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We consider the existence and multiplicity of concave positive solutions for boundary value
problem of nonlinear fractional differential equation with p-Laplacian operatorDγ

0+(φp(D
α
0+u(t)))+

f(t, u(t), Dρ

0+u(t)) = 0, 0 < t < 1, u(0) = u′(1) = 0, u′′(0) = 0, Dα
0+u(t)|t=0 = 0, where 0 < γ < 1,

2 < α < 3, 0 < ρ � 1, Dα
0+ denotes the Caputo derivative, and f : [0, 1] × [0,+∞) × R → [0,+∞)

is continuous function, φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq, 1/p + 1/q = 1. By using fixed point

theorem, the results for existence and multiplicity of concave positive solutions to the above
boundary value problem are obtained. Finally, an example is given to show the effectiveness of
our works.

1. Introduction

As we know, boundary value problems of integer-order differential equations have been
intensively studied; see [1–5] and therein. Recently, due to the wide development of its theory
of fractional calculus itself as well as its applications, fractional differential equations have
been constantly attracting attention of many scholars; see, for example, [6–15].

In [7], Jafari and Gejji used the adomian decomposition method for solving the
existence of solutions of boundary value problem:

Dαu(t) + μf(t, u(t)) = 0, 0 < t < 1, 1 < α � 2,

u(0) = 0, u(1) = b.
(1.1)
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In [9], by using fixed point theorems on cones, Dehghani and Ghanbari considered
triple positive solutions of nonlinear fractional boundary value problem:

Dαx(t) + q(t)f
(
t, x(t), x′(t)

)
= 0, 0 < t < 1, 2 � α < 3,

x(0) = x(1) = 0,
(1.2)

where Dα is the standard Riemann-Liouvill derivative. But we think that Green’s function in
[9] is wrong; if α > 2, then, Green’s function cannot be decided by x(0) = x(1) = 0.

In [11], using fixed point theorems on cones, Zhang investigated the existence and
multiplicity of positive solutions of the following problem:

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α � 2,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,
(1.3)

where Dα
0+ is the Caputo fractional derivative.

In [12], by means of Schauder fixed-point theorem, Su and Liu studied the existence
of nonlinear fractional boundary value problem involving Caputo’s derivative:

Dα
0+u(t) = f

(
t, u(t), Dβ

0+u(t)
)
= 0, 0 < t < 1, 1 < α � 2,

u(0) = u′(1) = 0, or u′(0) = u(1) = 0, or u(0) = u(1) = 0.
(1.4)

To the best of our knowledge, the existence of concave positive solutions of fractional
order equation is seldom considered and investigated. Motivated by the above arguments,
the main objective of this paper is to investigate the existence and multiplicity of concave
positive solutions of boundary value problem of fractional differential equation with p-
Laplacian operator as follows:

D
γ

0+

(
φp
(
Dα

0+u(t)
))

+ f
(
t, u(t), Dρ

0+u(t)
)
= 0, 0 < t < 1,

u(0) = u′(1) = 0, u′′(0) = 0, Dα
0+u(t)|t=0 = 0,

(1.5)

where 0 < γ < 1, 2 < α < 3, 0 < ρ � 1, Dα
0+ denotes the Caputo derivative, and f : [0, 1] ×

[0,+∞)×R → [0,+∞) is continuous function, φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq, 1/p+1/q = 1.

By using fixed point theorem, some results for multiplicity of concave positive
solutions to the above boundary value problems are obtained. Finally, an example is given to
show the effectiveness of our works.

The rest of the paper is organized as follows. In Section 2, we will introduce some
lemmas and definitions which will be used later. In Section 3, the multiplicity of concave
positive solutions for the boundary value problem (1.5)will be discussed.
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2. Basic Definitions and Preliminaries

Firstly we present here some necessary definitions and lemmas.

Definition 2.1 (see [6, 16, 17]). The fractional integral of order α > 0 of a function y : (0,∞) →
R is given by

Iαy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 (see [6, 16, 17]). The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function y : (0,∞) → R is given by

Dαy(t) =
1

Γ(n − α)
(
d

dt

)n ∫ t

0
(t − s)n−α−1y(s)ds, (2.2)

where n = [α] + 1 provided that the right side is pointwise defined on (0,∞).

