0, 1]. Then G(α, k, γ) ⊂ G(0, k, γ1), where

γ1
(
γ, α

)
= γ +

2
π

arcsin
(
α2
)
. (2.1)

The constant γ1(γ, α) cannot be smaller.

Proof. We will use an extended version of the method given in [8] to prove this result.
For α = 0, the result is obvious. Let f ∈ G(α, k, γ). By (1.4), (1.5), and (1.6), then there

exists a function φ ∈ Vk and a function p ∈ P , |β| < π/2 such that

f ′(z)
e−iβφ′(z)

=

(
p(z) cos

(
β/γ

) − i sin(β/γ))γ
1 − α2z2 , z ∈ E. (2.2)

Let q(z) = (p(z) cos(β/γ) − i sin(β/γ))γ , z ∈ E. Then we have

∣∣∣∣∣Arg
f ′(z)

e−iβφ′(z)

∣∣∣∣∣ =
∣∣∣Arg q(z) −Arg

(
1 − α2z2

)∣∣∣ <
π

2

[
γ +

2
π

∣∣∣Arg
(
1 − α2z2

)∣∣∣
]
. (2.3)

We choose in (2.3) this branch of argument which is equal −β when z = 0.
Since |Arg(1 − α2z2)| < arcsin(α2), z ∈ E,we have from (2.3) f ∈ G(0, k, γ1),where γ1 is

given by (2.1). The constant γ1(γ, α) cannot be smaller. Let α ∈ (0, 1) be fixed. Let us consider
the point z0 ∈ C with |z0| = 1 and Arg(1−α2z2) = − arcsin(α2). Let φ0 ∈ Vk be such that φ0(z0)
is finite. Then, let

f ′
0(z) =

e−iβφ′
0(z)

1 − α2z2
[(

p(z) cos
β

γ
− i sin β

γ

)γ]
, z ∈ E, ∣∣β∣∣ < π

2
, (2.4)

where

P0(z) =
1 + εz
1 − εz , ε ∈ C, |ε| < 1,

φ′
0(z) =

(1 + δ1z)
k/2−1

(1 + δ2z)
k/2+1

, |δ1| = |δ2| = 1.
(2.5)

Now, for z ∈ E,
∣∣∣∣∣Arg

f ′
0(z)

e−iβφ′
0(z)

∣∣∣∣∣ =
∣∣∣∣Arg

(
p0(z) cos

β

γ
i sin

β

γ

)γ

−Arg
(
1 − α2z2

)∣∣∣∣, (2.6)
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and Arg e−iβ = −β. Since p0 maps the unit circle |z| = 1 onto imaginary axis, we may choose
ε0, |ε0| = 1 such that ε0 /= 1/z0, P0(z0) = (1 + ε0z0)/(1 − ε0z0)/= i tan β, p0(z0) = ai, a > 0. This
means that p0(z0) is finite and Arg p0(z0) = π/2. Hence

Arg
[(

p0(z) cos
β

γ
i sin

β

γ

)γ]
=
γπ

2
. (2.7)

Thus, from (2.4) and (2.6), we have

∣∣∣∣∣Arg
f ′
0(z)

e−iβφ′
0(z)

∣∣∣∣∣ =
π

2

[
γ +

2
π

arcsin
(
α2
)]

= γ1
π

2
. (2.8)

Therefore γ1 cannot be smaller.
For α = 1, consider the sequence {zn}, zn = eiθn , θn ∈ (0, π/4), n ∈ N = 1 such that

limn→∞zn = 1. So

lim
n→∞

Arg
(
1 − z2n

)
= −π

2
. (2.9)

Let φ ∈ Vk with φ(eiθ) finite and θ ∈ (0, π/2). The function f1 defined as

f ′
1(z) =

e−iβφ′(z)
1 − z2

[((
1 + z
1 − z

)
cos

β

γ
− i sin β

γ

)γ]
, z ∈ E, ∣∣β∣∣ < π

2
(2.10)

belongs to G(1, k, γ). Thus, from (2.9), it follows that

lim
n→∞

∣∣∣∣∣Arg
f ′
1(z)

e−iβφ′(z)

∣∣∣∣∣ = lim
n→∞

∣∣∣∣Arg
{((

1 + zn
1 − zn

)
cos

β

γ
− i sin β

γ

)γ}
−Arg

(
1 − z2n

)∣∣∣∣ =
(
1 + γ

)π
2
.

(2.11)

This means that γ1(1, γ) = 1 + γ is best possible.
We note that, for γ = 1, k ≥ 2, we obtain a result proved in [8].

