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Themain purpose of this paper is to introduce a new hybrid iterative scheme for finding a common
element of set of solutions for a system of generalized mixed equilibrium problems, set of common
fixed points of a family of quasi-φ-asymptotically nonexpansivemappings, and null spaces of finite
family of γ-inverse strongly monotone mappings in a 2-uniformly convex and uniformly smooth
real Banach space. The results presented in the paper improve and extend the corresponding
results announced by some authors.

1. Introduction

Throughout this paper, we assume that E is a real Banach space with a dual E∗, C is a
nonempty closed convex subset of E, and 〈·, ·〉 is the duality pairing between members of
E and E∗. The mapping J : E → 2E

∗
defined by

J(x) =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2;∥∥f∗∥∥ = ‖x‖

}
, x ∈ E (1.1)

is called the normalized duality mapping.
Let F : C × C → R be a bifunction, let B : C → E∗ be a nonlinear mapping, and

let Φ : C → R be a proper extended real-valued function. The “so-called” generalized mixed
equilibrium problem for F, B, Φ is to find x∗ ∈ C such that

F
(
x∗, y

)
+
〈
y − x∗, Bx∗〉 + Φ

(
y
) −Φ(x∗) ≥ 0, ∀y ∈ C. (1.2)
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The set of solutions of (1.2) is denoted by GMEP(F, B,Φ), that is,

GMEP(F, B,Φ) =
{
x ∈ C : F

(
x∗, y

)
+
〈
y − x∗, Bx∗〉 + Φ

(
y
) −Φ(x∗) ≥ 0, ∀y ∈ C

}
. (1.3)

Special Examples

(1) If Φ ≡ 0, then the problem (1.2) is reduced to the generalized equilibrium problem
(GEP), and the set of its solutions is denoted by

GEP(F, B) =
{
x ∈ C : F

(
x∗, y

)
+
〈
y − x∗, Bx∗〉 ≥ 0, ∀y ∈ C

}
. (1.4)

(2) If B ≡ 0, then the problem (1.2) is reduced to the mixed equilibrium problem (MEP),
and the set of its solutions is denoted by

MEP(F, B) =
{
x ∈ C : F

(
x∗, y

)
+ Φ

(
y
) −Φ(x∗) ≥ 0, ∀y ∈ C

}
. (1.5)

These show that the problem (1.2) is very general in the sense that numerous problems
in physics, optimization, and economics reduce to finding a solution of (1.2). Recently, some
methods have been proposed for the generalizedmixed equilibrium problem in Banach space
(see, e.g., [1–3]).

Let E be a smooth, strictly convex, and reflexive Banach space, and letC be a nonempty
closed convex subset of E. Throughout this paper, the Lyapunov function φ : E × E → R

+ is
defined by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y∥∥2

, ∀x, y ∈ E. (1.6)

Following Alber [4], the generalized projection ΠC : E → C is defined by

ΠC(x) = argmin
y∈C

φ
(
y, x

)
, ∀x ∈ E. (1.7)

Let C be a nonempty closed convex subset of E, let S : C → C be a mapping, and let
F(S) be the set of fixed points of S. A point p ∈ C is said to be an asymptotic fixed point of T
if there exists a sequence {xn} ⊂ C such that xn ⇀ p and ||xn − Sxn|| → 0. We denoted the
set of all asymptotic fixed points of S by F̃(S). A point p ∈ C is said to be a strong asymptotic
fixed point of S if there exists a sequence {xn} ⊂ C such that xn → p and ||xn − Sxn|| → 0. We
denoted the set of all strongly asymptotic fixed points of S by F̂(S).

A mapping S : C → C is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.8)

Amapping S : C → C is said to be relatively nonexpansive [5] if F(S)/= ∅, F(S) = F̃(S)
and

φ
(
p, Sx

) ≤ φ
(
p, x

)
, ∀x ∈ C, p ∈ F(S). (1.9)
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A mapping S : C → C is said to be weak relatively nonexpansive [6] if F(S)/= ∅, F(S) =
F̂(S) and

φ
(
p, Sx

) ≤ φ
(
p, x

)
, ∀x ∈ C, p ∈ F(S). (1.10)

A mapping S : C → C is said to be closed if for any sequence {xn} ⊂ C with xn → x
and Sxn → y, then Sx = y.