Definition 2.3 (see [17]). Caputo’s derivative of order α > 0 of a function y : (0,∞) → R is
defined as

Dαy(t) =
1

Γ(n − α)
∫ t

0
(t − s)n−α−1y(n)(s)ds, n − 1 < α < n, (2.3)

provided that the right side is pointwise defined on (0,∞).

Remark 2.4. The following properties are well known:

(1) Dα
0+D

β

0+y(t) = D
α+β
0+ y(t), α > 0, β > 0;

(2) D−α
0+y(t) = I

α
0+y(t), α > 0;

(3) Iα0+ : C[0, 1] → C[0, 1], α > 0.

If α is an integer, the derivative for order α is understood in the sense of usual
differentiation.

Definition 2.5. Let E be a real Banach space over R. A nonempty convex closed set P ⊂ E is
said to be a cone provided that

(a) au ∈ P , for all u ∈ P , a � 0;

(b) u,−u ∈ P , implies u = 0.
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Definition 2.6. Let E be a real Banach space and let P ⊂ E be a cone. A function ψ : P → [0,∞)
is called a nonegative continuous concave functional if ψ is continuous and

ψ
(
λx + (1 − λ)y) � λψ(x) + (1 − λ)ψ(y), (2.4)

for all x, y ∈ P and 0 � λ � 1.

Definition 2.7. Let E be a real Banach space and let P ⊂ E be a cone. A function ϕ : P → [0,∞)
is called a nonegative continuous convex functional if ϕ is continuous and

ϕ
(
λx + (1 − λ)y) � λϕ(x) + (1 − λ)ϕ(y), (2.5)

for all x, y ∈ P and 0 � λ � 1.
Suppose that ϕ, θ : P → [0,+∞) are two nonnegative continuous convex functionals

satisfying

‖u‖ � Mmax
{
ϕ(u), θ(u)

}
, for u ∈ P, (2.6)

whereM is a positive constant and

Ω =
{
u ∈ P | ϕ(u) < r, θ(u) < L}/=Ø, for r > 0, L > 0. (2.7)

Let r > a > 0, L > 0 be given constants, let ϕ, θ : P → [0,+∞) be two nonnegative
continuous convex functionals satisfying (2.6) and (2.7), and let ψ be a nonnegative
continuous concave functional on the cone P . Define the bounded convex sets:

P
(
ϕ, r; θ, L

)
=
{
u ∈ P | ϕ(u) < r, θ(u) < L},

P
(
ϕ, r; θ, L

)
=
{
u ∈ P | ϕ(u) � r, θ(u) � L

}
,

P
(
ϕ, r; θ, L;ψ, a

)
=
{
u ∈ P | ϕ(u) < r, θ(u) < L, ψ(u) > a},

P
(
ϕ, r; θ, L;ψ, a

)
=
{
u ∈ P | ϕ(u) � r, θ(u) � L, ψ(u) � a

}
.

(2.8)

Lemma 2.8 (see [2, 5]). Let E be a Banach space, let P ⊂ E be a cone, and let r2 � c > b > r1 > 0,
L2 � L1 > 0 be given constants. Assume that ϕ, θ are two nonnegative continuous convex functionals
on P , such that (2.6) and (2.7) are satisfied; let ψ be a nonnegative continuous concave functional on
P , such that ψ(u) � ϕ(u) for all u ∈ P(ϕ, r2; θ, L2) and let T : P(ϕ, r2; θ, L2) → P(ϕ, r2; θ, L2) be
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a completely continuous operator. Suppose the following:

(C1) {u ∈ P(ϕ, c; θ, L2;ψ, b) | ψ(u) > b}/=ø, ψ(Tu) > b for all u ∈ P(ϕ, c; θ, L2;ψ, b);

(C2) ϕ(Tu) < r1, θ(Tu) < L1, for all u ∈ P(ϕ, r1; θ, L1);

(C3) ψ(Tu) > b, for all u ∈ P(ϕ, r2; θ, L2;ψ, b) with ϕ(Tu) > c.