Theorem 2.2. Let f ∈ G(α, k, γ), α ∈ [0, 1]. Then, for every γ ∈ (0, 1) and θ1, θ1 with 0 ≤ θ2 − θ1 ≤
2π , one has

∫θ2

θ1

Re

{
1 + reiθ

f ′′(reiθ
)

f ′(reiθ
)
}
dθ > −

(
γ +

k

2
− 1 − R

)
π, (2.12)

where

R =
1
π

{
ψ(r, θ2) − ψ(r, θ1)

}
,

ψ(r, θ) = −Arg
(
1 − α2γ2e2iθ

)
= arctan

α2r2 sin 2θ
1 − α2r2 cos 2θ .

(2.13)
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Proof. To prove this result, we shall essentially use the similar method given by Kaplan [9].
Let f ∈ G(α, k, γ) for fixed α ∈ [0, 1]. Then f satisfies the inequality (1.4) for some β,

|β| < π/2 and φ ∈ Vk. Let φ1(z) = φ(z)eiβ, z ∈ E. Since f ′(z)/= 0, φ′
1(z)/= 0 for z ∈ E, we can

define, for z = reiθ, r ∈ (0, 1), θ is a real number, the following:

℘(r, θ) = Arg
{(

1 − α2r2e2iθ
)
f ′
(
reiθ

)}
, (2.14)

V (r, θ) = Argφ′
1

(
reiθ

)
, (2.15)

ψ(r, θ) = Arg
{(

1 − α2r2e2iθ
)
reiθf ′

(
reiθ

)}
= ℘(r, θ) + θ, (2.16)

V (r, θ) = Arg
{
reiθφ′

1

(
reiθ

)}
= τ(r, θ) + θ. (2.17)

The functions ℘, τ , ψ, and V are continuous and periodic with period 2π . From (1.4), we can
choose the branches of argument of ℘(z) and τ(z) as

∣∣℘(r, θ) − τ(r, θ)∣∣ < γπ

2
, γ ∈ [0, 1]. (2.18)

Now, for φ1 ∈ Vk, it is known [10] that, for θ1 < θ2, z = reiθ,

∫θ2

θ1

Re

{(
zφ′

1(z)
)′

φ′
1(z)

}
dθ > −

(
k

2
− 1

)
π. (2.19)

From (2.16), (2.17), and (2.19), we have

ψ(r, θ2) − ψ(r, θ1) = ℘(r, θ2) + θ2 − ℘(r, θ1) − θ1

=
[
℘(r, θ2) − τ(r, θ2)

]
+ [τ(r, θ2) + θ2 − τ(r, θ1) − θ1] −

[
℘(r, θ1) − τ(r, θ1)

]

> γπ −
(
k

2
− 1

)
π = −

(
r +

k

2
− 1

)
π.

(2.20)

Moreover, by (2.16), we have

d

dθ
ψ(r, θ) =

d

dθ
Arg

(
1 − α2r2e2iθ

)
+ Re

{
1 + reiθ

f ′′(reiθ
)

f ′(reiθ
)
}
, (2.21)
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and therefore, from (2.20)

∫θ2

θ1

Re

{
1 + reiθ

f ′′(reiθ
)

f ′(reiθ
)
}
dθ =

∫θ2

θ1

d

dθ
ψ(r, θ)dθ −

∫θ2

θ1

Arg
(
1 + α2r2e2iθ

)
dθ

> −
(
γ +

k

2
− 1

)
π − [

ψ(r, θ1) − ψ(r, θ2)
]

= −
(
γ +

k

2
− 1 − R

)
π,

(2.22)

where ψ(r, θ) and R are defined by (2.13). This completes the proof.

We note that, for γ = 1, k = 2, α = 0, we obtain the necessary condition for f to be
close-to-convex in E, proved in [9].

Remark 2.3. From Theorem 2.2, we can interpret some geometrical meaning for the functions
in G(α, k, γ). For simplicity, let us suppose that the image domain is bounded by an analytic
curve Γ. At a point on Γ, the outward drawn normal turns back at most = −(γ + k/2 − 1 −
R)π, where A is given by (2.13). This is a necessary condition for a function f to belong to
G(α, k, γ). Goodman [4] showed that if f ∈ K(σ), σ ≥ 0, then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π ,∫θ2
θ1
Re((zf ′(z))′/f ′(z))dθ > −σπ.

We note that f ∈ G(α, k, γ) is univalent for k + 2(γ − R) ≤ 4, since

G
(
α, k, γ

) ⊂ K
(
γ +

k

2
− 1 − R

)
. (2.23)

The functions inK(γ + k/2 − 1 − R) need not even be finitely valent in E for k + 2(γ − R) > 4.

Remark 2.4. From Theorem 2.2 and [11, Lemma 1.3] by Pommerenke, it follows thatG(α, k, γ)
is a linearly invariant family of order (γ +k/2−R). Therefore, the image of E under functions
in G(α, k, γ) contains the schlicht disk |z| < 1/(k + 2(γ − R)).

Theorem 2.5. Let f ∈ Gβ(α, k, γ), γ ∈ (0, 1), |β| < π/2, be of the form (1.1). Then |a2| ≤ k/2 +
((1 + γ)/2)| cos(β/γ)|. This estimate is best possible, extremal function being f0(z) defined by (2.4).