A mapping S : C → C is said to be quasi-φ-nonexpansive if F(S)/= ∅ and

φ
(
p, Sx

) ≤ φ
(
p, x

)
, ∀x ∈ C, p ∈ F(S). (1.11)

A mapping S : C → C is said to be quasi-φ-asymptotically nonexpansive, if F(S)/= ∅ and
there exists a real sequence {kn} ⊂ [1,∞) with kn → 1 such that

φ
(
p, Snx

) ≤ knφ
(
p, x

)
, ∀n ≥ 1, x ∈ C, p ∈ F(S). (1.12)

From the definition, it is easy to know that each relatively nonexpansive mapping is
closed. The class of quasi-φ-asymptotically nonexpansive mappings contains properly the
class of quasi-φ-nonexpansive mappings as a subclass. The class of quasi-φ-nonexpansive
mappings contains properly the class of weak relatively nonexpansive mappings as a
subclass, and the class of weak relatively nonexpansive mappings contains properly the class
of relatively nonexpansive mappings as a subclass, but the converse may be not true.

A mapping A : C → E∗ is said to be α-inverse strongly monotone if there exists α > 0
such that

〈x − y,Ax −Ay〉 ≥ α
∥∥Ax −Ay

∥∥2
. (1.13)

If A is an α-inverse strongly monotone mapping, then it is 1/α-Lipschitzian.
Iterative approximation of fixed points for relatively nonexpansive mappings in the

setting of Banach spaces has been studied extensively by many authors. In 2005, Matsushita
and Takahashi [5] obtained weak and strong convergence theorems to approximate a fixed
point of a single relatively nonexpansive mapping. Recently, Su et al. [6, 7], Zegeye
and Shahzad [8], Wattanawitoon and Kumam [9], and Zhang [10] extend the notion
from relatively nonexpansive mappings or quasi-φ-nonexpansive mappings to quasi-
φ-asymptotically nonexpansive mappings and also prove some convergence theorems
to approximate a common fixed point of quasi-φ-nonexpansive mappings or quasi-φ-
asymptotically nonexpansive mappings.

Motivated and inspired by these facts, the purpose of this paper is to introduce a
hybrid iterative scheme for finding a common element of null spaces of finite family of
inverse strongly monotone mappings, set of common fixed points of an infinite family
of quasi-φ-asymptotically nonexpansive mappings, and the set of solutions of generalized
mixed equilibrium problem.
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2. Preliminaries

For the sake of convenience, we first recall some definitions and conclusions which will be
needed in proving our main results.

A Banach space E is said to be strictly convex if ||x + y||/2 < 1 for all x, y ∈ U = {z ∈
E : ||z|| = 1} with x /=y. It is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0
such that ||x + y||/2 ≤ 1 − δ for all x, y ∈ U with ||x − y|| ≥ ε. The convexity modulus of E is the
function δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{
1 −

∥∥∥∥
1
2
(
x + y

)∥∥∥∥ : x, y ∈ U,
∥∥x − y

∥∥ ≥ ε

}
, (2.1)

for all ε ∈ (0, 2]. It is well known that δE(ε) is a strictly increasing and continuous function
with δE(0) = 0, and δE(ε)/ε is nondecreasing for all ε ∈ (0, 2]. Let p > 1, then E is said to be
p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp, for all ε ∈ (0, 2]. The
space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U. And E is said to be uniformly smooth if the limit exists uniformly in
x, y ∈ U.

In the sequel, we will make use of the following lemmas.

Lemma 2.1 (see [11]). Let E be a 2-uniformly convex real Banach space, then for all x, y ∈ E, the
inequality ||x − y|| ≤ (2/c2)||Jx − Jy|| holds, where 0 < c ≤ 1, and c is called the 2-uniformly convex
constant of E.