Then T has at least three fixed points u1, u2, and u3 in P(ϕ, r2; θ, L2). Further u1 ∈ P(ϕ,
r1; θ, L1), u2 ∈ {P(ϕ, r2; θ, L2;ψ, b) | ψ(u) > b}, and u3 ∈ P(ϕ, r2; θ, L2) \ (P(ϕ, r2; θ, L2;
ψ, b)

⋃
P(ϕ, r1; θ, L1).

Lemma 2.9 (see [12]). Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative of order α that
belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C0 + C1t + · · · + Cn−1tn−1, (2.9)

for some Ci ∈ R, i = 0, 1, . . . , n − 1, where n is the smallest integer greater than or equal to α.

Lemma 2.10. Let y ∈ C[0, 1]; then the boundary value problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1, 2 < α < 3, (2.10)

u(0) = u′(1) = u′′(0) = 0 (2.11)

has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds, (2.12)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(α − 1)t(1 − s)α−2 − (t − s)α−1
Γ(α)

, 0 � s � t � 1,

(α − 1)t(1 − s)α−2
Γ(α)

, 0 � t � s � 1.

(2.13)

Proof. We may apply Lemma 2.9 to reduce (2.10) to an equivalent integral equation:

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + C0 + C1t + C2t

2. (2.14)
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From (2.14), we have

u′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(t − s)α−2y(s)ds + C1 + 2C2t,

u′′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(α − 2)(t − s)α−3y(s)ds + 2C2,

(2.15)

and by (2.10) and (2.11), there are C0 = C2 = 0, C1 = (1/Γ(α))
∫1
0 (α − 1)(1 − s)α−2y(s)ds.

Therefore, the unique solution of problem (2.10) and (2.11) is

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + 1

Γ(α)

∫1

0
(α − 1)t(1 − s)α−2y(s)ds

=
∫ t

0

(α − 1)t(1 − s)α−2 − (t − s)α−1
Γ(α)

y(s)ds +
∫1

t

(α − 1)t(1 − s)α−2
Γ(α)

y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.16)

Lemma 2.11. The function G(t, s) defined by (2.13) satisfies the following conditions:

(1) G(t, s) � 0, G(t, s) � G(1, s) for 0 � t, s � 1,

(2) G(t, s) � tα−1G(1, s), for 0 � t, s � 1.

Proof. Since

g(t, s) =: (α − 1)t(1 − s)α−2 − (t − s)α−1

� (α − 1)tα−1(1 − s)α−2 − (t − s)α−1

= tα−1
[
(α − 1)(1 − s)α−2 −

(
1 − s

t

)α−1]

� tα−1
[
(α − 1)(1 − s)α−2 − (1 − s)α−1

]

� 0, for 2 < α < 3, 0 � s � t � 1,

(2.17)

observing (2.13), we have G(t, s) � 0.
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Form (2.13), we obtain

G′
t(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(α − 1)(1 − s)α−2 − (α − 1)(t − s)α−2
Γ(α)

, 0 � s � t � 1,

(α − 1)(1 − s)α−2
Γ(α)

, 0 � t � s � 1.

(2.18)

Clearly,G′
t(t, s) � 0, for 0 � t, s � 1, we have thatG(t, s) is increasing with respect to t ∈ [0, 1],

and therefore, G(t, s) � G(1, s), for 0 � t, s � 1. (1) of Lemma 2.11 holds.
On the other hand, if t � s, then,

G(t, s)
G(1, s)

=
(α − 1)t(1 − s)α−2 − (t − s)α−1
(α − 1)(1 − s)α−2 − (1 − s)α−1

�
tα−1
[
(α − 1)(1 − s)α−2 − (1 − s)α−1

]

(α − 1)(1 − s)α−2 − (1 − s)α−1

= tα−1.