Proof. Let φ(z) = z +
∑∞

n=2 bnz
n, p(z) = 1 +

∑∞
n=1 cnz

n in (1.5).
Now, it is known that, for functions p of positive real part with γ ∈ (0, 1), pγ is

subordinate to ((1 + z)/(1 − z))γ . Also |b2| ≤ k/2, see [1, 12]. Therefore, from (1.5), we have
2a2 = 2b2 + (e−iβ cos(β/γ))(1 + γ), and this gives us the required result.

Remark 2.6. Let f ∈ G(α, k, γ), for 2 ≤ k ≤ 4 − 2(γ − R), and be given by (1.1). Then f is
univalent in E by Remark 2.3 and w0f(z)/(w0 − f(z)) is univalent in E for w0 /= 0, w0 /= f(z).
Now

w0f(z)
w0 − f(z) = z +

(
a2 +

1
w0

)
z2 + · · · , (2.24)
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and therefore |a2+1/w0| ≤ 2 and so |1/w0| ≥ 2/(4+k+(1+γ) cos(β/γ)), on using Theorem 2.5.
Hence it follows that the image of E under f ∈ G(α, k, γ) with 2 ≤ k + 2(γ − R) ≤ 4 contains
the schlicht disc |z| < 2/(4 + k + (1 + γ) cos(β/γ)).

From Remark 2.3, and the results proved for the class K(σ), σ ≥ 0 in [4], we at once
have the following.

Theorem 2.7. Let f ∈ G(α, k, γ) and be given by (1.1). Let Fσ be defined by

Fσ(z) =
1

2(σ + 1)

[(
1 + z
1 − z

)σ+1

− 1

]
= z +

∞∑

n=2

An(σ)zn, (2.25)

where σ = (γ + k/2 − 1 − R), and R is given by (2.13). Clearly Fσ ∈ G(α, k, r).
(i) Denote by L(r, f) the length of the image of the circle |z| = r under f and by A(r, f) the

area of f(|z| ≤ r). Then, for 0 ≤ r < 1

(a) L(r, f) ≤ L(r, Fσ),
(b) A(r, f) ≤ A(r, Fσ).

(ii) For z = reiθ, 0 ≤ r < 1, |f(z)| = (1/2(σ + 1))[((1 + z)/(1 − z))σ+1 − 1].

The function Fσ, defined by (2.25), shows that this upper bound is sharp.

Theorem 2.8. Let f ∈ G(α, k, γ). Then, for 0 < r < 1, α, r ∈ (0, 1), k ≥ 2,

L
(
r, f

) ≤ c(α, k, r)
(

1
1 − r

)k/2+γ

, (2.26)

where c(α, k, r) is a constant depending upon α, k, and γ only.

Proof. With z = reiθ,

L
(
r, f

)
=
∫2π

0

∣∣zf ′(z)
∣∣dθ

=
∫2π

0
r

∣∣∣∣∣
e−iβφ′(z)

(
p(z) cos

(
β/γ

) − i sin(β/γ))γ
1 − α2z2

∣∣∣∣∣dθ, φ ∈ Vk, p ∈ P, z ∈ E.
(2.27)

For φ ∈ Vk, it is known [10] that there exist s1, s2 ∈ S∗ such that

zφ′(z) =
(s1(z))k/4+1/2

(s2(z))k/4−1/2
. (2.28)

Also, for p ∈ P we have for z = reiθ,

1
2π

∫2π

0

∣∣p(z)
∣∣2dθ ≤ 1 + 3r2

1 − r2 (2.29)
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(see [13]). Now, from (2.27), (2.28), and (2.29), we have

L
(
r, f

) ≤ c1
(
α, k, γ

)

r(k/4−1/2)

(
1
2π

∫2π

0
|s1(z)|(k/4+1/2)(2/(2−γ))dθ

)(2−γ)/2(
1
2π

∫2π

0

∣∣p(z)
∣∣2
)γ/2

≤ c(α, k, γ)
(

1
1 − r

)k/2+γ

,

(2.30)

where we have used distortion theorems, subordination for the starlike functions, and
Holder’s inequality, and c and c1 are constants.

Theorem 2.9. Let f ∈ G(α, k, γ) and be given by (1.1). Then, for α, γ ∈ [0, 1], k ≥ 2, one has
an = o(1)nk/2+γ−1, (n → ∞) where o(1) is a constant depending only on k, α, and γ.

Proof. With z = reiθ, Cauchy’s theorem gives

nan =
1

2πrn

∫2π

0
zf ′(z)e−inθdθ. (2.31)

Thus

n|an| ≤ 1
2πrn

∫2π

0

∣∣zf ′(z)
∣∣dθ = (1/2πrn)L

(
r, f

)
. (2.32)

Using Theorem 2.8 and putting r = 1 − 1/n, we prove this result.
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