Lemma 2.2 (see [12]). Let E be a smooth, strict convex, and reflexive Banach space, and let C be a
nonempty closed convex subset of E, then the following conclusions hold:

(i) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), for all x ∈ C, y ∈ E,

(ii) let x ∈ E and z ∈ C, then

z = ΠCx ⇐⇒ 〈z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.3 (see [12]). Let E be a uniformly convex and smooth Banach space, and let {xn}, {yn} be
sequences of E. If φ(xn, yn) → 0 (as n → ∞) and either {xn} or {yn} is bounded, then xn − yn →
0(as n → ∞).

Lemma 2.4 (see [10]). Let E be a uniformly convex Banach space, let r be a positive number, and
let Br(0) be a closed ball of E. For any given points {x1, x2, . . . , xn, . . .} ⊂ Br(0) and for any given
positive numbers {λ1, λ2, . . .} with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing, and

convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that for any i, j ∈ {1, 2, . . .}, i < j,

∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.4)
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For solving the generalized mixed equilibrium problem, let us assume that the
bifunction F : C × C → R satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, for all x, y ∈ C,

(A3) lim supt↓0F(x + t(z − x), y) ≤ F(x, y), for all x, y, z ∈ C,

(A4) the function y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.5 (see [13]). Let E be a smooth, strict convex, and reflexive Banach space, and let C be
a nonempty closed convex subset of E. Let F : C × C → R be a bifunction satisfying conditions
(A1)–(A4). Let r > 0 and x ∈ E, then there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.5)

By the same way as given in the proofs of [14, Lemmas 2.8 and 2.9], we can prove that
the bifunction

Γ
(
x, y

)
= F

(
x, y

)
+ Φ

(
y
) −Φ(x) +

〈
y − x, Bx

〉
, ∀x, y ∈ C (2.6)

satisfies conditions (A1)–(A4) and the following conclusion holds.

Lemma 2.6. Let E be a smooth, strictly convex, and reflexive Banach space, and let C be a nonempty
closed convex subset of E. Let F : C ×C → R be a bifunction satisfying conditions (A1)–(A4), let B :
C → E∗ be a β-inverse strongly monotone mapping, and let Φ : C → R be a lower semicontinuous
and convex function. For given r > 0 and x ∈ E, define a mapping KΓ

r : E → C by

KΓ
r (x) =

{
z ∈ C : F

(
z, y

)
+ Φ

(
y
) −Φ(z) +

〈
y − z, Bz

〉
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
,

(2.7)

then the following hold:

(i) KΓ
r is single valued,

(ii) KΓ
r is a firmly nonexpansive-type mapping, that is, for all x, y,∈ E,
〈
KΓ

r (x) −KΓ
r

(
y
)
, JKΓ

r (x) − JKΓ
r

(
y
)〉 ≤

〈
KΓ

r (x) −KΓ
r

(
y
)
, Jx − Jy

〉
, (2.8)

(iii) F(KΓ
r ) = GMEP(F,Φ, B),

(iv) GMEP(F,Φ, B) is closed and convex,

(v) φ(p,KΓ
r (x)) + φ(KΓ

r (x), x) ≤ φ(p, x), for all p ∈ F(KΓ
r ).

In the sequel, we make use of the function V : E × E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.9)

for all x ∈ E and x∗ ∈ E∗. Observe that V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. The
following lemma is well known.
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Lemma 2.7 (see [4]). Let E be a smooth, strict convex, and reflexive Banach space with E∗ as its
dual, then

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.10)

for all x ∈ E and x∗, y∗ ∈ E∗.