(2.19)

If t � s, then G(t, s)/G(1, s) = tα−1; therefore, G(t, s) � tα−1G(1, s), for 0 � s, t � 1. (2) of
Lemma 2.11 holds.

3. Existence of Three Concave Positive Solutions

In this section, we study the existence of concave positive solution for problem (1.5).
Let E = C1[0, 1]. From Definitions 2.1 and 2.3, we obtain Dρ

0+u(t) = I
1−ρ
0+ u′(t), 0 < ρ < 1,

and Dρ

0+u(t) = u′(t), ρ = 1. So, by (3) of Remark 2.4, we know that Dρ

0+u(t) is continuous for
all u(t) ∈ E. Hence, for all u(t) ∈ E, we can define

‖u‖ =

⎧
⎪⎪⎨

⎪⎪⎩

max
0�t�1

|u(t)| + max
0�t�1

∣∣∣D
ρ

0+u(t)
∣∣∣ + max

0�t�1
|u′(t)|, 0 < ρ < 1,

max
0�t�1

|u(t)| + max
0�t�1

|u′(t)|, ρ = 1.
(3.1)

Lemma 3.1 (see [12]). (E, ‖ · ‖) is a Banach space.
Define the cone P ⊂ E by P = {u ∈ E | u(t) � 0, u(t) is concave on [0, 1]}.
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Let the nonnegative continuous concave functional ψ and the nonnegative continuous convex
functionals ϕ, θ be defined on the cone P by

ψ(u) = min
1/k�t�(k−1)/k

|u(t)|, ϕ(u) = max
0�t�1

|u(t)|,

θ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

max
0�t�1

∣
∣
∣D

ρ

0+u(t)
∣
∣
∣ + max

0�t�1
|u′(t)|, 0 < ρ < 1,

max
0�t�1

|u′(t)|, ρ = 1.

(3.2)

Lemma 3.2 (see [1]). Let u ∈ P , k � 3; then

min
1/k�t�(k−1)/k

|u(t)| � 1
k
max
0�t�1

|u(t)|. (3.3)

Lemma 3.3. BVP (1.5) is equivalent to the integral equation

u(t) =
∫1

0
G(t, s)φq

(
1

Γ
(
γ
)
∫s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds. (3.4)

Proof. From BVP (1.5) and Lemma 2.9, we have

φp
(
Dα

0+u(t)
)
= −Iγ0+f

(
t, u(t), Dρ

0+u(t)
)
+ C,

= − 1
Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ + C.

(3.5)

By Dα
0+u(t)|t=0 = 0, there is C = 0, and then,

Dα
0+u(t) = −φq

(
1

Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

. (3.6)

Therefore, BVP(1.5) is equivalent to following problem:

Dα
0+u(t) + φq

(
1

Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

= 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(1) = u′′(0) = 0.

(3.7)

By Lemma 2.10, BVP (1.5) is equivalent to the integral equation (3.4).
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Let T : P → E be the operator defined by

Tu(t) =
∫1

0
G(t, s)φq

(
1

Γ
(
γ
)
∫ s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds =: F(t). (3.8)

Lemma 3.4. T : P → P is completely continuous.

Proof. Let u ∈ P ; in view of nonnegativeness and continuity of G(t, s) and f(t, u, v), we have
Tu � 0, and t ∈ [0, 1] is continuous:

(Tu)′(t) =
∫1

0
G′
t(t, s)φq

(
1

Γ
(
γ
)
∫ s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

=
∫ t

0

(α−1)(1−s)α−2−(α−1)(t−s)α−2
Γ(α)

φq

(
1

Γ
(
γ
)
∫ s

0
(s−τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

+
∫1

t

(α − 1)(1 − s)α−2
Γ(α)

φq

(
1

Γ
(
γ
)
∫s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds.