3. Main Results

In this section, wewill propose the following new iterative scheme {xn} for finding a common
element of set of solutions for a system of generalized mixed equilibrium problems, the set of
common fixed points of a family of quasi-φ-asymptotically nonexpansive mappings, and null
spaces of finite family of γ-inverse strongly monotone mappings in the setting of 2-uniformly
convex and uniformly smooth real Banach spaces:

x0 ∈ C0 = C,

yn = ΠCJ
−1(Jxn − λAn+1xn),

zn = J−1
(
αn,0Jxn +

∞∑
i=1

αn,iJT
n
i yn

)
,

un = KΓM
rM,n

KΓM−1
rM−1,n · · ·KΓ2

r2,nK
Γ1
r1,nzn,

Cn+1 =
{
v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.1)

where KΓk
rk,n : C → C, k = 1, 2, . . . ,M is the mapping defined by (2.7), An = An(modN), rk,n ∈

[d,∞) for some d > 0 and 0 < λ < c2γ/2, where c is the 2-uniformly convex constant of E, for
each n ≥ 1, αn,0 +

∑∞
i=1 αn,i = 1 and for each j ≥ 1, lim infn→∞αn,0αn,j > 0.

Definition 3.1. A countable family of mappings {Ti : C → C} is said to be uniformly quasi-
ϕ-asymptotically nonexpansive mappings if there exists a sequence {kn} ⊂ [1,∞) with kn → 1
such that for each i ≥ 1

∥∥Tn
i x − Tn

i y
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ C, and for each n ≥ 1. (3.2)

Theorem 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth real Banach space E with a dual E∗. Let {Ti : C → C}∞i=1 be a countable family of closed and
uniformly quasi-ϕ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞) such that
kn → 1. Suppose further that for each i ≥ 1, Ti is uniformly Li-Lipschitzian. Let An : C → E∗,
n = 1, 2, . . . ,N be a finite family of γn-inverse strongly monotone mappings, and let γ = min{γn, n =
1, 2, . . . ,N}. Let {Fm : C × C → R, m = 1, 2, . . . ,M} be a finite family of equilibrium functions
satisfying conditions (A1)–(A4), and {Φm : C → R, m = 1, 2, . . . ,M} be a finite family of lower
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semicontinuous convex function, and let {Bm : C → E∗, m = 1, 2, . . . ,M} be a finite family of
βm-inverse strongly monotone mappings. If

Ω =
∞⋂
i=1

F(Ti) ∩
N⋂
n=1

A−1
n (0) ∩

M⋂
m=1

GMEP(Fm, Bm,Φm) (3.3)

is a nonempty and bounded subset in C and ξn = supp∈Ω(kn − 1)φ(p, xn), then the sequence {xn}
defined by (3.1) converges strongly to some point x∗ ∈ Ω.

Proof. We divide the proof of Theorem 3.2 into five steps.

(I) Sequences {xn}, {yn}, and {Tn
i yn} all are bounded.

In fact, since xn = ΠCnx0, for any p ∈ Ω, from Lemma 2.2, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
. (3.4)

This implies that the sequence {φ(xn, x0)} is bounded, and so {xn} is bounded.
On the other hand, by Lemmas 2.1 and 2.7, we have that

φ
(
p, yn

)
= φ

(
p,ΠCJ

−1(Jxn − λAn+1xn)
)

≤ φ
(
p, J−1(Jxn − λAn+1xn)

)

= V
(
p, Jxn − λAn+1xn

)

≤ V
(
p, (Jxn − λAn+1xn) + λAn+1xn

) − 2
〈
J−1(Jxn − λAn+1xn) − p, λAn+1xn

〉

= V
(
p, Jxn

) − 2λ
〈
J−1(Jxn − λAn+1xn) − p,An+1xn

〉

= φ
(
p, xn

) − 2λ〈xn − p,An+1xn〉 − 2λ〈J−1(Jxn − λAn+1xn) − xn,An+1xn〉
= φ

(
p, xn

) − 2λ〈xn − p,An+1xn −An+1p〉
(
since Anp = 0, ∀n ≥ 1

)

− 2λ
〈
J−1(Jxn − λAn+1xn) − xn,An+1xn

〉

≤ φ
(
p, xn

) − 2λγ‖An+1xn‖2 + 2λ
∥∥∥J−1(Jxn − λAn+1xn) − J−1Jxn

∥∥∥ × ‖An+1xn‖

≤ φ
(
p, xn

) − 2λγ‖An+1xn‖2 + 4λ2

c2
‖An+1xn‖2

(
by Lemma 2.1

)

≤ φ
(
p, xn

)
+ 2λ

(
2λ
c2

− γ

)
‖An+1xn‖2.

(3.5)
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Thus, using the fact that λ ≤ (c2/2)γ , we have that

φ
(
p, yn

) ≤ φ
(
p, xn

)
. (3.6)

Moreover, by the assumption that {Ti : C → C}∞i=1 is a countable family of uniformly quasi-
ϕ-asymptotically nonexpansive mappings with a sequence {kn,i} ⊂ [1,∞) such that kn =
supi≥1kn,i → 1 (n → ∞), hence for any given p ∈ Ω, from (3.6)we have that

ϕ
(
p, Tn

i yn

) ≤ knϕ
(
p, yn

) ≤ knϕ
(
p, xn

)
, ∀n ≥ 1, i ≥ 1. (3.7)

Hence, for each i ≥ 1, {Tn
i yn} is also bounded, denoted by

M = sup
n≥0, i≥1

{‖xn‖,
∥∥yn

∥∥,∥∥Tn
i yn

∥∥} < ∞. (3.8)

By the way, from the definition of {ξn}, it is easy to see that

ξn = sup
p∈Ω

(kn − 1)φ
(
p, xn

) ≤ sup
p∈Ω

(kn − 1)
(∥∥p∥∥ +M

)2 −→ 0 (n −→ ∞). (3.9)

(II) For each n ≥ 0, Cn is a closed and convex subset of C and Ω ⊂ Cn.

It is obvious that C0 = C is closed and convex. Suppose that Cn is closed and convex for some
n ≥ 1. Since the inequality φ(v, un) ≤ φ(v, xn) + ξn is equivalent to

2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ξn, (3.10)

therefore, we have

Cn+1 =
{
v ∈ Cn : 2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ξn

}
. (3.11)

This implies that Cn+1 is closed and convex. Thus, for each n ≥ 0, Cn is a closed and convex
subset of C.
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Next, we prove that Ω ⊂ Cn for all n ≥ 0. Indeed, it is obvious that Ω ⊂ C0 = C.
Suppose that Ω ⊂ Cn for some n ≥ 1. Since E is uniformly smooth, E∗ is uniformly convex.
For any given p ∈ Ω ⊂ Cn and for any positive integer j > 0, from Lemma 2.4, we have

φ
(
p, un

)
= φ

(
p,KΓM

rM,n
KΓM−1

rM−1,n · · ·KΓ2
r2,nK

Γ1
r1,nzn

)

≤ φ
(
p, zn

)
= φ

(
p, J−1

(
αn,0Jxn +

∞∑
i=1

αn,iJT
n
i yn

))

=
∥∥p∥∥2 − 2

〈
p, αn,0Jxn +

∞∑
i=1

αn,iJT
n
i yn

〉
+

∥∥∥∥∥αn,0Jxn +
∞∑
i=1

αn,iJT
n
i yn

∥∥∥∥∥
2

≤ ∥∥p∥∥2 − 2αn,0〈p, Jxn〉 − 2
∞∑
i=1

αn,i

〈
p, JTn

i yn

〉

+ αn,0‖xn‖2 +
∞∑
i=1

αn,i

∥∥Tn
i yn

∥∥2 − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)

= αn,0φ
(
p, xn

)
+

∞∑
i=1

αn,iφ
(
p, Tn

i yn

) − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)

≤ αn,0φ
(
p, xn

)
+

∞∑
i=1

αn,iknφ
(
p, yn

) − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)
.