(3.9)

Clearly, (Tu)′(t) is continuous for α < 2.
By Remark 2.4 and noting (3.4) and (3.6), we have

D2
0+(Tu)(t) = D

2−α
0+ Dα

0+(Tu)(t)

= D2−α
0+

(
Dα

0+F(t)
)

= −D2−α
0+

(

φq

(
1

Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

))

= −Iα−20+

(

φq

(
1

Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

))

= − 1
Γ(α − 2)

∫ t

0
(t − s)α−3

(

φq

(
1

Γ
(
γ
)
∫ t

0
(t − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

)

� 0.
(3.10)

So, Tu is concave on [0, 1] and Tu ∈ C1[0, 1]; we obtain T(P) ⊂ P .
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LetΩ ∈ P be bounded; that is, there exists a positive constantM > 0 such that ‖u‖ � M
for all u ∈ Ω.

LetN = max(t,u,v)∈[0,1]×[0,M]×[−M,M]|f(t, u(t), Dρ

0+u(t)|; then, for all u ∈ Ω, we have

|Tu(t)| =
∣
∣
∣
∣
∣

∫1

0
G(t, s)φq

(
1

Γ
(
γ
)
∫s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

∣
∣
∣
∣
∣

�
(

N

Γ
(
γ + 1

)

)q−1 ∫1

0
G(1, s)ds

=

(
N

Γ
(
γ + 1

)

)q−1[
1

Γ(α)
− 1
Γ(α + 1)

]

�
(

N

Γ
(
γ + 1

)

)q−1
1

Γ(α)
,

∣∣Tu′(t)
∣∣ =

∣∣∣∣∣

∫1

0
G′
t(t, s)φq

(
1

Γ
(
γ
)
∫s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

∣∣∣∣∣

�
(

N

Γ
(
γ + 1

)

)q−1 ∫1

0
G′
t(t, s)ds

�
(

N

Γ
(
γ + 1

)

)q−1
1

Γ(α)
,

∣∣∣D
ρ

0+(Tu)(t)
∣∣∣ =

∣∣∣∣∣
1

Γ
(
1 − ρ)

∫ t

0
(t − s)−ρ(Tu)′(s)ds

∣∣∣∣∣

� 1
Γ
(
1−ρ)

∫ t

0
(t−s)−ρ

×
∣∣∣∣∣

∫1

0
G′
s(s, v)φq

(
1

Γ
(
γ
)
∫v

0
(v−τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)∣∣∣∣∣
ds

� 1
Γ
(
1 − ρ)

(
N

Γ
(
γ + 1

)

)q−1
1

Γ(α)

∫ t

0
(t − s)−ρds

=

(
N

Γ
(
γ + 1

)

)q−1
t1−ρ

(
1 − ρ)Γ(1 − ρ)Γ(α)

�
(

N

Γ
(
γ + 1

)

)q−1
1

Γ
(
2 − ρ)Γ(α) .

(3.11)
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So, for all u ∈ Ω, ‖Tu(t)‖ � (N/Γ(γ+1))q−1[2/Γ(α)+1/Γ(2−ρ)Γ(α)]. Hence, T(Ω) is uniformly
bounded.

Since G(t, s) is continuous on [0, 1] × [0, 1], it is uniformly continuous on [0, 1] × [0, 1].
Thus for fixed s ∈ [0, 1] and for any ε > 0, there exists a constant δ > 0, such that any
t1, t2 ∈ [0, 1] and |t1 − t2| < δ,

|G(t1, s) −G(t2, s)| < ε
(

Γ
(
γ + 1

)

N

)q−1
. (3.12)

Therefore,

|Tu(t2) − Tu(t1)| �
∫1

0
|G(t2, s) −G(t1, s)|φq

(
1

Γ
(
γ
)
∫s

0
(s − τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)

ds

�
(

N

Γ
(
γ + 1

)

)q−1 ∫1

0
|G(t2, s) −G(t1, s)|ds < ε.

(3.13)

That is to say, T(Ω) is equicontinuous. By the means of the Arzela-Ascoli Theorem, we have
that T : P → P is completely continuous. The proof is completed.

Let

A =

(
1

Γ
(
γ + 1

)

)q−1
1

Γ(α)
,

B =
(
1
k

)γ(q−1)( 1
Γ
(
γ + 1

)

)q−1 ∫1

1/k
G(1, s)ds,

M =

(
1

Γ
(
γ + 1

)

)q−1
1

Γ(α)Γ
(
2 − ρ) .