(3.12)

Having this together with (3.6), we have

φ
(
p, un

) ≤ φ
(
p, zn

)

≤ αn,0φ
(
p, xn

)
+

∞∑
i=1

αn,iknφ
(
p, xn

) − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)

≤ knφ
(
p, xn

) − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)

≤ φ
(
p, xn

)
+ sup

z∈Ω
(kn − 1)φ(z, xn) − αn,0αn,jg

(∥∥∥Jxn − JTn
j yn

∥∥∥
)

= φ
(
p, xn

)
+ ξn − αn,0αn,jg

(∥∥∥Jxn − JTn
j yn

∥∥∥
)

≤ φ
(
p, xn

)
+ ξn.

(3.13)

Hence, p ∈ Cn+1 and Ω ⊂ Cn for all n ≥ 0.

(III) {xn} is a Cauchy sequence.
Since xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have that

φ(xn, x0) ≤ φ(xn+1, x0), (3.14)
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which implies that the sequence {φ(xn, x0)} is nondecreasing and bounded, and so
limn→∞φ(xn, x0) exists. Hence, for any positive integer m, using Lemma 2.2 we have

φ(xn+m, xn) = φ(xn+m,ΠCnx0) ≤ φ(xn+m, x0) − φ(xn, x0), (3.15)

for all n ≥ 0. Since limn→∞φ(xn, x0) exists, we obtain that

φ(xn+m, xn) −→ 0 (n −→ ∞), ∀m ∈ Z+. (3.16)

Thus, by Lemma 2.3, we have that ‖xn+m−xn‖ → 0 as n → ∞. This implies that the sequence
{xn} is a Cauchy sequence in C. Since C is a nonempty closed subset of Banach space E, it is
complete. Hence, there exists an x∗ in C such that

xn −→ x∗ (n −→ ∞). (3.17)

(IV) We show that x∗ ∈ ⋂∞
i=1 F(Ti).

Since xn+1 ∈ Cn+1 by the structure of Cn+1, we have that

φ(xn+1, un) ≤ φ(xn+1, xn) + ξn. (3.18)

Again by (3.16) and Lemma 2.3, we get that limn→∞||xn+1 − un|| = 0. But

‖xn − un‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − un‖. (3.19)

Thus,

lim
n→∞

‖xn − un‖ = 0. (3.20)

This implies that un → x∗ as n → ∞. Since J is norm-to-norm uniformly continuous on
bounded subsets of E, we have that

lim
n→∞

‖Jxn − Jun‖ = 0. (3.21)

From (3.13), (3.20), and (3.21), we have that

αn,0αn,jg
(∥∥∥Jxn − JTn

j yn

∥∥∥
)
≤ φ

(
p, xn

) − φ
(
p, un

)
+ ξn

= ‖xn‖2 − ‖un‖2 + 2
〈
p, Jun − Jxn

〉
+ ξn

≤ ‖xn − un‖(‖un‖ + ‖xn‖) + 2〈p, Jun − Jxn〉 + ξn −→ 0 (n −→ ∞).
(3.22)
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In view of condition lim infn→∞αn,0αn,j > 0, we see that

g
(∥∥∥Jxn − JTn

j yn

∥∥∥
)
−→ 0 (n −→ ∞). (3.23)

It follows from the property of g that

∥∥∥Jxn − JTn
j yn

∥∥∥ −→ 0 (n −→ ∞). (3.24)

Since xn → x∗ and J is uniformly continuous, it yields Jxn → Jx∗. Hence, from (3.24), we
have

JTn
j yn −→ Jx∗ (n −→ ∞). (3.25)

Since E∗ is uniformly smooth and J−1 is uniformly continuous, it follows that

Tn
j yn −→ x∗ (n −→ ∞), ∀j ≥ 1. (3.26)

Moreover, using inequalities (3.12) and (3.5), we obtain that

φ
(
p, un

) ≤ αn,0φ
(
p, xn

)
+

∞∑
i=1

αn,iknφ
(
p, xn

)
+

∞∑
i=1

αn,ikn2λ
(

2
c2
λ − γ

)
‖An+1xn‖2

≤ φ
(
p, xn

)
+ ξn + kn2λ

(
2
c2
λ − γ

)
‖An+1xn‖2, ∀p ∈ Ω.

(3.27)

This implies that

kn2λ
(
γ − 2

c2
λ

)
‖An+1xn‖2 ≤ φ

(
p, xn

) − φ
(
p, un

)
+ ξn, (3.28)

that is,

lim
n→∞

‖An+1xn‖2 = 0. (3.29)

It follows from (3.1) and (3.29) that we have

lim
n→∞

∥∥yn − x∗∥∥ = lim
n→∞

∥∥∥ΠCJ
−1(Jxn − λAn+1xn) − x∗

∥∥∥

≤ lim
n→∞

∥∥∥J−1(Jxn − λAn+1xn) − x∗
∥∥∥ = 0.

(3.30)
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Furthermore, by the assumption that for each j ≥ 1, Tj is uniformly Li-Lipschitz continuous,
hence, we have

∥∥∥Tn+1
j yn − Tn

j yn

∥∥∥ ≤
∥∥∥Tn+1

j yn − Tn+1
j yn+1

∥∥∥ +
∥∥∥Tn+1

j yn+1 − yn+1

∥∥∥ +
∥∥yn+1 − yn

∥∥ +
∥∥∥yn − Tn

j yn

∥∥∥

≤ (
Lj + 1

)∥∥yn+1 − yn

∥∥ +
∥∥∥Tn+1

j yn+1 − yn+1

∥∥∥ +
∥∥∥yn − Tn

j yn

∥∥∥.
(3.31)

This together with (3.26) and (3.30) yields

lim
n→∞

∥∥∥Tn+1
j yn − Tn

j yn

∥∥∥ = 0. (3.32)

Hence, from (3.26), we have

lim
n→∞

Tn+1
j yn = x∗, (3.33)

that is,

lim
n→∞

TjT
n
j yn = x∗. (3.34)

In view of (3.26) and the closeness of Tj , it yields that Tjx∗ = x∗ for all j ≥ 1. This implies that
x∗ ∈ ⋂∞

j=1 F(Tj).

(IV) Now, we prove that x∗ ∈ ⋂N
n=1A

−1
n (0).

It follows from (3.29) that

lim
n→∞

‖An+1xn‖ = 0. (3.35)

Since limn→∞xn = x∗, we have that for every subsequence {xnj}j≥1 of {xn}n≥0, limj→∞xnj = x∗

and

lim
j→∞

Anj+1xnj = 0. (3.36)

Let {nq}q≥1 ⊂ N be an increasing sequence of natural numbers such that Anq+1 = A1, for all
q ∈ N, then limp→∞||xnq − x∗|| = 0 and

0 = lim
q→∞

Anq+1xnq = lim
q→∞

A1xnq . (3.37)

Since A1 is γ-inverse strongly monotone, it is Lipschitz continuous, and thus

A1x
∗ = A1

(
lim
q→∞

xnq

)
= lim

q→∞
A1xnq = 0. (3.38)
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Hence,

x∗ ∈ A−1
1 (0). (3.39)

Continuing this process, we obtain that x∗ ∈ A−1
i (0), for all i = 1, 2, . . . ,N. Hence,

x∗ ∈
N⋂
n=1

A−1
n (0). (3.40)

(V) Next, we prove that x∗ ∈ ⋂M
m=1 GMEP(Fm, Bm,Φm).

Putting Sm
n = KΓm

rm,n
KΓm−1

rm−1,n · · ·KΓ2
r2,nK

Γ1
r1,n for m ∈ {1, 2, . . . ,M} and S0

n = I for all n ∈ N. For any
p ∈ Ω, we have

φ
(
Sm
n zn,Sm−1

n zn
)
≤ φ

(
p,Sm−1

n zn
)
− φ

(
p,Sm

n zn
)

≤ φ
(
p, zn

) − φ
(
p,Sm

n zn
)

≤ φ
(
p, xn

)
+ ξn − φ

(
p,Sm

n zn
) (

by (3.13)
)

= φ
(
p, xn

)
+ ξn − φ

(
p, un

)
.