(3.14)

Theorem 3.5. Suppose that there exist constants 0 < r1 < b < kb � r2, L2 � L1 > 0, such that
kb/B � min(r2/A, L2/2A,L2/2M), and the following conditions hold:

(H1) f(t, u, v) < min{φp(r1/A), φp(L1/2A), φp(L1/2M)}, for (t, u, v) ∈ [0, 1] × [0, r1] ×
[−L1, L1];

(H2) f(t, u, v) > φp(kb/B), for (t, u, v) ∈ [1/k, 1] × [b, kb] × [−L2, L2];

(H3) f(t, u, v) � min{φp(r2/A), φp(L2/2A), φp(L2/2M)}, for (t, u, v) ∈ [0, 1] × [0, r2] ×
[−L2, L2].
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Then, the BVP (1.5) has at least three concave positive solutions u1, u2, and u3, such that

max
0�t�1

|u1(t)| < r1, max
0�t�1

∣
∣
∣D

ρ

0+u1(t)
∣
∣
∣ + max

0�t�1

∣
∣u′1(t)

∣
∣ < L1,

b < min
1/k�t�(k−1)/k

|u2(t)| < max
0�t�1

|u2(t)| � r2

max
0�t�1

∣
∣
∣D

ρ

0+u2(t)
∣
∣
∣ + max

0�t�1

∣
∣u′2(t)

∣
∣ < L2,

r1 < max
0�t�1

|u3(t)| � kb, min
1/k�t�(k−1)/k

|u3(t)| < b,

L1 < max
0�t�1

∣∣∣D
ρ

0+u3(t)
∣∣∣ + max

0�t�1

∣∣u′3(t)
∣∣ < L2.

(3.15)

Proof. By Lemmas 3.3 and 3.4, we have that T : P → P is completely continuous and problem
(1.5) has a solution u = u(t) if and only if u(t) satisfies the operator equation u = Tu.

Now, we show that all the conditions of Lemma 2.8 hold.

Step 1. We will show that T : P(ϕ, r2; θ, L2) → P(ϕ, r2; θ, L2).
If u ∈ P(ϕ, r2; θ, L2), then ϕ(u) � r2, θ(u) � L2.
From (H3), we have

ϕ(Tu(t)) = max
0≤t≤1

|(Tu)(t)|

= max
0≤t≤1

∣∣∣∣∣

∫1

0
G(t, s)φq

(
1

Γ(r)

∫s

0
(s − τ)r−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)
ds

∣∣
∣∣∣

� r2
A

∫1

0
G(1, s)φq

(
1

Γ(r)

∫ s

0
(s − τ)r−1dτ

)
ds

� r2
A

[
1

rΓ(r)

]q−1( 1
Γ(α)

− 1
Γ(α + 1)

)

� r2
A

(
1

Γ(r + 1)

)q−1 1
Γ(α)

= r2,
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max
0≤t≤1

∣
∣(Tu)′(t)

∣
∣ = max

0≤t≤1

∣
∣
∣
∣
∣

∫1

0
G′
t(t, s)φq

(
1

Γ(r)

∫s

0
(s − τ)r−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)
ds

∣
∣
∣
∣
∣

� L2

2A

[
1

Γ
(
γ + 1

)

]q−1 ∫1

0
G′
t(t, s)ds

=
L2

2A

(
1

Γ(r + 1)

)q−1 1
Γ(α)

� L2

2
,

max
0≤t≤1

∣∣∣D
ρ

0+(Tu)(t)
∣∣∣ = max

0≤t≤1

∣∣∣∣∣
1

Γ
(
1 − ρ)

∫ t

0
(t − s)−ρ(Tu)′(s)ds

∣∣∣∣∣

� 1
Γ
(
1−ρ)

∫ t

0
(t − s)−ρ

×
∣∣∣∣∣

∫1

0
G′
s(s, v)φq

(
1

Γ
(
γ
)
∫v

0
(v−τ)γ−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)∣∣∣∣∣
ds

� L2

2M
1

Γ
(
1 − ρ)

(
1

Γ
(
γ + 1

)

)q−1
1

Γ(α)

∫ t

0
(t − s)−ρds

=
L2

2M

⎛

⎝
(

1
Γ
(
γ + 1

)

)q−1
1

Γ(α)Γ
(
2 − ρ)

⎞

⎠

� L2

2
.