(3.41)

It follows from (3.22) that limn→∞φ(Sm
n zn,Sm−1

n zn) = 0. Since E is 2-uniformly convex and
uniformly smooth Banach space and {zn} is bounded, we have that

lim
n→∞

∥∥∥Sm
n zn − Sm−1

n zn
∥∥∥ = 0, m = 1, 2, . . . ,M. (3.42)

Since xn → x∗ and un → x∗, now we prove that for each m = 1, 2, . . . ,M, Sm
n zn → x∗ as

n → ∞. In fact, if m = M, then we have

lim
n→∞

∥∥∥SM
n zn − SM−1

n zn
∥∥∥ = lim

n→∞

∥∥∥un − SM−1
n zn

∥∥∥ = 0, (3.43)

that is, SM−1
n zn → x∗. By induction, the conclusion can be obtained. Since J is norm-to-norm

uniformly continuous on bounded subsets of E, we get

lim
n→∞

∥∥∥JSm
n zn − JSm−1

n zn
∥∥∥ = 0, (3.44)

and since rk,n ∈ [d,∞) for some d > 0, we have that

lim
n→∞

∥∥JSm
n zn − JSm−1

n zn
∥∥

rm,n
= 0. (3.45)
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Next, since Γm(Sm
n zn, y)+ (1/rm,n)〈y−Sm

n zn, JSm
n zn − JSm−1

n zn〉 ≥ 0, for all y ∈ C, this implies
that

1
rm,n

〈
y − Sm

n zn, JSm
n zn − JSm−1

n zn
〉
≥ −Γm

(Sm
n zn, y

) ≥ Γm
(
y,Sm

n zn
)
, ∀y ∈ C. (3.46)

This implies that

Γm
(
y,Sm

n zn
) ≤ 1

rm,n

〈
y − Sm

n zn, JSm
n zn − JSm−1

n zn
〉

≤ (
M1 +

∥∥y∥∥)
∥∥JSm

n zn − JSm−1
n zn

∥∥
rm,n

,

(3.47)

for some M1 ≥ 0. Since y �→ Γm(x, y) is a convex and lower semicontinuous, we obtain from
(3.45) and (3.47) that

Γm
(
y, x∗) ≤ lim inf

n→∞
Γm

(
y,Sm

n zn
) ≤ 0, ∀y ∈ C. (3.48)

For any t ∈ (0, 1] and y ∈ C, then yt = ty + (1 − t)x∗ ∈ C. Since Γm satisfies conditions (A1)
and (A4), from (3.48), we have

0 = Γm
(
yt, yt

) ≤ tΓm
(
yt, y

)
+ (1 − t)Γm

(
yt, x

∗)

≤ tΓm
(
yt, y

)
, ∀m = 1, 2, . . .M.

(3.49)

Delete t, and then let t → 0, by condition (A3), we have

0 ≤ Γm
(
x∗, y

)
, ∀y ∈ C, ∀m = 1, 2, . . .M, (3.50)

that is, for each m = 1, 2, . . . ,M, we have

Fm

(
x∗, y

)
+ 〈y − x∗, Bmx

∗〉 + Ψm

(
y
) −Ψm(x∗) ≥ 0, ∀y ∈ C. (3.51)

Therefore, we have that

x∗ ∈
M⋂
m=1

GMEP(Fm, Bm,Φm). (3.52)

This completes the proof.

Remark 3.3. (1) Theorem 3.2 not only improves and extends the main results in [3, 6–10] but
also improves and extends the corresponding results of Chang et al. [1, 15], Wang et al. [16],
Su et al. [17], and Kang et al. [18].

(2)It should be pointed out that the results presented in the paper can be used directly
to study the existence problems and approximal problems of solutions to optimization
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problems, monotone variational inequality problems, variational inclusion problems, and
equilibrium problems in some Banach spaces. For saving space, we will give them in another
paper.
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