(3.16)

Then, θ((Tu)(t)) � L2.
So, T : P(ϕ, r2; θ, L2) → P(ϕ, r2; θ, L2).

Step 2. Let u(t) = kb/2, 0 � t � 1. It is easy to see that u(t) = kb/2 ∈ P(ϕ, kb; θ, L2, ψ, b), and
ψ(u) = ψ(kb/2) > b. Consequently, {u ∈ P(ϕ, kb; θ, L2, ψ, b) | ψ(u) > b}/= ø.

If u ∈ P(ϕ, kb; θ, L2, ψ, b), then for all 1/k � t � 1, b � u(t) � kb, θ(u(t)) � L2. By
(H2), we obtain f(t, u(t), Dρ

0+u(t)) > φp(kb/B), for 1/k � t � 1.
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From Lemma 3.2, we have

ψ(Tu) = min
1/k�t�(k−1)/k

|Tu(t)|

� 1
k
max
0�t�1

|(Tu)(t)|

=
1
k
max
0�t�1

∣
∣
∣
∣
∣

∫1

0
G(t, s)φq

(
1

Γ(r)

∫ s

0
(s − τ)r−1f

(
τ, u(τ), Dρ

0+u(τ)
)
dτ

)
ds

∣
∣
∣
∣
∣

>
kb

B

1
k
max
0�t�1

tα−1
∫1

0
G(1, s)φq

(
sγ

γΓ
(
γ
)

)

ds

=
b

B

(
1

Γ
(
γ + 1

)

)q−1 ∫1

0
G(1, s)φq(sγ)ds

>
b

B

(
1
k

)γ(q−1)( 1
Γ
(
γ + 1

)

)q−1 ∫1

1/k
G(1, s)ds = b;

(3.17)

that is, ψ(Tu) > b, for all u ∈ P(ϕ, kb; θ, L2, ψ, b). This shows that condition (C1) of Lemma 2.8
holds.

Step 3. Let u ∈ P(ϕ, r1; θ, L1); by (H1), we have

f
(
t, u(t), Dρ

0+u(t)
)
< min

{
φp
(r1
A

)
, φp

(
L1

2A

)
, φp

(
L1

2M

)}
. (3.18)

Similarly, we can prove that T : P(ϕ, r1; θ, L1) → P(ϕ, r1; θ, L1). (C2) of Lemma 2.8 holds.

Step 4. Let u ∈ P(ϕ, kb; θ, L2;ψ, b), and ϕ(Tu) > kb; we have

ψ(Tu) = min
1/k�t�(k−1)/k

|Tu(t)| � 1
k
max
0�t�1

|Tu(t)| = 1
k
ϕ(Tu) > b. (3.19)

(C3) of Lemma 2.8 holds. Therefore, the BVP (1.5) has at least three positive solutions
u1, u2, and u3 satisfying

max
0�t�1

|u1(t)| � r1, max
0�t�1

∣∣∣D
ρ

0+u1(t)
∣∣∣ + max

0�t�1

∣∣u′1(t)
∣∣ � L1,

b < min
1/k�t�(k−1)/k

|u2(t)| < max
0�t�1

|u2(t)| � r2,

max
0�t�1

∣∣∣D
ρ

0+u2(t)
∣∣∣ + max

0�t�1

∣∣u′2(t)
∣∣ � L2, r1 < max

0�t�1
|u3(t)| � kb,

min
1/k�t�(k−1)/k

|u3(t)| < b, L1 < max
0�t�1

∣∣∣D
ρ

0+u3(t)
∣∣∣ + max

0�t�1

∣∣u′3(t)
∣∣ � L2.

(3.20)

The proof is completed.
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Corollary 3.6. If there exist constants 0 < r1 < b1 < kb1 � r2 < b2 < kb2 � · · · � rn, and
0 < L1 � L2 � · · · � Ln−1, n ∈ N, such that kbi/B � min{ri+1/A, Li+1/2A,Li+1/2M}, for
1 � i � n − 1 and the following conditions are satisfied:

(I1) f(t, u, v) < min{φp(ri/A), φp(Li/2A), φp(Li/M)} for (t, u, v) ∈ [0, 1] × [0, ri] ×
[−Li, Li];

(I2) f(t, u, v) > φp(kbi/B), for (t, u, v) ∈ [1/k, 1] × [bi, kbi] × [−Li+1, Li+1];
then the problem (1.5) has at least 2n − 1 concave positive solutions.

Proof. If n = 1, by Condition (I1) and Step 1 of the proof of Theorem 3.5, we can obtain that
T : P(ϕ, r1; θ, L1) → P(ϕ, r1; θ, L1) ⊂ P(ϕ, r1; θ, L1). From the Schauder fixed-point theorem,
the problem (1.5) has at least one fixed-point u1 ∈ P(ϕ, r1; θ, L1).

If n = 2, by Theorem 3.5, there exist at least three concave positive solutions u2, u3, and
u4. By the induction method, we finish the proof.

Finally, we present an example to check our results.

Example 3.7. Consider the boundary value problem:

D1/2
0+

(
φ3/2

(
D5/2

0+ u(t)
))

+ f
(
t, u(t), D1/2

0+ u(t)
)
= 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0, Dα
0+u(t)t=0 = 0,

(3.21)

where

f(t, u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

t

20
+ 6u2 +

( |v|
4 × 104

)4

, for u � 4,

t

20
+ 96 +

( |v|
4 × 104

)4

, for u > 4.
(3.22)

Let k = 4; note that p = 3/2, q = 3, α = 5/2, γ = 1/2, ρ = 1/2; we have A ≈ 0.9585, B ≈ 0.1089,
M ≈ 1.0819.

Choosing r1 = 1/4, b = 1, r2 = 104, L1 = 2 × 104, L2 = 4 × 104. It is easy to see that
kb/B � min(r2/A, L2/2A,L2/2M), and f(t, u, v) satisfying

(1) f(t, u, v) � 0.4875 < min{φp(r1/A), φp(L1/2A), φp(L1/2M)} ≈ 0.5107, (t, u, v) ∈
[0, 1] × [0, 1/4] × [−2 × 104, 2 × 104],

(2) f(t, u, v) � 7.0125 > φp(kb/B) ≈ 6.060, (t, u, v) ∈ [1/4, 1]× [1, 4]× [−4× 104, 4× 104],

(3) f(t, u, v) � 97.05 < min{φp(r2/A), φp(L2/2A), φp(L2/2M)} ≈ 102.1419, (t, u, v) ∈
[0, 1] × [0, 104] × [−4 × 104, 4 × 104].
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By Theorem 3.5, problem (3.21) has at least three concave positive solutions u1, u2, and
u3 satisfying

max
0�t�1

|u1(t)| < 1
4
, max

0�t�1

∣
∣
∣D

ρ

0+u1(t)
∣
∣
∣ + max

0�t�1

∣
∣u′1(t)

∣
∣ < 2 × 104,

1 < min
1/k�t�(k−1)/k

|u2(t)| < max
0�t�1

|u2(t)| � 104,

max
0�t�1

∣
∣
∣D

ρ

0+u2(t)
∣
∣
∣ + max

0�t�1

∣
∣u′2(t)

∣
∣ < 4 × 104,

1
4
< max

0�t�1
|u3(t)| � 4, min

1/k�t�(k−1)/k
|u3(t)| < 1,

2 × 104 < max
0�t�1

∣
∣
∣D

ρ

0+u3(t)
∣
∣
∣ + max

0�t�1

∣
∣u′3(t)

∣
∣ < 4 × 104.

(3.23)
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